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Abstract—Consider the Neumman boundary value 
problem of the stable Cahn-Hilliard 
equation.Under an additional condition,we prove 
the problem has at least one solution. 
Moreover,the problem has at most finite number 
of solutions . 
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1. INTRODUCTION  

We consider the following problem :  
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Where 
1R   is a constant, 

( ) ( )K u u f u                (1.4) 

1
( ) dm u u x



 

              (1.5) 

( 3)nR n   is a bounded open domain with 

sufficiently regular boundary 
2 1, ( )f C R   is a 

real function which will be specified further below, v  

stands for the outward normal vector on  . The 

problem (1.1)-(1.3) is related to the stationary state of 
the well-known Cahn-Hilliard equation which has been 
extensively studued more recently by [1-6]. 
     In this present work we prove some general 
properties for this problem. These properties are 
helpful for us to understand the long-time dynamics of 
the Cahn-Hilliard equation (of coure, our results are 
also of mathematical interests). First, we prove the 
existence result. Then we show a generic property of 

(1.1)-(1.3) ,i.e.,for every fixed 
1R  ,we prove that 

there exists a dense open set G in the functional 

space described by g , such that for ever g G ,(1.1)-

(1.3) has only finite solutions . The reason why we are 
interested in the latter problem is that ,once we know 
that a system has at most finite stationary states, we 
can then give a precise description of the maximal 
global attractor of the system (see [5,Ch.Ⅶ].(For the 
Cahn-Hilliard equation which may possess a fast 

growing nonlinear term f as considered here ,the 

existence of the maximal global attractor has juxt 
been prover recently by Li and Zhong [6].)) 

Throughout this paper we assume that f satisfies 

the following structure conditions: 

  1F )
2 1( )f C R , moreover , there exists a positive 

constant 1k  such that  

1( )sf s k   
1s R  ; 

  2 )F  There exists a positive constant 2k  such that  

2( )f s k   . 

  The Cahn-Hilliard equation arises as a model of 

plase transitions, Note that the typical function f

arising in applications is a polynomial , 
2 1

2 1
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  ,             (1.6) 

and that this satisfies both 1)F and 2 )F . However,our 

f need not to be a polynomial function as those are 

considered in [1-4] and other references. 

  Throughout this paper,C denotes a general constant 

depending upon the constants that appear in

1 2) )F F ,the upper bounds of   (see (1.3) for the 

parameter  ) and other quantities such as the 

Sobolev embedding constants etc. 

2. SOME A PRIORO ESTIMATES  

In this section we establish some a priori 

estimates for solutions of (1.1)-(1.3). Let  （ ，）and 

  denote , respectively , the inner product and norm 

of 
2 ( )L  , we define the linear operator A   with 

domain of definition 

( )D A  {
2( ), 0u H u v     ,on  }, 

By spectral theory we can define the spaces 

2

s

sV D A
 

  
 

 with seminorms 2

s

s
u A u  and 

norms  
1

2 2 2( )
s s

u u m u   for real s . (see [5,6], 

etc.) It is well known that when 0, ss V  is a 

subspace of ( )sH   and that 
s

  is equivalent to the 
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usual norm of ( )sH  . Also , 
sV
 is the dual of 

sV , 

Moreover, for 
1, ,s s R s s    ,we have the 

following Poincare-type inequality 
( ) 2

1 ,s s

ss s
u u u V  


              (2.1) 

We also denote by H  the space 
2 ( )L  ,by H and 

sV the spaces of definitions 

 2( ), ( ) 0H u H L m u     ,    (2.2) 

 , ( ) 0s sV u V m u   ,                    (2.3) 

 Lemma 2.1  Assume that f satifies 1)F , 2 )F ,

g H ,then there exists a positive constant C such 

that for every solution u of (1.1)-(1.3), 

              
1

(1 )u C g                     (2.4) 

Proof   The estimate (2.4) is obtained by 

multiplying (1.1) with 
1A u

and integrating over 
.The argument in detail is similar to those in Lemma 1 
of [3] and Lemma 3.1 of [5].we omit it. 

Lemma 2.2  The assumptions are those in 
Lemma 2.1 ,Let u be a solution of  (1.1)-(1.3),then  

        
4

(1 )u C g                     (2.5) 

Proof   We multiply  (1.1) with ( )K u  and obtain 

(note that 
1( ) 0K u A g

v v

 
 

 
on  ) 
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1
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   (by(2.1))  

2 2

1

1
( )

2
K u C g   

Hence                      
2

1
( )K u g           (2.6) 

Now we multiply ( )K u  by Au  and integrate over 

,by 2 )F ,we have  

2 2 2 2 2

22 2 1 2
( ( ), ) ( ) dK u Au u f u u x u k u u


    

  
2

2 1
( ),K u Au k u   

 2 2 2

2 1 1 1
( ) d ( )K u u x k u C K u u


       

By (2.6) and Lemma 2.1 ,we conclude that  

2
(1 )u C g                  (2.7) 

By (1.1) ,we have  
2 ( ) gu f u                  (2.8) 

Thanks to the Sobolev embedding 
2( ) ( )H L   (

3n  ),and the estimate (2.7) ,we get  

            
( )L

u C 
           (2.9) 

Since f  and its derivatives ,f f  are locally 

bounded,we deduce easily from (2.7)-(2.9) that the 
estimate (2.5) holds. 

