Uniqueness of weak solutions of nonhomogeneous A-harmonic equations with very weak boundary values

Yuxia Tong

College of Science North China University of Science and Technology Tangshan, Hebei, 063009, China

Abstract—The uniqueness of weak solutions of non-homogeneous A-harmonic equations with very weak boundary values is obtained.

Keywords—uniqueness; weak solution; elliptic equation.

I. INTRODUCTION

The elliptic equation has a strong background, and has many applications in physics and engineering. For the recent developments of weak solutions of elliptic equations, we refer the reader to [1-3]. The aim of this present paper is to obtain the uniqueness of weak solutions of non-homogeneous A-harmonic equation with very weak boundary values. Our result is a generalization of the reference [4].

In this present paper, we consider the following non-homogeneous A-harmonic equation

$$\operatorname{div}A(x,\nabla u) = \operatorname{div}F(x,u) \tag{1.1}$$

where $A: \Omega \times \mathbb{R}^n \to \mathbb{R}^n$ satisfies the conditions

$$(\mathsf{H1})\langle A(x,\xi),\xi\rangle \geq \alpha \left|\xi\right|^p,$$

$$(\mathsf{H2}) \left| A(x, \xi_1) - A(x, \xi_2) \right| \le \beta (\left| \xi_1 \right| + \left| \xi_2 \right|)^{p-2} \left| \xi_1 - \xi_2 \right|,$$

$$(H3)\langle A(x,\xi_1)-A(x,\xi_2),\xi_1-\xi_2\rangle > 0$$
 whenever $\xi_1 \neq \xi_2$.

for almost every $x \in \Omega$ and all $\xi, \xi_1, \xi_2 \in \mathbf{R}^n$, $\alpha, \beta > 0$ are constants, $1 and <math>F(x, u) \in (L^{\tau}_{loc}(\Omega))^n$,

$$\tau \le \begin{cases} \frac{\lambda}{1 + \lambda(p-2)/r}, p > 2\\ \lambda, & 1$$

Throughout this paper, Ω will denote bounded open set in \mathbf{R}^n , and $E \subset \partial \Omega$ is a closed set and small in an appropriate capacity sense. In order to avoid some technical difficulties related to the imbedding theorem we shall illustrate our approach only for p smaller than the spatial dimension of Ω .

The prototype of equation (1.1) is the homogeneous A-harmonic equation

$$\operatorname{div}A(x,\nabla u) = 0. \tag{1.2}$$

Linna Cheng

College of Science North China University of Science and Technology Tangshan, Hebei, 063009, China

When the mapping $A(x,\xi) = \left|\xi\right|^{p-2} \xi$, (1.2) generates the p-harmonic equation

$$\operatorname{div} |\nabla u|^{p-2} \nabla u = 0 \tag{1.3}$$

which satisfied the assumptions (H1)-(H3).

Definition 1.1 A function $u \in W^{1,p}_{loc}(\Omega)$ is called a weak solution of A-harmonic equation (1.1) if u satisfies

$$\int_{\Omega} \langle A(x, \nabla u), \nabla \varphi \rangle \, \mathrm{d}x = \int_{\Omega} \langle F(x, u), \nabla \varphi \rangle \, \mathrm{d}x \tag{1.4}$$

for all $\varphi \in C_0^{\infty}(\Omega)$.

The solutions belong to the local Sobolev space $u\in W^{1,p}_{loc}(\Omega)$ and we prove a uniqueness result for solutions provided that they belong to $u\in W^{1,r}_{loc}(\Omega)$ for r< p and that they take the same boundary values in $\partial\Omega\setminus E$ where $E\subset\partial\Omega$ is a closed set and small in an appropriate capacity sense.

In order to formulate our theorem we need to consider local boundary values. Let $F \subset \partial \Omega$ and $u \in W^{1,p}_{loc}(\Omega)$. We say that u has zero boundary values at F in the $W^{1,p}$ -sense, abbreviated $u \in W^{1,p}_{loc}(\Omega;F)$, if each $x \in F$ has a neighborhood U and a function $\eta \in C_0^\infty(U)$ such that $\eta = 1$ in some neighborhood of x and $\eta u \in W^{1,p}_0(\Omega)$.

