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Abstract—Several methods have been developed 
for electromagnetic scattering analysis by random 
rough surfaces. Such methods include the classic 
asymptotic model, numerical computation using 
monte –Carlo method. But to our knowledge only 
one paper exist in the literature that used Markov 
chain method to study electromagnetic scattering 
by rough surface. On that paper one dimensional 
rough surface is generated by calculating the 
probabilities of tossing a number of coins. But for 
our study one-dimensional rough surface is 
generated using MATLAB and it is partitioned in 
seven different levels. The surface levels 
correspond to the states in the Markov transition 
matrix. Ray tracing is used to investigate the 
electromagnetic scattering by this surface and the 
scattering field is plotted 

Keywords—Markov chain, Electromagnetic 
scattering, Rough surface, Transition matrix, 
Scattering coefficient, Ray tracing. 

 

I.  INTRODUCTION 

    The studies of wave scattering from random rough 
surface have attracted researchers and the problem of 
calculating its statistical properties has received 
consideration in recent years.  Several methods has 
been used for rough surface scattering. The classical 
analytic method of Kirchhoff approximation, small 
perturbation, and Rayleigh-Rice perturbation theory 
[1],[2], [20] have been utilized to solve problems. 
Some applications of this topic are surface physics, 
satellite remote sensing, and radar data interpretation. 
But Kirchhoff approximation and small perturbation 
methods are restricted in domain of validity. For an 
important incident angle the shadowing effects will 
happen and then the classical Kirchhoff method will 
not be useful.  
          Monte Carlo simulations of wave scattering 
have become a popular approach due to the advent of 

modern computers and the development of fast 
numerical methods [3], [4]. When a wave travels from 
one medium to another, it is scattered in different 
direction. The scattered wave depends not only on the 
incident angle but also on the wavelength. At the end 
point, the field can be composed of direct rays and 
wave reflected from the terrain. Electromagnetic wave 
scattering by smooth surface is computed efficiently, 
but if the surface is rough which is usually the case 
then an efficient method is needed to investigate [5]. 
         
  In this paper, we study one-dimensional rough 
surface which is generated using MATLAB and the 
surface is partitioned in different levels. The surface 
levels correspond to the states in the Markov 
transition matrix. Ray tracing is used to investigate the 
electromagnetic scattering by this surface and the 
scattering coefficient is plotted against the scattered 
angle. From that plot, the scattering coefficient 
distribution increases with scattered angle up to a 
stationary point where it starts decreasing. 
 

II. THEORY AND NUMERICAL ANALYSIS 

A. Random rough surface  

   From electromagnetic point of view there are two 
main criteria which determine the surface roughness -
the Rayleigh and the Fraunhofer, respectively [5], [6], 
[7].Let consider electromagnetic wave transmitted 
onto a rough surface with local incident angle θ (see 
Figure 1). Then the phase difference between two 
rays scattered is calculated according to the formula: 

             

             ∆∅ =
4𝜋𝐻

𝜆
𝑐𝑜𝑠𝜃                                              (1) 

 
where 𝜆 𝑎𝑛𝑑 𝐻 are the wavelength and the standard 
deviation respectively of the roughness height.  
According to Rayleigh definition a surface is smooth 

when ∆∅ <
𝜋

2
  and for Frauenhofer the surface is 

smooth when   ∆∅ <
𝜋

8
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          Figure 1. Field Scattering on Rough surface 
  

B. Parameters for one-dimensional(1D) 
rough surface: 

   Several methods exit for generating random rough 
surfaces. These include Convolution method and 
Discrete Fourier Transform (DFT). In general a 
surface is characterized by its spectrum density, 
correlation length, autocorrelation function and its 
autocovariance. Those parameters that characterize 
the surface are computed analytically [8], [9]. 
 
