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I.  INTRODUCTION  

The elliptic equation has a strong background, and 
has many applications in physics and engineering. For 
the recent developments of weak solutions of elliptic 
equations, we refer the reader to [1-3]. The aim of this 
present paper is to obtain the uniqueness of weak 
solutions for a class of elliptic equations with weight. 
Our result is a generalization of the reference [4]. 

In this present paper, we consider the following A-
harmonic equation 

div ( , ) 0A x u                            (1.1) 

where : n nA  R R   satisfies the conditions 

(H1) ( , ), ( ) ,
p

A x w x     

(H2) 2

1 2 1 2 1 2( , ) ( , ) ( )( ) ,pA x A x w x           

(H3)
1 2 1 2( , ) ( , ), 0A x A x       whenever

1 2.   

for almost every x  and all 
1 2, , n   R . Here   is 

a bounded open set in n
R , , 0    are constants, 

1 p n  . 

The function ( )w x  in the conditions (H1-H2) 

satisfies 
1w A  and ( ) 0w x  . Note that (H2) implies 

1
( , ) ( )

p
A x w x  


 . 

Definition 1.1 A function  1, ( , )p

locu W w   is called a 

weak solution of A-harmonic equation (1.1) if u  

satisfies 

( , ), d 0A x u x


                           (1.2) 

for all
0 ( )C   . 

The solutions belong to the local weighted Sobolev 

space 1, ( , )p

locu W w   and we prove a uniqueness 

result for solutions provided that they belong to 
1, ( , )r

locu W w   for r p  and that they take the same 

boundary values in \ E  where E    is a closed 
set and small in an appropriate capacity sense. 

In order to formulate our theorem we need to 
consider local boundary values, see section 2. 

For our main result we assume that the numbers 
(1, )p n , (1, )q  , (1, )s   and max{1, 1}r p   

satisfy 

1.
( 2)

sq
t

sq p
sq s q

r


 


  

            (1.3) 

Here ( 2) 2p p    if 2p   and 0 otherwise. 

Note. If t n , then 0tcap E   implies E  . 

Hence only the values t n  are of interest. Let s
H  

denote the s -dimensional Hausdorff measure. It is 

well known that ( )n t E H  implies 0tcap E  . 

Theorem 1.2 Suppose that 1, ( , )p

locW w    and that 

1 2,u u  are weak solutions of A-harmonic equation (1.1) 

such that 

(i) 
1u  and 

2u  have boundary values   in the 1, pW -

sense at \ E ;  

(ii) 
1 2 ( , )qu u L w   ; 

(iii) 
1 2 ( , )su u L w    ; 

(iv) 
1 2, ( , )ru u L w     if 2.p   

If 0tcap E  , then 
1 2u u  in  . 

Note. Let 1w   conditions (H1)-(H2), then our 
main results is Theorem 1.1 in [4]. 

II. PRELIMINARY KNOWLEDGE   

Before discussing we refer to some notations we 
shall use. 

Throughout this paper,   will denote bounded 

open set in n
R , and E    is a closed set and small 

in an appropriate capacity sense. In order to avoid 
some technical difficulties related to the imbedding 
theorem we shall illustrate our approach only for p  

smaller than the spatial dimension of  . 
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The function ( )w x  in the condition (H1-H2) is a 

locally integrable non-negative function in n
R . Assume 

that 0 w   almost everywhere. A Radon measure 

0 w   is canonically associated with the weight 

( )w x , ( ) ( )w x dx


   . Thus ( )d w x dx  , where 

dx  is the n -dimensional Lebesgue measure. We say 

that w  belongs to the Muckenhoupt class 
pA , 

1 p  , or that w  is an 
pA  weight, if there is a 

constant ( )pA w  such that 

1

1/(1 )1 1
sup ( )

| | | |

p

p

p
B BB

wdx w dx A w
B B



  
    

  
   (2.1) 

for all balls B  in n
R . We say that w  belongs to 

1A , or 

that  w  is an 
pA  weight, if there is a constant 

1( )A w

such that 

1

1
( )essinf

| | B B
wdx A w w

B
  

for all balls  B  in n
R . It is well known that 

1 pA A  

whenever 1p  , see [2]. 

We say that a weight w  is doubling if there is a 

constant 0C   such that 

(2 ) ( )B C B   

whenever 2B B  are concentric balls in n
R , where 

2B  is the ball with the same center as B  and with 

radius twice that of B .  Given a measurable subset E  

of n
R , we will denote by ( , )pL E w , 1 p  , the 

Banach space of all measurable functions f  defined 

on E  for which 

 
1/

, ( , )
| ( ) | ( ) .p

p
p

E w L E w E
f f f x w x dx     

The weighted Sobolev class 1, ( , )pW E w  consists of all 

functions f , and its first generalized derivatives 

belong to ( , )pL E w . The symbols ( , )p

locL E w  and 

1, ( , )p

locW E w   are self-explanatory. 

We need to consider local boundary values. Let 

F    and 1, ( , )p

locu W w  . We say that u  has zero 

boundary values at F  in the 1, pW -sense, abbreviated 
1, ( , ; )p

locu W w F  , if each x F  has a neighborhood 

U  and a function 
0 ( )C U   such that 1   in some 

neighborhood of x  and 1,

0 ( , )pu W w   . 

Suppose that 1, ( , )p

locW E w  . We say that u  has 

the boundary values   at F  in the 1, pW -sense if 
1, ( , ; )p

locu W w F    and if for each x F  there exists 

  as above with 1, ( , )pW w   . Note that then also 

u  belongs to 1, ( , )pW w . 