Suppose that $\theta \in W^{1,p}_{loc}(E)$. We say that u has the boundary values θ at F in the $W^{1,p}$ -senses if $u-\theta \in W^{1,p}_{loc}(\Omega;F)$ and if for each $x \in F$ there exists η as above with $\eta \theta \in W^{1,p}(\Omega)$. Note that then also ηu belongs to $W^{1,p}(\Omega)$.

If u has the boundary values θ at F in the $W^{1,p}$ -sense, then u has the boundary values θ at a neighborhood of F. Hence we may always assume that F is open relative to $\partial\Omega$.

For our main result we assume that the numbers $p\in(1,n)$, $q\in(1,\infty)$, $s\in(1,\infty)$ and $r\geq \max\{1,p-1\}$ satisfy

$$t = \frac{sq}{sq - s - q - \frac{sq(p-2)^{+}}{r}} > 1.$$
 (1.5)

Here $(p-2)^+ = p-2$ if $p \ge 2$ and 0 otherwise.

Note. If t>n, then $cap_tE=0$ implies $E=\varnothing$. Hence only the values $t\le n$ are of interest. Let \mathscr{Z}^s denote the s-dimensional Hausdorff measure. It is well known that $\mathscr{Z}^{n-t}(E)<\infty$ implies $cap_tE=0$.

Theorem 1.2 Suppose that $\theta \in W^{1,p}_{loc}(\Omega)$ and that u_1,u_2 are weak solutions of non-homogeneous A-harmonic equation (1.1) such that

(i) u_1 and u_2 have boundary values θ in the $W^{1,p}$ -sense at $\partial\Omega\setminus E$;

(ii)
$$u_1 - u_2 \in L^q(\Omega)$$
;

(iii)
$$\nabla u_1 - \nabla u_2 \in L^s(\Omega)$$
;

(iv)
$$\nabla u_1, \nabla u_2 \in L^r(\Omega)$$
 if $p > 2$.

If $cap_{t}E = 0$, then $u_{1} = u_{2}$ in Ω .

Note. Let $\operatorname{div} F(x) = 0$, then our main results is Theorem 1.1 in [4].

II. PROOF OF THEOREM 1.2

Let u_1,u_2 be weak solutions of non-homogeneous A-harmonic equation (1.1), Ω be a bounded open set. Condition (i) in Theorem 1.2 implies that each $y \in \partial \Omega \setminus E$ has a neighborhood U = U(y) such that

$$u_i \in W^{1,p}(U \cap \Omega), \quad i = 1, 2.$$
 (2.1)

Thus for each neighborhood V of E we have

$$u_i \in W^{1,p}(\Omega \setminus \overline{V}), \quad i = 1, 2.$$
 (2.2)

Fix a ball $B \subset\subset \Omega$. Since $cap_{_{\it T}}(E) = 0$, we can choose an open set $D \subset {\bf R}^n$ such that $E \subset D$; $B \subset {\bf R}^n \setminus D$ and $cap_{_{\it T}}(E;D) = 0$. Here $cap_{_{\it T}}(E;D) = 0$ refers to the usual variational t -capacity of the condenser $(E;D)^{[2,\ {\rm Chapter}\ 2]}$. Given $\varepsilon > 0$ we can find an open set U_ε and $\xi \in C_0^\infty(D)$ such that $E \subset U_\varepsilon \subset\subset D$, $0 \le \xi \le 1$, $\xi = 1$ on $\overline{U_\varepsilon}$ and

$$\int_{D} \left| \nabla \xi \right|^{t} dx < \varepsilon^{t}.$$

Hence

$$\|\nabla \xi\|_{\epsilon} < \varepsilon.$$

Write $\eta=1-\xi$. Then $\eta=0$ in $\overline{U_\varepsilon}$, $\eta=1$ in $\mathbf{R}^n\setminus D$, $0\leq \eta\leq 1$, $\eta\in C^\infty(\mathbf{R}^n)$, and

$$\|\nabla \eta\|_{\mathcal{L}} < \varepsilon.$$
 (2.3)

The above inequality has important role in the following proof. Note that here we get $\eta = 1$ in B.