    The Gaussian height probability is given by:    

 

         𝑃(𝑓(𝑥)) =
1

𝜎√2𝜋
𝑒

−
(𝑓(𝑥)−µ)2

2𝜎2                                (2) 

 
where  𝑓(𝑥) represent the height function of random 
rough surface, µ its mean, and 𝜎  is the standard 
deviation of the height. 
          The spectrum density for Gaussian spectrum is 
expressed as follow: 

          𝑊(𝐾) =
𝑐𝑙𝜎2

2√𝜋
𝑒−(

𝐾𝑐𝑙

2
)

2

                                              (3) 

 

  where 𝑐𝑙  represents the correlation length. 
 
From this equation we derive the autocorrelation 
function (ACF) which is given by  
 

 𝐴𝐶𝐹 = ∫ 𝑊(𝐾)𝑒𝑖𝐾𝑥𝑑𝐾 =
+∞

−∞
ℎ2𝑒

−𝑥2

𝑐𝑙2                         (4)   

                             

The autocovariance function is described by a 
Gaussian function: 

         𝐴𝐶𝑉 = ⟨𝑓(𝑥1)|𝑓(𝑥2)⟩ = 𝜎2𝑒
−

|𝑥1−𝑥2|2

𝑐𝑙2                      (5) 

 

where 𝑥1 and 𝑥2  are two points on the surface. 
 

C. One-dimensional rough surface algorithm 

 As we mentioned before, we used the Discrete 
Fourier 
Transform (DFT) method to generate   the surface [9].  
This method requires the complex type of DFT and 
random number generator. For the complex type of 
1D array the Discrete Fourier Transform is defined by 

 
 

𝐹 = 𝐷𝐹𝑇(𝑓) with 𝑓 = 𝑓𝑝 + 𝑖𝑓𝑞 =  (𝑓0, 𝑓1 … … . . 𝑓𝑁−2, 𝑓𝑁−1) 

 

Then    𝐹 = 𝐹𝑝 + 𝑖𝐹𝑞 = (𝐹0, 𝐹1 … … . . 𝐹𝑁−2, 𝐹𝑁−1)        

 

      𝐹(𝐾𝑥𝑛
) = ∑ 𝑓

𝑛
(𝑥)𝑒−𝑖 𝐾𝑥𝑛

𝑥𝑁−1
𝑛=0                            (6) 

 

where 𝐾𝑥𝑛
=

2𝜋𝑛

𝑁
   and N represent the length of 

surface. 
We get the height function 𝑧 = 𝑓(𝑥) by taking the 

discrete inverse Fourier transform of (𝐾𝑥𝑛
) . 

 

𝑓𝑛(𝑥) =
1

𝑁
∑ 𝐹(𝐾𝑥𝑛

)𝑒𝑖 𝐾𝑥𝑛𝑥𝑁−1
𝑥=0  , 𝑛 = 0,1,2 … . 𝑁 − 1       (7) 

 

D. Simulation of 1D rough surface : 

 

   One dimensional random rough surface f(x) has 
been generated with N surface points.  
The surface has a Gaussian height distribution and an 
exponential autocovariance function, where N-number 
of surface points, rL-length of surface, h-rms height, 
cl-correlation length. The MATLAB program is used to 
generate the simulation results. Figure 2 shows the 
surface generated and table1 presents the values of 
the parameters used to generate this rough surface.  

 

 

        Table 1.  Rough surface parameters values. 
   

Number of 
surface 
points (N) 

Length of 
surface 
(rL) 

Rms 
height(h) 

Correlation 
Length(cl) 

500 1𝜆 0.01𝜆 0.001𝜆 

 

 

 
                   Figure 2. Random Rough Surface 
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III. MARKOV CHAIN 

    Markov chain is used in our study in order to 
determine the probability of a random element to 
transit   from any level of the surface to another level 
and the probability to remain at the same level of the 
surface. Here Markov chain is defined first and then 
we describe the model of Markov that will be used in our 

study [10], [11], [12], [13]. 

