Generic Finiteness of the Solutions for the Stable Cahn-Hilliard Equation with fast Growing Nonlinearity

Zilong Zang

School of Mathematics,Lanzhou City University,Lanzhou,730070,P.R.China zangzl@lzcu.edu.cn

Abstract—Consider the Neumman boundary value problem of the stable Cahn-Hilliard equation.Under an additional condition,we prove the problem has at least one solution. Moreover,the problem has at most finite number of solutions.

Keywords—Stable Cahn-Hilliard equation; existence ; generic finiteness .

1. INTRODUCTION

We consider the following problem :

$-\Delta K(u) = g$, in Ω	(1.1)
$\frac{\partial u}{\partial v} = \frac{\partial (\Delta u)}{\partial v} = 0, \text{ on } \partial \Omega$	(1.2)
$m(u) = \alpha$	(1.3)

Where $\alpha \in R^1$ is a constant,

$$K(u) = -\Delta u + f(u) \qquad (1.4)$$
$$m(u) = \frac{1}{|\Omega|} \int_{\Omega} u \, \mathrm{d} \, x \qquad (1.5)$$

 $\Omega \subset R^n (n \leq 3)$ is a bounded open domain with

sufficiently regular boundary $\partial\Omega$, $f \in C^2(\mathbb{R}^1)$ is a real function which will be specified further below, v stands for the outward normal vector on $\partial\Omega$. The problem (1.1)-(1.3) is related to the stationary state of the well-known Cahn-Hilliard equation which has been extensively studued more recently by [1-6].

In this present work we prove some general properties for this problem. These properties are helpful for us to understand the long-time dynamics of the Cahn-Hilliard equation (of coure, our results are also of mathematical interests). First, we prove the existence result. Then we show a generic property of (1.1)-(1.3) ,i.e., for every fixed $\alpha \in R^1$, we prove that there exists a dense open set G in the functional space described by g, such that for ever $g \in G$,(1.1)-(1.3) has only finite solutions. The reason why we are interested in the latter problem is that ,once we know that a system has at most finite stationary states, we can then give a precise description of the maximal global attractor of the system (see [5,Ch.VI].(For the Cahn-Hilliard equation which may possess a fast growing nonlinear term f as considered here ,the

existence of the maximal global attractor has juxt been prover recently by Li and Zhong [6].))

Throughout this paper we assume that f satisfies the following structure conditions:

 F_1) $f \in C^2(\mathbb{R}^1)$, moreover , there exists a positive constant k_1 such that

$$f(s)s \ge -k_1 \quad \forall s \in \mathbb{R}^1;$$

 F_2) There exists a positive constant k_2 such that

$$f'(s) \ge -k_2$$

The Cahn-Hilliard equation arises as a model of plase transitions, Note that the typical function f arising in applications is a polynomial,

$$f(s) = \sum_{j=1}^{2p-1} a_j s^j, a_{2p-1} > 0, \qquad (1.6)$$

and that this satisfies both F_1) and F_2). However, our

f need not to be a polynomial function as those are considered in [1-4] and other references.

Throughout this paper, $C \mbox{ denotes a general constant}$ depending upon the constants that appear in

 F_1) – F_2),the upper bounds of $|\alpha|$ (see (1.3) for the parameter α) and other quantities such as the Sobolev embedding constants etc.

2. SOME A PRIORO ESTIMATES

In this section we establish some a priori estimates for solutions of (1.1)-(1.3). Let (*,*) and |*| denote , respectively , the inner product and norm of $L^2(\Omega)$, we define the linear operator $A = -\Delta$ with

domain of definition $D(A) = \{ u \in H^2(\Omega), \partial u / \partial v = 0, \text{on } \partial \Omega \},$ By spectral theory we can define the spaces

$$V_s = D\left(A^{\frac{s}{2}}\right)$$
 with seminorms $|u|_s = \left|A^{\frac{s}{2}}u\right|$ and

norms $||u||_s = (|u|_s^2 + m(u)^2)^{\frac{1}{2}}$ for real *s*. (see [5,6], etc.) It is well known that when $s > 0, V_s$ is a subspace of $H^s(\Omega)$ and that $||*||_s$ is equivalent to the

usual norm of $H^{s}(\Omega)$. Also , V_{-s} is the dual of V_{s} , Moreover, for $\forall s, s' \in \mathbb{R}^1, s \leq s'$, we have the following Poincare-type inequality

$$\left| u \right|_{s} \le \lambda_{1}^{-(s'-s)/2} \left| u \right|_{s'}, \forall u \in V_{s'}$$

$$(2.1)$$

We also denote by H the space $L^2(\Omega)$, by H and $V_{\rm s}$ the spaces of definitions

$$\dot{H} = \left\{ u \in H = L^{2}(\Omega), m(u) = 0 \right\}, \quad (2.2)$$
$$\dot{V}_{s} = \left\{ u \in V_{s}, m(u) = 0 \right\}, \quad (2.3)$$