Let W_ε be a neighborhood of E with $E \subset\subset W_\varepsilon \subset\subset U_\varepsilon$. Let

$$\varphi = \eta(u_1 - u_2).$$

Since (3.2) holds and $u_1-u_2\in W^{1,p}_0(\Omega;\partial\Omega\setminus E)$ by Condition (i) in Theorem 1.2, then $\varphi\in W^{1,p}_0(\Omega)$, and the support of φ stays away from E. Thus we can use φ as a test function in Definition 1.1, i.e.,

$$\begin{split} &\int_{\Omega\setminus\overline{W_e}} \left\langle A(x,\nabla u_i), \nabla \left(\eta(u_1-u_2)\right) \right\rangle \mathrm{d}x \\ &= \int_{\Omega\setminus\overline{W}} \left\langle F(x,u_i), \nabla \left(\eta(u_1-u_2)\right) \right\rangle \mathrm{d}x, \quad i=1,2. \end{split}$$

Hence

$$\begin{split} &\int_{\Omega} \left\langle A(x, \nabla u_1) - A(x, \nabla u_2), \nabla \left(\eta(u_1 - u_2) \right) \right\rangle \mathrm{d}x \\ &= \int_{\Omega} \left\langle F(x, u_1) - F(x, u_2), \nabla \left(\eta(u_1 - u_2) \right) \right\rangle \mathrm{d}x. \end{split}$$

here we have used $\eta=0$ in $\overline{W_\varepsilon}$. Thus using the condition (H2) we obtain from the above formula

$$I = \int_{\Omega} \eta \left\langle A(x, \nabla u_{1}) - A(x, \nabla u_{2}), \nabla(u_{1} - u_{2}) \right\rangle dx$$

$$= -\int_{\Omega} (u_{1} - u_{2}) \left\langle A(x, \nabla u_{1}) - A(x, \nabla u_{2}), \nabla \eta \right\rangle dx$$

$$+ \int_{\Omega} \left\langle F(x, u_{1}) - F(x, u_{2}), \nabla \left(\eta(u_{1} - u_{2}) \right) \right\rangle dx$$

$$\leq \int_{\Omega} \left| A(x, \nabla u_{1}) - A(x, \nabla u_{2}) \right| \left| u_{1} - u_{2} \right| \left| \nabla \eta \right| dx$$

$$+ \int_{\Omega} \left| F(x, u_{1}) - F(x, u_{2}) \right| \left| \nabla u_{1} - u_{2} \right| \left| \nabla \eta \right| dx$$

$$+ \int_{\Omega} \left| F(x, u_{1}) - F(x, u_{2}) \right| \left| \nabla u_{1} - \nabla u_{2} \right| \left| u_{1} - u_{2} \right| \left| \nabla \eta \right| dx$$

$$+ \int_{\Omega} \left| F(x, u_{1}) - F(x, u_{2}) \right| \left| u_{1} - u_{2} \right| \left| \nabla \eta \right| dx$$

$$+ \int_{\Omega} \left| F(x, u_{1}) - F(x, u_{2}) \right| \left| \nabla (u_{1} - u_{2}) \right| \eta dx$$

$$+ \int_{\Omega} \left| F(x, u_{1}) - F(x, u_{2}) \right| \left| \nabla (u_{1} - u_{2}) \right| \eta dx$$

$$= I_{1} + I_{2} + I_{3}$$

$$(2.4)$$

Case 1: p > 2 . Using the Hölder inequality with

$$\frac{p-2}{r} + \frac{1}{s} + \frac{1}{a} + \frac{1}{t} = 1,$$

we have

$$I_{1} = \beta \int_{\Omega} (|\nabla u_{1}| + |\nabla u_{2}|)^{p-2} |\nabla u_{1} - \nabla u_{2}| |u_{1} - u_{2}| |\nabla \eta| dx$$

$$\leq \beta \left(\int_{\Omega} (|\nabla u_{1}| + |\nabla u_{2}|)^{r} dx \right)^{\frac{p-2}{r}} \left(\int_{\Omega} |\nabla u_{1} - \nabla u_{2}|^{s} dx \right)^{\frac{1}{s}}$$

$$\cdot \left(\int_{\Omega} |u_{1} - u_{2}|^{q} dx \right)^{\frac{1}{q}} \left(\int_{\Omega} |\nabla \eta|^{t} dx \right)^{\frac{1}{t}}.$$