 

 

1. Definition  

Markov Chains are named after the Russian 
mathematician Andrey Markov who invented them.  
A stochastic process    (𝑥𝑡 ) has Markovian property if  

𝑃(𝑥𝑡+1 = 𝑞| 𝑥0 = 𝑠0 ,𝑥1 = 𝑠1 , … . . , 𝑥𝑡 = 𝑝 ) = 

 

   𝑃(𝑥𝑡+1 = 𝑞| 𝑥𝑡 = 𝑝), 𝑝, 𝑞 ∊ 𝑋, 𝑡 = 0,1,2, ….         (8) 

 

This is a stochastic process for which future states are 

conditionally independent of their past states but 

dependent only upon the present states. 

The conditional probabilities   𝑃(𝑥𝑡+1 = 𝑞| 𝑥𝑡 = 𝑝)   are 

called one step transition probabilities.  

If for each  𝑝 𝑎𝑛𝑑 𝑞 , 𝑃(𝑥𝑡+1 = 𝑞| 𝑥𝑡 = 𝑝) =

𝑃(𝑥1 = 𝑞| 𝑥0 = 𝑝) for all 𝑡 = 0,1,2, ….  , then the one 

step transition probabilities are said to be stationary 

and are denoted by 𝑃𝑝𝑞. 

The stationary transition probability simple means that 

the transition probabilities do not change over time. 

And it implies that 

 

 𝑃(𝑥𝑡+𝑛 = 𝑞| 𝑥𝑡 = 𝑝) = 𝑃(𝑥𝑛 = 𝑞| 𝑥0 = 𝑝)  for each  

𝑝, 𝑞, 𝑎𝑛𝑑 𝑛 = 0,1,2 …                                                        (9) 

This is generally denoted as 𝑛-step transition 
probabilities  𝑃𝑝𝑞

𝑛 

- If 𝑛 = 1,   𝑃𝑝𝑞
1 =  𝑃𝑝𝑞  

-   𝑃𝑝𝑞
𝑛 ≥ 0  

       -      ∑ 𝑃𝑝𝑞
𝑛𝑀

𝑞 = 1 for all 𝑝, 𝑞, 𝑎𝑛𝑑 𝑛 = 0,1,2..       (10)           

A notation to represent the 𝑛- step transition 
probabilities is given by 

 

                        (11) 

 

 

2. Calculation of the transition probabilities 

    In order to determine the transition probabilities, the 
joint probabilities and conditional properties have 
been utilized and some of those properties are [11], 

[12]: for continuous random variables 𝑋 𝑎𝑛𝑑 𝑌   the 
function    𝑓(𝑥, 𝑦) is joint density function if 

 

  i.  𝑓(𝑥, 𝑦) ≥ 0       for all (x, y) 

ii. 𝑃[(𝑋, 𝑌) ∊ 𝐴] = ∬ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦
𝐴

 for any region A (12)    

     

The conditional distribution of the random variable, 
discrete or continuous  𝑌𝑔𝑖𝑣𝑒𝑛 𝑡ℎ𝑎𝑡 𝑋 = 𝑥   is 

           𝑓(𝑦|𝑥) =
𝑓(𝑥,𝑦)

𝑔(𝑥)
  , where  𝑔(𝑥) > 0            (13)  

 

Similarly, the conditional distribution of the random 
variable, discrete or continuous       𝑋 𝑔𝑖𝑣𝑒𝑛 𝑡ℎ𝑎𝑡 𝑌 = 𝑦   
is 

 

           𝑓(𝑥|𝑦) =
𝑓(𝑥,𝑦)

ℎ(𝑦)
  , where  ℎ(𝑦) > 0           (14)    

 Also we used the following  property  which is the 
area under the curve  [a, b] (see figure 3). 

 

                            𝑃(𝑎 < 𝑋 < 𝑏) = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
    (15)

  

 

  Figure 3. Probability distribution function with 
area under the curve 

 

3. Method of analysis: Finite-state Markov 
(FSMC) 

Several model of Markov analysis exist such as 
Gibbs sampler, Metropolis Hastings, Hidden Markov 
model. Here the finite-state-Markov Chain (FSMC) is 
used [16]. Usually this method of Markov Chain is 
used to model radio Communication Channel. In this 
method the states correspond to partitioning the 
random rough surface heights (amplitude) probability 
distribution into 𝑘  nonoverlapping regions such as 
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[ℎ0, ℎ1), [ℎ1, ℎ2), … [ℎ𝑘−1, ∞)   where the ℎ𝑘  represent 
surface high. Figure 4 shows the surface height 
partitioned into seven regions and figure 5 presents 
the transition probabilities between different states. For 
our study this method is used: 

 First a random rough surface is generated 

 Second the surface height (amplitude) 
probability distribution is plotted. 