Lemma 2.1 Assume that f satifies F_1 , F_2 ,

 $g \in H$, then there exists a positive constant C such that for every solution u of (1.1)-(1.3),

$$\|u\|_{1} \le C(1+g)$$
 (2.4)

Proof The estimate (2.4) is obtained by

multiplying (1.1) with $A^{-1}u$ and integrating over Ω .The argument in detail is similar to those in Lemma 1 of [3] and Lemma 3.1 of [5].we omit it.

Lemma 2.2 The assumptions are those in Lemma 2.1, Let u be a solution of (1.1)-(1.3), then

$$\|u\|_{4} \le C(1+g)$$
 (2.5)

Proof We multiply (1.1) with -K(u) and obtain

(note that
$$\frac{\partial}{\partial v} K(u) = \frac{\partial}{\partial v} A^{-1}g = 0 \text{ on } \partial\Omega$$
)
 $|K(u)|_{1}^{2} = -(K(u),g) = -(K(u), AA^{-1}g)$
 $\leq \frac{1}{2} |K(u)|_{1}^{2} + \frac{1}{2} |g|_{-1}^{2} \leq (by(2.1))$
 $\leq \frac{1}{2} |K(u)|_{1}^{2} + C|g|^{2}$
Hence $|K(u)|_{1} \leq |g|^{2}$ (2.6)

Hence

Now we multiply K(u) by Au and integrate over Ω ,by F_2),we have

(2.6)

$$(K(u), Au) = |u|_{2}^{2} + \int_{\Omega} f'(u) |\nabla u|^{2} dx \ge |u|_{2}^{2} - k_{2} |u|_{1}^{2} |u|_{2}^{2}$$

$$\le (K(u), Au) + k_{2} |u|_{1}^{2}$$

$$= \int_{\Omega} \nabla K(u) \cdot \nabla u dx + k_{2} |u|_{1}^{2} \le C (|K(u)|_{1}^{2} + |u|_{1}^{2})$$

By (2.6) and Lemma 2.1, we conclude that
$$||u||_{2} \le C(1+g) \qquad (2.7)$$

By (1.1) ,we have

$$\Delta^2 u = \Delta f(u) + g \qquad (2.8)$$

Thanks to the Sobolev embedding $H^2(\Omega) \subset L^{\infty}(\Omega)$ (

 $n \leq 3$), and the estimate (2.7), we get

$$\left| u \right|_{L^{\infty}(\Omega)} \le C \tag{2.9}$$

Since f and its derivatives f', f'' are locally bounded, we deduce easily from (2.7)-(2.9) that the estimate (2.5) holds.

Remark 2.1 When f(s) is a polynomial,

$$f(s) = \sum_{j=0}^{2p-1} a_j s^j (a_{2p-1} > 0 \text{ and } g = 0 \text{ ,similar}$$

estimates for u are also obtained by Dlotko [3](see [3,Lemma 1])). However the author require that p = 2when the space dimension n = 3. Moreover, our methods here also differ signicantly from those used in [3].

Lemma 2.3 We assume that f satifies F_1) and F_2),Let $G \subset H$ and $I \subset R^1$ be compact, then the set $U = \{u \in V_4, \exists (g, \alpha) \in G \times I \text{ such that } (u, g, \alpha)\}$ satisfies (1.1)-(1.3)} is compact in V_4 .

Proof Since $H^4(\Omega) \subset C^2(\overline{\Omega})$ $(n \leq 3)$, we infer from Lemma 2.2 that any sequence $\{u_k\}\!\subset\! U$ has a subsequence (still denoted by $\{u_k\}$) coverging in $C^{2}(\overline{\Omega})$, Assume that

$$\Delta^2 u_k = \Delta f(u_k) + g_k \qquad (2.10)$$

Where $g_k \in G$.By the compactness of $G, \{g_k\}$ has a subsequence $\left\{g_{k_{i}}\right\}$ which coverges in H .Therefore we deduce from (2.10) that $\{u_{k_i}\}$ coverging in V_4 . It is easily seen that the limit function of $\{u_{k_i}\}$ belonge to U. The proof is completed.