By (2.3) and the conditions (ii)-(iv) in Theorem 1.2 we have

$$I_1 \le C\varepsilon$$
. (2.5)

Similarly, using the Hölder inequality we have

$$\begin{split} I_{2} &= \int_{\Omega} \left| F(x, u_{1}) - F(x, u_{2}) \right| \left| u_{1} - u_{2} \right| \left| \nabla \eta \right| \, \mathrm{d}x \\ &\leq \left(\int_{\Omega} \left| F(x, u_{1}) - F(x, u_{2}) \right|^{\frac{s}{1 + s(p-2)/r}} \, \mathrm{d}x \right)^{\frac{p-2}{r} + \frac{1}{s}} \\ &\cdot \left(\int_{\Omega} \left| u_{1} - u_{2} \right|^{q} \, \mathrm{d}x \right)^{\frac{1}{q}} \left(\int_{\Omega} \left| \nabla \eta \right|^{r} \, \mathrm{d}x \right)^{\frac{1}{t}} \end{split}$$

Noticing that $F(x,u)\in (L^{\tau}_{loc}(\Omega))^n$ and $\tau\leq \frac{s}{1+s(p-2)/r}$ for p>2, by (2.3) and the conditions (ii) in Theorem 1.2 we have

$$I_2 \le C\varepsilon$$
. (2.6)

Similarly, Using the Hölder inequality with

$$(\frac{p-2}{r} + \frac{1}{n} + \frac{1}{q}) + \frac{1}{s} + (\frac{1}{t} - \frac{1}{n}) = 1,$$

and poincaré inequality[5] we have

$$\begin{split} I_{3} &= \int_{\Omega} \left| F(x,u_{1}) - F(x,u_{2}) \right| \left| \nabla (u_{1} - u_{2}) \right| \eta \right| \, \mathrm{d}x \\ &\leq \left(\int_{\Omega} \left| F(x,u_{1}) - F(x,u_{2}) \right|^{\frac{nq}{n+q+nq(p-2)/r}} \, \mathrm{d}x \right)^{\frac{p-2}{r} + \frac{1}{n} + \frac{1}{q}} \\ &\cdot \left(\int_{\Omega} \left| \nabla u_{1} - \nabla u_{2} \right|^{s} \, \mathrm{d}x \right)^{\frac{1}{s}} \left(\int_{\Omega} \left| \nabla \eta \right|^{\frac{nt}{n-t}} \, \mathrm{d}x \right)^{\frac{n-t}{r}} \\ &\leq \left(\int_{\Omega} \left| F(x,u_{1}) - F(x,u_{2}) \right|^{\frac{nqr}{nr+qr+nq(p-2)}} \, \mathrm{d}x \right)^{\frac{p-2}{r} + \frac{1}{n} + \frac{1}{q}} \\ &\cdot \left(\int_{\Omega} \left| \nabla u_{1} - \nabla u_{2} \right|^{s} \, \mathrm{d}x \right)^{\frac{1}{s}} \left(\int_{\Omega} \left| \nabla \eta \right|^{t} \, \mathrm{d}x \right)^{\frac{1}{t}} \end{split}$$

Noticing that $F(x,u) \in (L^{\tau}_{loc}(\Omega))^n$ and $au \leq \frac{nq}{n+q+nq(p-2)/r}$ for p>2 , by (2.3) and the

conditions (iii) in Theorem 1.2 we have

$$I_2 \le C\varepsilon$$
. (2.7)

Thus by (2.4)-(2.7) we have

$$I \le C\varepsilon$$
. (2.8)