 Third the random rough surface height 

probability distribution is portioned into 𝑘  
nonoverlapping regions where each region 

corresponds to state space  𝑆 = {1, … . , 𝑁} . 
And we assigned the midpoints of the 
intervals as the representative value of each 
state,  𝑟𝑘 ,  

𝑘 = 1,2, … … 𝑁 .And from that the Markov transition 
matrix is obtained [14], [15]. 

 �̃�𝑝,𝑞 = 𝑃(𝑅𝑡 = 𝑞| 𝑅𝑡−1 = 𝑝) 

 where   

𝑃(𝑅𝑡 = 𝑞| 𝑅𝑡−1 = 𝑝) = ∫ ∫ 𝐟(𝐫𝟐

𝐡𝐩

𝐡𝐩−𝟏

𝐡𝐪

𝐡𝐪−𝟏

|𝐫𝟏)𝐝𝐫𝟏𝐝𝐫𝟐 

 

then            P̃p,q =
∫ ∫ 𝐟(𝐫𝟐

𝐡𝐩
𝐡𝐩−𝟏

𝐡𝐪
𝐡𝐪−𝟏

,𝐫𝟏)𝐝𝐫𝟏𝐝𝐫𝟐

∫ 𝐟(𝐫)
𝐡𝐩

𝐡𝐩−𝟏
𝐝𝐫

              (16) 

 

For 1≤ 𝑝, 𝑞 ≤ 𝑁 , where 𝑓(𝑟1, 𝑟2) is the two-
dimensional unit-variance Gaussian probability 
distribution function (pdf).The transition probability 
matrix must be adjusted such that the rows sum to 
exactly one [15]. This is because of the finite high 
representation of the model. Each row is uniformly 
scaled by its sum.  
Therefore 
 

   𝑃𝑝𝑞 =
�̃�𝑝,𝑞

∑ �̃�𝑝,𝑞
𝑁
𝑞=1

                                                   (17) 

  

 For 𝑛 − 𝑠𝑡𝑒𝑝    transition probabilities, if 𝑛   is large 
enough all the rows or column of the matrix have 
identical entries. The steady state equation is given by 
 

�̂�𝑞 = ∑ �̂�𝑝
𝑁
𝑞=0 𝑃𝑝𝑞   𝑓𝑜𝑟 𝑞 = 0,1, . , 𝑁 and ∑ �̂�𝑞

𝑁
𝑞=0 =1 (18)   

 
    Lim𝑛→∞ 𝑃𝑝𝑞

𝑛 = �̂�𝑞 > 0                                                    

(19) 

 

 
Figure 4. Relationship between rough surface amplitude 

partition and FSMC 
 
 

 
Figure 5. Rough surface amplitude probability 
distribution with different transition probabilities 

 
Table 2. Rough surface height values 

ℎ0 ℎ1 ℎ2 ℎ3 ℎ4 ℎ5 ℎ6 ℎ7 

-1.5 -1 -0,5 0 0.5 1 1.5 2 

 
The random rough surface is divided in seven level (or 
height).  

𝐿𝑒𝑣𝑒𝑙 𝑟1 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑡ℎ𝑒 𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡 𝑜𝑓𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑏𝑒𝑡𝑤𝑒𝑛 ℎ0 

 𝑎𝑛𝑑 ℎ1. 