3. NON EMPTY AND GENERIC PROPERTIES FOR THE SOLUTION SET

For given $(g, \alpha) \in H \times R^1$, we denote by $S(g, \alpha)$ the solution set of (1.1)~(1.3). Our aim in this part is two-fold. First, we prove that for every given $(g, \alpha) \in H \times R^1, S(g, \alpha)$ is nonempty, i.e., the existence for $(1.1) \sim (1.3)$; then we give a generic property for (1.1)~(1.3),move precisely,for every given $\alpha \in R^1$, we show that there exists a dense open set $G \subset H$ such that for every $g \in G, S(g, \alpha)$ is finite.

Theorem 3.1 Assume that f satisfies F_1 and

 F_2 , then $S(g,\alpha) \neq \emptyset$ for $\forall (g,\alpha) \in H \times R^1$.

Proof Note that (1.1)-(1.3) is equivalent to the following equation:

$$A(Au + f(u + \alpha)) = g, u \in V_4 \quad (3.1)$$

Let $u \in V_2$. Since $\frac{\partial f(u + \alpha)}{\partial v} = f'(u + \alpha)\frac{\partial u}{\partial v} = 0$ on $\partial \Omega$, we find that $Af(u + \alpha) \in H$.

From the general theory for elliptic boundary-value problems,we deduce that there exists a unique $v \in \dot{V_4}$ satisfying

$$A^2 v = -Af(u+\alpha) + g \qquad (3.2)$$

Thus we can define a mapping $T: \dot{V_2} \rightarrow \dot{V_2}$, as

$$Tu = v, \forall u \in \dot{V_2} \tag{3.3}$$

Where v is the solution of (3.2) with respect to u .lt is easily seen that T is compact.

Suppose that $u \in \dot{V}_2$ satisfies: $u = \sigma T u$ ($\sigma \in [0,1]$),then $u \in V_4$ and satisfies

$$A(Au + f(u + \alpha)) = g \qquad (3.4)$$

Where $f = \sigma f$.Obviously f satisfies F_1 and F_2 , therefore by Lemma 2.2 ,there exists a con C > 0

(independent upon $\,\sigma$) such that $\|u\|_{\!_{4}}$ is bounded by

C(1+|g|). In virtue of the classical Leray-Schauder

fixed point theorem , we deduce that T has at least one ficed point which solves (1.1)-(1.3) .The proof is therefore complete.

Theorem 3.2 We assume that f satisfies F_1) and F_2). Then for every $\alpha \in \mathbb{R}^1$, there exists a dense

open set $G \subset \dot{H} = \dot{L}^2(\Omega)$ such that

1) for every $g \in G, S(g, \alpha)$ is finite;

2) for every connected compontent G_β of G ,the

number of points of $S(g, \alpha)$ for $g \in G_{\beta}$ is constant. **Proof** We will employ some technics used by

Fioas and Temam [7]. Denote by $S(g, \alpha)$ the set of solutions of (3.1). It is clear that

$$S(g,\alpha) = S(g,\alpha) - \alpha = \{u - \alpha | u \in S(g,\alpha)\}$$

To prove Theorem 3.2 ,it is sufficient and convenient for us to consider the set $S(g, \alpha)$.

i) Let $F: \dot{V}_4 \to \dot{L}(\Omega)$ as follows

$$F(u) = \Delta^2 u - \Delta f(u + \alpha)$$
, for $u \in \dot{V}_4$.

Then $F \in C^1$ and

$$F'(u)U = \Delta^2 U - \Delta(f'(u+\alpha)U), \forall U \in \dot{V}_4$$

It is easily seen that the linear operator $K: \dot{V}_4 \to \dot{L}^2(\Omega)$ defined by

$$KU = -\Delta(f'(u+\alpha)U), \forall U \in \dot{V}_{A}$$

is compact . Since Δ^2 is an isomorphism from \dot{V}_4 to

 $L^{2}(\Omega)$, we coclude that F'(u) is a Fred-holm operator of index 0. We infer from the infinite dimensional version of Sard's theorem (see Th. A in [7]) that the set *G* of regular values *g* of *F* is dence in $\dot{L}^2(\Omega)$,and $S(g,\alpha)$ is discrete in \dot{V}_4 for all $g \in G($

 α is given fixed). Since $S(g, \alpha)$ is compact in \dot{V}_4 , this set is finite.

ii) The second step of the proof consists in showing that G is open.

Let $g_i \in \dot{L}^2(\Omega) - G(i = 1, 2, \cdots)$ be a sequence converging in \dot{V}_4 to some limit g. We will prove that $g \in \dot{L}^2(\Omega) - G$. Let $u_i \in S(g_i, \alpha)$, we assume that $F'(u_i)$ is not surjective.