Case 2: $p \le 2$. Let $M = \{x \in \Omega : |\nabla u_1| \le 1 \text{ and } |\nabla u_2| \le 1\}$. Then

$$I_{1} = \beta \int_{\Omega} \left(|\nabla u_{1}| + |\nabla u_{2}| \right)^{p-2} |\nabla u_{1} - \nabla u_{2}| |u_{1} - u_{2}| |\nabla \eta| \, \mathrm{d}x$$

$$\leq \beta \int_{M} \left(|\nabla u_{1}| + |\nabla u_{2}| \right)^{p-2} |\nabla u_{1} - \nabla u_{2}| |u_{1} - u_{2}| |\nabla \eta| \, \mathrm{d}x$$

$$+ \beta \int_{\Omega \setminus M} \left(|\nabla u_{1}| + |\nabla u_{2}| \right)^{p-2} |\nabla u_{1} - \nabla u_{2}| |u_{1} - u_{2}| |\nabla \eta| \, \mathrm{d}x.$$

$$(2.9)$$

To obtain (2.5) in this case, we estimate the first term on the right-hand of the above inequality. Using the Hölder inequality, we have

$$\begin{split} I_{11} &= \beta \int_{M} \left(\left| \nabla u_{1} \right| + \left| \nabla u_{2} \right| \right)^{p-2} \left| \nabla u_{1} - \nabla u_{2} \right| \left| u_{1} - u_{2} \right| \left| \nabla \eta \right| \, \mathrm{d}x \\ &\leq \beta \int_{M} \left(\left| \nabla u_{1} \right| + \left| \nabla u_{2} \right| \right)^{p-1} \left| u_{1} - u_{2} \right| \left| \nabla \eta \right| \, \mathrm{d}x \\ &\leq 2\beta \int_{M} \left| u_{1} - u_{2} \right| \left| \nabla \eta \right| \, \mathrm{d}x \\ &\leq 2\beta \left(\int_{M} \left| u_{1} - u_{2} \right|^{q} \, \, \mathrm{d}x \right)^{\frac{1}{q}} \left(\int_{M} \left| \nabla \eta \right|^{q'} \, \mathrm{d}x \right)^{\frac{1}{q'}}. \end{split}$$

where $q' = \frac{q}{q-1}$. Noticing that $t = \frac{q}{q-1-q/s}$ for $p \le 2$, then $q' \le t$. Thus we obtain

$$I_{11} \leq 2\beta |\Omega|^{\frac{1}{q'-1}} \left(\int_{\Omega} |u_1 - u_2|^q dx \right)^{\frac{1}{q}} \left(\int_{M} |\nabla \eta|^t dx \right)^{\frac{1}{t}} (2.10)$$

$$\leq C\varepsilon.$$

Next we estimate the second term on the right-hand of the inequality (2.9). Using the Hölder inequality with

$$\frac{1}{s} + \frac{1}{a} + \frac{1}{t} = 1$$

we have

$$I_{12} = \beta \int_{\Omega \setminus M} \left(|\nabla u_1| + |\nabla u_2| \right)^{p-2} |\nabla u_1 - \nabla u_2| |u_1 - u_2| |\nabla \eta| \, \mathrm{d}x$$

$$\leq \beta \int_{\Omega} |\nabla u_1 - \nabla u_2| |u_1 - u_2| |\nabla \eta| \, \mathrm{d}x$$

$$\leq \beta \left(\int_{M} |\nabla u_1 - \nabla u_2|^s \, \mathrm{d}x \right)^{\frac{1}{s}} \left(\int_{M} |u_1 - u_2|^q \, \mathrm{d}x \right)^{\frac{1}{q}}$$

$$\cdot \left(\int_{M} |\nabla \eta|^t \, \mathrm{d}x \right)^{\frac{1}{t}}$$

$$\leq C \varepsilon. \tag{2.11}$$

Similarly, using the Hölder inequality with

$$\frac{1}{s} + \frac{1}{q} + \frac{1}{t} = 1,$$

we have

$$I_{2} = \int_{\Omega} |F(x, u_{1}) - F(x, u_{2})| |u_{1} - u_{2}| |\nabla \eta| \, dx$$

$$\leq \left(\int_{\Omega} |F(x, u_{1}) - F(x, u_{2})|^{s} \, dx \right)^{\frac{1}{s}}$$

$$\cdot \left(\int_{\Omega} |u_{1} - u_{2}|^{q} \, dx \right)^{\frac{1}{q}} \left(\int_{\Omega} |\nabla \eta|^{t} \, dx \right)^{\frac{1}{t}}$$

Noticing that $F(x,u) \in (L^{\tau}_{loc}(\Omega))^n$ and $\tau \leq s$ for $p \leq 2$, by (2.3) and the conditions (ii) in Theorem 1.2 we have

$$I_2 \le C\varepsilon$$
. (2.12)