𝐿𝑒𝑣𝑒𝑙 𝑟2 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑡ℎ𝑒 𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑏𝑒𝑡𝑤𝑒𝑛 ℎ1  
𝑎𝑛𝑑 ℎ2 

𝐿𝑒𝑣𝑒𝑙 𝑟3 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑡ℎ𝑒 𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡 𝑜𝑓  𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑏𝑒𝑡𝑤𝑒𝑛 ℎ2 

 𝑎𝑛𝑑 ℎ3 

𝐿𝑒𝑣𝑒𝑙 𝑟4 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑡ℎ𝑒 𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡 𝑜𝑓  𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑏𝑒𝑡𝑤𝑒𝑛 ℎ3 

 𝑎𝑛𝑑 ℎ4 

𝐿𝑒𝑣𝑒𝑙 𝑟5 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑡ℎ𝑒 𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡 𝑜𝑓  𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑏𝑒𝑡𝑤𝑒𝑛 ℎ4 

 𝑎𝑛𝑑 ℎ5 

𝐿𝑒𝑣𝑒𝑙 𝑟6 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑡ℎ𝑒 𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑏𝑒𝑡𝑤𝑒𝑛 ℎ5 

 𝑎𝑛𝑑 ℎ6 

𝐿𝑒𝑣𝑒𝑙 𝑟7 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑡ℎ𝑒 𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡 𝑜𝑓  𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑏𝑒𝑡𝑤𝑒𝑛 ℎ6  
𝑎𝑛𝑑 ℎ7 

http://www.jmest.org/
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IV. SIMULATION AND NUMERICAL 

CALCULATION 

A. Transition Matrix numerical calculation 

     We have determined each value of  �̃�𝑝𝑞   

where  𝑝, 𝑞 = 1,2, , 𝑁  and MATLAB is used to do the   

computation. If  𝑝 = 𝑞  then   �̃�11 represent the area 

under the curve of the surface height Pdf from ℎ0 =
−1.5 𝑡𝑜  ℎ1 = −1  and this area  �̃�11 = 0.026 . Similarly  

�̃�22  , �̃�33 , … . ., �̃�77  are computed. But 𝑝 ≠ 𝑞  then the 
computation is based on equation (16). For instance 
based on equation (16), the probability of transiting 
from state 1 to state 2 is given by  
 

  �̃�1,2 =
∫ ∫ 𝒇(𝒓𝟐

𝒉𝟏
𝒉𝟎

𝒉𝟐
𝒉𝟏

,𝒓𝟏)𝒅𝒓𝟏𝒅𝒓𝟐

∫ 𝒇(𝒓)
𝒉𝟏

𝒉𝟎
𝒅𝒓

  therefore  �̃�1,2 = 0.618 

. 

After all the probability calculation we got the following 
transition matrix: 
 
                      

Table 3. Transition Probability 

 
 

 

From this transition matrix (see table 3) we have for 

instance �̃�11 = 0.026  𝑎𝑛𝑑 �̃�12 = 0.618. 
As mentioned before this transition probability matrix 
must be adjusted such that the rows sum exactly to 
one. To do so, the equation (17) is used. Therefore 
we get the following matrix, which   represents our 
state transition matrix (table 4). As it can be notified 
each row sum to one.  

 

Table 4. Transition probability matrix: where each 
row is     uniforly scaled by its sums 

 
 

In addition, we observe from this matrix that some of 
probabilities are zero. It simply means that there is no 
probability to connect some levels from another level. 
For example 𝑃13 = 0  , then the probability that a 

random element will connect level 1 (state𝑟1) to level 3 
(state 𝑟3) is zero.  

In order to avoid the zero probability, the process is 
left running for a long period of time (up to 6-step), so 
that the process reached at the point where any level 
can be reached from all other level (see figure 5). It 
means there is probability that a random element can 
link all the levels each other. 
 

Table 5. 6-step Transition probability matrix 
(where 𝒏 = 𝟔) 

 
 

Table 6. Steady State transition matrix 
(where 𝒏 = 𝟐𝟐) 

 

 

     After running the process for certain period of the 
time, we reach the steady state matrix, where each 
element of each column has the same value (see 
table 6). For example the column two has probability 
of   0.115.For our study, after 22-step of process the 
steady state is reached.  
 