If u  has the boundary values   at F  in the 1, pW -

sense, then u  has the boundary values   at a 

neighborhood of F . Hence we may always assume 
that F  is open relative to  . 

III. PROOF OF THEOREM 1.2 

Let 
1 2,u u  be weak solutions of A-harmonic 

equation (1.1),   be a bounded open set. Condition (i) 
in Theorem 1.2 implies that each \y E  has a 

neighborhood ( )U U y
 
such that 

1, ( , ), 1,2.p

iu W U w i                (3.1) 

Thus for each neighborhood V  of E  we have 

1, ( \ , ), 1,2.p

iu W V w i                (3.2) 

Fix a ball B . Since ( ) 0tcap E  , we can 

choose an open set  nDR  such that E D ; 

\nB DR  and ( ; ) 0tcap E D  . Here ( ; ) 0tcap E D   

refers to the usual variational t -capacity of the 

condenser ( ; )E D  
[2, Chapter 2]

. Given 0   we can find 

an open set U
 and 

0 ( )C D   such that 

E U D  , 0 1  , 1   on U
 and 

( ) .
t

t

D
w x dx                        (3.3) 

Hence 

,
.

t w
                            (3.4) 

Write 1   . Then 0   in U
, 1   in \n DR ,

0 1  , ( )nC  R , and 

,
.

t w
                            (3.5) 

The above inequality has important role in the 
following proof. Note that here we get  1   in B . 

Let W
 be a neighborhood of E  with E W

U . Let 

1 2( ).u u                            (3.6) 

Since (3.2) holds and 1,

1 2 0 ( , ; \ )pu u W w E     by 

Condition (i) in Theorem 1.2, then 1,

0 ( , )pW w  , and 

the support of   stays away from E . Thus we can use 

  as a test function in Definition 1.1, i.e., 

 1 2
\

( , ), ( ) d 0, 1,2.i
W

A x u u u x i





      (3.7) 

Hence 

 1 2 1 2( , ) ( , ), ( ) d 0,A x u A x u u u x


       (3.8) 

here we have used 0   in W
. Thus we obtain from 

the above formula 
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1 2 1 2

1 2 1 2

1 2 1 2
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( ) ( , ) ( , ), d

( , ) ( , ) d .

I A x u A x u u u x

u u A x u A x u x

A x u A x u u u x













     

      

     







 
 (3.9) 

Case 1: 2p  . Using the condition (H2) and the 

Hölder inequality with 

2 1 1 1
1,

p

r s q t


   

                     
 (3.10) 

we have 
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d

d d

.d d

p

p
p

qs tr

p
r sr s

q tq t

I u u u u w xu u

w u u w u u w w xu u

w x u u w xu u

u u w x w x

 

 
















 

 

      

      

    

  





 

 

 

(3.11) 

Thus by (3.5) and the conditions (ii)-(iv) in Theorem 
1.2 we have 

.I C
                     

 (3.12) 

Case 2: 2p  . Let  1: 1M x u  
 
and

 
2 1u  . Then by (3.9), 

1 2 1 2

1 2 1 2
\

( , ) ( , ) d

( , ) ( , ) d .

M

M

I A x u A x u u u x

A x u A x u u u x






     

     




 
(3.13) 

To obtain (3.12) in this case, we estimate the first term 
on the right-hand of the above inequality.  Using the 

condition (H2) and the Hölder inequality, we have 

 

   

1 1 2 1 2

1

1 21 2

1 2

1 1
' '

1 2

( , ) ( , ) d

d

2 d

2 d d .

M

p

M

M

q qq q

M M

I A x u A x u u u x

u u w xu u

u u w x

u u w x w x



 

 

 



     

    

  

  







 

 
(3.14) 

where '
1

q
q

q



. Noticing that 

1 /

q
t

q q s


 
 for 2p 

, then 'q t . Thus we obtain 

   
1 1

1 1

'
1 1 22 d d

.

q tq t
q t

M
I u u w x w x

C

 






  



 
 
(3.15) 

Next we estimate the second term on the right-hand of 
the inequality (3.13).  Using the condition (H2) and the 

Hölder inequality with 

1 1 1
1,

s q t
  

                     
 (3.16) 

we have 

 

   

 

2 1 2 1 2
\

2

1 2 1 21 2
\

1 2 1 2

1 1

1 2 1 2

1

( , ) ( , ) d
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d

d d

d

.
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M

s qs q
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I A x u A x u u u x

u u u u w xu u

u u u u w x

u u w x u u w x
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(3.17) 

Hence in both cases we have the estimate 

,I C
                     

 (3.18) 

where C   is independent of  . This estimate 
together with the condition (H3) yields 

1 2 1 20 ( , ) ( , ), ( ) d .
B

A x u A x u u u x C        (3.19) 

Note that here we have used  1   in B . Letting 

0   we obtain 
1 2u u   a.e. in B . Since B  

was arbitrary, 
1 2u u   in   and hence 

1 2u u C 

.const  in each component of  . 

Now ( ) 0tcap E   and since the boundary of an 

arbitrary bounded domain cannot be of t -capacity 

zero, in each component V  of   the condition 

1 2u u  1,

0 ( , ; \ )pW V w V E  implies 0C  . Thus 
1 2u u  

in   and the theorem follows. This completes the 
proof of Theorem 1.2. □ 
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