Similarly, Using the Hölder inequality with

$$(\frac{1}{n} + \frac{1}{q}) + \frac{1}{s} + (\frac{1}{t} - \frac{1}{n}) = 1,$$

and poincaré inequality we have

$$\begin{split} I_{3} &= \int_{\Omega} \left| F(x, u_{1}) - F(x, u_{2}) \right| \left| \nabla (u_{1} - u_{2}) \right| \eta \right| \, \mathrm{d}x \\ &\leq \left(\int_{\Omega} \left| F(x, u_{1}) - F(x, u_{2}) \right|^{\frac{nq}{n+q}} \, \mathrm{d}x \right)^{\frac{1}{n+\frac{1}{q}}} \\ &\cdot \left(\int_{\Omega} \left| \nabla u_{1} - \nabla u_{2} \right|^{s} \, \mathrm{d}x \right)^{\frac{1}{s}} \left(\int_{\Omega} \left| \nabla \eta \right|^{\frac{nt}{n-t}} \, \mathrm{d}x \right)^{\frac{n-t}{n}} \\ &\leq \left(\int_{\Omega} \left| F(x, u_{1}) - F(x, u_{2}) \right|^{\frac{nq}{n+q}} \, \mathrm{d}x \right)^{\frac{1}{n+\frac{1}{q}}} \\ &\cdot \left(\int_{\Omega} \left| \nabla u_{1} - \nabla u_{2} \right|^{s} \, \mathrm{d}x \right)^{\frac{1}{s}} \left(\int_{\Omega} \left| \nabla \eta \right|^{t} \, \mathrm{d}x \right)^{\frac{1}{t}} \end{split}$$

Noticing that $F(x,u) \in (L^{\tau}_{loc}(\Omega))^n$ and $\tau \leq \frac{nq}{n+q}$ for $p \leq 2$, by (2.3) and the conditions (iii) in Theorem 1.2 we have

$$I_3 \le C\varepsilon.$$
 (2.13)

Thus by (2.4),(2.10)-(2.13) we have

$$I \le C\varepsilon$$
. (2.14)

Hence in both cases we have the estimate

$$I \le C\varepsilon$$
, (2.15)

where $C < \infty$ is independent of ε . This estimate together with the condition (H3) yields

$$0 \le \int_{B} \left\langle A(x, \nabla u_1) - A(x, \nabla u_2), \nabla (u_1 - u_2) \right\rangle dx \le C\varepsilon.$$
 (2.16)

Note that here we have used $\eta=1$ in B. Letting $\varepsilon \to 0$ we obtain $\nabla u_1 = \nabla u_2$ a.e. in B. Since $B \subset\subset \Omega$ was arbitrary, $\nabla u_1 = \nabla u_2$ in Ω and hence $u_1 = u_2 = C = const.$ in each component of Ω .

Now $cap_t(E)=0$ and since the boundary of an arbitrary bounded domain cannot be of t-capacity zero, in each component V of Ω the condition $u_1-u_2\in W_0^{1,p}(V;\partial V\setminus E)$ implies C=0. Thus $u_1=u_2$ in Ω and the theorem follows. This completes the proof of Theorem 1.2.

REFERENCES

- [1] P.AvilOes, J.Manfredi, "On null sets of p-harmonic measures," in: B. Dahlberg, E. Fabes, R. FeKerman, D. Jerison, C. Kenig, J. Pipher (Eds.), Partial DiKerential Equations with Minimal Smoothness and Applications, Springer, Berlin, 1992.
- [2] J.Heinonen, T.KilpelPainen, O.Martio, "Nonlinear Potential Theory of Degenerate Elliptic Equations," Clarendon Press, Oxford, 1993.
- [3] D.A.Herron, P.Koskela, "Continuity of Sobolev functions and Dirichlet Anite harmonic measures," Potential Analysis, vol.6, pp.347-353,1997.
- [4] Gongbao Li, O.Martio, "Uniqueness of solutions with very weak boundary values," Nonlinear Analysis, vol.51, pp.693-701,2002.
- [5] R.A.Adams, J.F.Fournier, "Sobolev Spaces, 2ed," New York, Academic press, 2003.