 

The probability that electromagnetic field will transit 
from one level to another random level is given in 
matrix 𝐿𝑝𝑞  [6] (see table 9). 

        𝐿𝑝𝑞 = 𝜋𝑝𝑃𝑝𝑞
𝑛         𝑤ℎ𝑒𝑟𝑒  𝑛 = 1,2, ..   

𝜋𝑝  = 𝑃𝑝𝛿𝑝𝑞    with  𝛿𝑝𝑞  = {
0  𝑓𝑜𝑟  𝑝 ≠ 𝑞
1  𝑓𝑜𝑟 𝑝 = 𝑞

                     (20) 

 

 where 𝜋𝑝 is a diagonal Matrix (see table 8)   

This is called Kronecker delta function. 
   

Also we have   ∑ ∑  𝐿𝑝𝑞 = 1,𝑘
𝑝=1

𝑘
𝑞=1   where k is the 

maximum number of levels and here  𝑘 = 7 
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Table 8. Diagonal Matrix 

 

 

Table 9. Transition probability where the scattered 
field will transit from 𝒑  level to level 𝒒 

 

 

This matrix shows the probability that the 

scattered field will transit from 𝑝  level to level 𝑞 . 
And it presents all the different possibilities. For 
instance let consider the first row, if the 
electromagnetic wave is scattered at the first state 
(level 1), there is a   possibility that it will stay in the 
same level, or it can rise to the second state and so 
on up seven level. Also if the wave scattered at the 
second level (the second row), there is possibility 
that it will scatter at the first level, or remain in the 
second level, or that the wave will rise to the third or 
fourth. 

For example the probability that a wave scatters 
at level  𝑟1 without any transition to the next level is 

given by 𝐿11 = 0.0003   with 𝑝, 𝑞 = 1.  And  the 
probability that scattered  field will go from  𝑟1   to  

𝑟2  is given by 𝐿12 = 0.00175  where  𝑝 = 1 𝑎𝑛𝑑 𝑞 =
2 . We have state  𝑞  (𝑙𝑒𝑣𝑒𝑙 𝑟2)     is said to be 
reachable from state   𝑝 (𝑙𝑒𝑣𝑒𝑙 𝑟1), if there exists    
𝑛 ≥ 1  so that   𝑃𝑝𝑞

𝑛 > 0 . 

 

B.    Trace of the Matrix   𝐿𝑝𝑞 

     By definition trace of a matrix (𝐿𝑝𝑞) is the sum of 

the diagonal elements of that matrix and denoted by  
𝑡𝑟(𝐿𝑝𝑞) [6]. Let set an integer  𝐼 ∈ [−𝑟𝑘, 𝑟𝑘]  𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙  

with 𝐼 = 𝑞 − 𝑝  and  𝑟𝑘  the number of levels. For our 
study the number of level is 7. Then the probability 
that 𝐼   is an integer between -7 and 7 is given by the 
sum of all matrix elements 𝐿𝑝𝑞   

And that probability is denoted   𝑡𝑟𝐼=𝑞−𝑝(𝐿𝑝𝑞) 

For instance if 𝑝 = 1 𝑎𝑛𝑑 𝑞 = 2 then 𝐼 = 1   

 

Therefore  𝑡𝑟𝐼=1(𝐿𝑝𝑞) = 𝐿12 + 𝐿23 + 𝐿34 + 𝐿45 + 𝐿56 +

𝐿67 = 0.00175 + 0.03886 + 0.11918 + 0.05102 +
0.00314 + 2.7 ∗ 10−5                                                (21)                                             
(21) 

then      𝑡𝑟𝐼=1(𝐿𝑝𝑞) =  0.2139770      

 

V.  RAY TRACING TECHNIQUE 

This method is limited to certain roughness 
parameters but it is also the one which considers both 
shadowing and multiple scattering. This method is 
utilized here because of its easy implementation for 
computation purpose [17], [18]. In ray tracing method, 
the transmitted rays traverse the air before hit the 
surface boundaries and from there they get scattering 
in different direction.  