Since

dim ker $F'(u_i) =$ dim coker $F'(u_i) > 0$ (3.5) there exists $v_i \in V_4$, $||v_i||_4 = 1$, such that $F'(u_i)v_i = 0$ i.e.,

$$\Delta^2 v_i - \Delta (f'(u_i + \alpha)v_i) = 0$$
(3.6)

Since $\{g_i\}$ is bounded in $L^2(\Omega)$, in virtue of the a priri estmate obtained in Section 2, we know that $\{u_i\}$ is bounded in \dot{V}_4 .

The above properties of $\{u_i\}$ and $\{v_i\}$ enables us to extract subsequences (still denoted by $\{u_i\}$ and $\{v_i\}$) such that

 $u_i \to u, v_i \to v$ weakly in \dot{V}_4 (3.7)

Since $H^4(\Omega) \subset C^2(\overline{\Omega})$, we deduce by (3.7) that $u_i \to u, v_i \to v$ in $C^2(\overline{\Omega})$, Now we can pass to the limit in (3.6) and $\Delta^2 u_i - \Delta f'(u_i + \alpha) = g_i$, we have $\Delta^2 u - \Delta f(u + \alpha) = g$; $\Delta^2 v - \Delta (f'(u + \alpha)v) = 0$ i.e., $u \in S(g, \alpha)$ and $v \in \ker F'(u)$. Since $\|v_i\|_4 = 1, v \neq 0$. Recalling that F'(u) is a Fredholm operator of index 0, we conclude that u is a critical point of F. Therefore

$$g \in \dot{L}^2(\Omega) - G$$

iii) Let $G_1, G_2, \dots, G_j, \dots$ be the connected components of $G(G_i \text{ is open})$, and let g_0, g_1 be two points in G_j for same j. Let $u_0 \in F^{-1}(g_0) = S(g_0, \alpha)$. Since G_j is connected, There exists a continuous curve $g(t):[0,1] \to G_j$ such that $g(0) = g_0, g(1) = g_1$ and the implicit function theorem implies that there exists a unique curve u(t) which satisfies

$$F(u(t)) = g(t), u(0) = u_0.$$

Since g(t) is a regular value for every $t \in [0,1], u(t)$ is defined on the whole interval [0,1], therefore

 $u(1) \in F^{-1}(g_1) = S(g_1, \alpha)$, Such a curve can be constructed from any point $u_k \in S(g_0, \alpha)$. Also two different curves cannot reach the same point u_* of $S(g_1, \alpha)$, Otherwise this would be contradicts to the implicit funmction theorem around u_* .

Hence there are at least as many points in $S(g_1, \alpha)$ as in $S(g_0, \alpha)$. By symmetry the number of the points in $S(g_0, \alpha)$ and that of the point in $S(g_1, \alpha)$ are the same.

Let $S(G_j) = \bigcup_{g \in G_j} S(g, \alpha)$.then we infer frome

the above analysis that $S(G_j)$ can be divided into several parts and each part is a connected component of $S(G_i)$.

Let S_k be such a part of $S(G_j)$ then it is easily seen that the restriction of F on S_k is a C^1 differential isomorphism from S_k to G_j . Acknowllegement The authors would like to express great thanks to doctor Li Desheng and Zhong Chengkui for their careful guidance.

REFERENCES

[1] N.ALKAKOS P.W.BATES, AND G, FUSCO, Slow motion for the Cahn-Hilliard equation in one spacedimension [J].Diff.Eqns.1991,90:81~135.
[2] J.W.CHOLEWA AND T.DLOTKO, Global attrctor of the Cahn-Hilliard system [J].Bull.Austral.Math. Soc, 1994,49:177~202.

[3] T.DLOTKO, Global attractor for the Cahn-Hilliard

equation in H^2 and H^3 [J].Diff. Eqns. 1994, 113:381 ~393.

[4] B.NICOLAENKO B.SHEURER AND R.TEMAM, Some global dynamical properties of a class of pattern formation equations [J].Comm.Partial Diff.Eqns. 1989,14(2):245~297.

[5] R.TEMAM, Infinite Dimensional Dynamical Systems in Mechanics and Physics [M]. Springer-Verlag, New York, 1988.

[6] LI DESHENG AND ZHONG CHENGKUI, Global attractor for the Chan-Hilliard system with fast growing nonlinearity [J].Diff.Eqns.1998,149:191~210.

[7] C.FOIAS AND R.TEMAM,Structure of the set of stationary solutions of the Navier-Stokes equations [J].Comm.Puer Appl.Math.,1977,30:149~368.