When the beam rich the rough surface several 
phenomena may happen: 

- The ray may just scattering once on the surface and 
leaves  

- It may have multiple scattering before it leaves 

- Also the shadowing effect is one the important 
phenomena that can occur. 
The shadowing is when a part of the surface doesn’t 
get electromagnetic wave from the incident direction. 

 

1. The electromagnetic scattering by inclined 
surface 

 

Figure 6. Field scattering by a surface with inclination α 

Let consider an electromagnetic field scattered by a 
surface with inclination 𝛼  figure 6.  

Then the scattering field is given by [18] 
 

       𝐸𝑠(𝜃𝑠) = 𝐸0 ∗ 𝐹𝑠(𝜃𝑖 , 𝜃𝑠, 𝑛) ∗ exp (−𝑗𝜑)                (22) 
 

Where exp(−𝑗𝜑)   correspond to phase shifting due to 
the height 𝐻 of the local facet with respect to the 

global mean value which is usually   𝑎𝑡 𝐻 = 0    
 

                         𝜑 =
4𝜋

𝜆
𝐻 ∗ cos (𝜃𝑖)    

where  𝜃𝑖   represent the incident angle 
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 Let set    𝛼 =
𝜃𝑖+𝜃𝑠

2
      then     𝜃𝑖 = 2𝛼 − 𝜃𝑠  

From the Figure 6 we have   tan 𝛼  =
𝜆𝑎

𝜆𝐼𝑏
 =

𝑎

(𝑞−𝑝)∗𝑏
   

where 𝐼 = 𝑞 − 𝑝  
 

Then     𝛼 = atan (
𝑎

(𝑞−𝑝)∗𝑏
)   

 

Therefore we get     𝜃𝑖 = 2 ∗ atan (
𝑎

(𝑞−𝑝)∗𝑏
) − 𝜃𝑠 

 

Let substitute 𝜃𝑖  into  𝜑 =
4𝜋

𝜆
𝐻 ∗ cos (𝜃𝑖)   by its 

expression and we get      
                                        

       𝜑 =
4𝜋

𝜆
𝐻 ∗ cos (2atan (

𝑎

(𝑞−𝑝)∗𝑏
)   − 𝜃𝑠)           (23)         

 
Therefore the electromagnetic scattering equation 
(22) becomes [7]: 
 

𝐸𝑠(𝜃𝑠) = 

  𝐸0 ∗ 𝐹𝑠(𝜃𝑖 , 𝜃𝑠, 𝑛)
1

𝑡𝑟𝐼(𝐿𝑝𝑞)
∑  𝐿𝑝𝑞 𝐼=𝑞−𝑝 exp (−𝑗(4𝜋𝑏(𝑞 −

1) ∗ cos (2atan (
𝑎

(𝑞−1)∗𝑏
)  − 𝜃𝑠)))                             (24) 

 
     From equation (24) the scattering coefficient is 
deduced. It is the ratio between the scattered power in 

a solid angle 𝑑𝜃 around 𝜃𝑠 and the incident power. 
 

   𝜎(𝜃𝑠) = |𝐸𝑠(𝜃𝑠)| |𝐸𝑠(𝜃𝑠)|∗                                     (25)                          
 
 

2. Plot  of scattering coefficient σ distribution  
     
 Case 1: 

 𝑡𝑟𝐼=1(𝐿𝑝𝑞)  where  𝑝 = 1 𝑎𝑛𝑑 𝑞 = 2 then 𝐼 = 1   

        This shows that the scattering field will go from 

level 1 to 2, from level 2 to 3, from level 3 to 4, from 

level 4 to 5, from level 5 to 6, and from level 6 to 7. 

Here the scattering field will not skip any level it will 

just scatter at the closest superior level of the surface 

by ascending each time to the next closest level. 

Case 2: 

 𝑡𝑟𝐼=−2(𝐿𝑝𝑞)    where  𝑝 = 3 𝑎𝑛𝑑 𝑞 = 1  

then 𝐼 = −2 

 

  Here the scattering field will go from level 3 to level 1 

by skipping level 2, from level 4 to 2 by skipping level 

3, from level 5 to 3 by skipping level 4, from level 6 to 

4 by skipping level 5, and from level 7 to level 5 by 

skipping level 6. In this case the scattering field will 

not rise from one level to another instate it will 

descend by skipping each time one level.  

 

Let plot the scattering field for 𝑡𝑟𝐼=1(𝐿𝑝𝑞)  and 

𝑡𝑟𝐼=0(𝐿𝑝𝑞)     

Let set 𝐸0 = 1 𝑉/𝑚; n = 1 + 7j  And    𝑡𝑟𝐼=1(𝐿𝑝𝑞) =

0.2139770    

            𝐸𝑠(𝜃𝑠)  = 

For  {
𝑝 = 1
𝑞 = 2

       𝐹𝑠(𝜃𝑖 , 𝜃𝑠, 𝑛)
1

0.2139770
𝐿12 ∗ exp (−𝑗(4𝜋𝑏 ∗

                                 cos (2atan (
𝑎

𝑏
)   − 𝜃𝑠))) 

    

                    + 

For     {
𝑝 = 2
𝑞 = 3

      𝐹𝑠(𝜃𝑖 , 𝜃𝑠, 𝑛)
1

0.2139770
𝐿23 ∗ exp (−𝑗(8𝜋𝑏 ∗

                                  cos (2atan (
𝑎

2𝑏
)   − 𝜃𝑠))) 

                    + 

For     {
𝑝 = 3
𝑞 = 4

   𝐹𝑠(𝜃𝑖 , 𝜃𝑠, 𝑛)
1

0.2139770
𝐿34 ∗ exp (−𝑗(12𝜋𝑏 ∗

                             cos (2atan (
𝑎

3𝑏
)   − 𝜃𝑠)) 

                     + 

For     {
𝑝 = 5
𝑞 = 6

   𝐹𝑠(𝜃𝑖 , 𝜃𝑠, 𝑛)
1

0.2139770
𝐿56 ∗ exp (−𝑗(20𝜋𝑏 ∗

                              cos (2atan (
𝑎

5𝑏
)   − 𝜃𝑠)) 

                     +  

For     {
𝑝 = 6
𝑞 = 7

   𝐹𝑠(𝜃𝑖 , 𝜃𝑠, 𝑛)
1

0.2139770
𝐿67 ∗ exp (−𝑗(24𝜋𝑏 ∗

                             cos (2atan (
𝑎

6𝑏
)   − 𝜃𝑠) 

 

 

Figure 7. Scattering Distribution of σ for different trace  

(   𝒕𝒓𝑰=𝟏(𝑳𝒑𝒒)   and   𝒕𝒓𝑰=𝟎(𝑳𝒑𝒒)  ) 

 
 

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 3 Issue 7, July - 2016 

www.jmest.org 

JMESTN42351671 5167 

 
 

Figure 8. Comparison of scattering coefficients 
calculated by MOM and KA for (a) HH polarization and 

(b) VV polarization. Reference [19] 

 
VI. CONCLUSION 

       This paper has presented Markov Chain analysis 
of electromagnetic wave scattering by one-
dimensional rough surface. The generated one 
dimensional rough surface is partitioned in different 
levels where each level represent the state of Markov 
chain. The probability that a random field will 
scattering by one level and its probability of transiting 
from one level to another are calculated using 
equation (16). And from that Markov transition matrix 
is built (see Table 3).The calculations of the different 
probabilities are performed on MATLAB. In our 
simulation the distribution of scattering coefficient σ is 
plotted against the scattering angle (see figure 7).Our 
results is compared with the distribution of scattering 
coefficient calculated and plotted by MOM and KA 
(see figure 8) [19]. This comparison has shown an 
agreement between our work and those of others. 
These include the method of Moment (MOM) and 
Kirchhoff approximation (KA).For the future study this 
work will be extended to two-dimensional rough 
surface scattering by electromagnetic wave.  
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