  Remark 2.1  When ( )f s  is a polynomial , 

2 1

0

( )
p

j

j

j

f s a s




  (
2 1 0pa   and 0g  ,similar 

estimates for u  are also obtained by Dlotko [3](see 

[3,Lemma 1])). However the author require that 2p   

when the space dimension 3n  ,Moreover ,our 

methods here also differ signicantly from those used 
in [3]. 

Lemma 2.3 We assume that f satifies 1)F and 

2 )F ,Let G H and 
1I R  be compact ,then the set 

4{ , ( , )U u V g G I     such that ( , , )u g 

satisfies (1.1)-(1.3)} is compact in 4V . 

 Proof  Since 
4 2( ) ( )H C   ( 3n  ),we infer 

from Lemma 2.2 that any sequence  ku U  has a 

subsequence (still denoted by  ku ) coverging in 

2 ( )C  ,Assume that  

2 ( )k k ku f u g              (2.10) 

Where kg G .By the compactness of  , kG g has a 

subsequence  
jkg which coverges in H .Therefore 

we deduce from (2.10) that  
jku coverging in 4V . It is 

easily seen that the limit function of  
jku belonge to 

U . The proof is completed. 

3. NON EMPTY AND GENERIC PROPERTIES FOR THE 

SOLUTION SET  

For given 
1( , )g H R   ,we denote by 

( , )S g  the solution set of (1.1)～(1.3). Our aim in this 

part is two-fold. First,we prove that for every given 
1( , )g H R   , ( , )S g  is nonempty,i.e.,the 

existence for (1.1)～(1.3);then we give a generic 
property for (1.1)～(1.3),move precisely,for every given 

1R  ,we show that there exists a dense open set 

G H such that for every , ( , )g G S g  is finite. 

Theorem 3.1  Assume that f satisfies  1)F and 

2 )F ,then ( , )S g    for 
1( , )g H R   . 

Proof   Note that (1.1)-(1.3) is equivalent to the 
following equation: 

4( ( )) g,A Au f u u V          (3.1) 

Let 2u V . Since 
( )

( ) 0
f u u

f u
v v




  
  

 
on 

 ,we find that ( )Af u H  . 
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From the general theory for elliptic boundary-value 

problems,we deduce that there exists a unique 
4v V

satisfying 
2 ( ) gA v Af u              (3.2) 

Thus we can define a mapping 
2 2:T V V ,as 

follows: 

      
2,Tu v u V                (3.3) 

Where v  is the solution of (3.2) with respect to u .It is 

easily seen that T is compact. 

Suppose that 
2u V satisfies: u Tu (

[0,1]  ),then 4u V and satisfies 

( ( )) gA Au f u           (3.4) 

Where f f .Obviously f satisfies 1)F and 2 )F

,therefore by Lemma 2.2 ,there exists a con 0C 

(independent upon  ) such that 
4

u is bounded by 

(1 )C g . In virtue of the classical  Leray-Schauder 

fixed point theorem , we deduce that T has at least 
one ficed point which solves (1.1)-(1.3) .The proof is 
therefore complete. 

Theorem 3.2  We assume that f  satisfies 1)F

and 2 )F . Then for every 
1R  ,there exists a dense 

open set 
2( )G H L   such that  

1) for every , ( , )g G S g  is finite; 

2) for evefy connected compontent G of G ,the 

number of points of ( , )S g  for g G is constant. 

Proof   We will employ some technics used by 

Fioas and Temam [7]. Denote by ( , )S g   the set of 

solutions of (3.1). It is clear that 

 ( , ) ( , ) ( , )S g S g u u S g          

To prove Theorem 3.2 ,it is sufficient and 

convenient for us to consider the set ( , )S g  . 

i) Let 
4: ( )F V L   as follows 

2( ) ( )F u u f u     ,for 
4u V . 

Then 
1F C  and  

2

4( ) ( ( ) ),F u U U f u U U V        

It is easily seen that the linear operator 
2

4: ( )K V L   defined by  

4( ( ) ),KU f u U U V      

is compact . Since 
2 is an isomorphism from 4V  to 

2 ( )L  , we coclude that ( )F u is a Fred-holm 

operator of index 0 . We infer from the infinite 

dimensional version of Sard’s therorem (see Th. A in 

[7]) that the set G of regular values g of F is dence 

in 
2 ( )L  ,and ( , )S g  is discrete in 

4V  for all g G (

 is given fixed). Since ( , )S g  is compact in 
4V , 

this set is finite. 
  ii) The second step of the proof consists in showing 

that G is open. 

Let 
2( ) ( 1,2, )ig L G i    be a sequence 

converging in 
4V  to some limit g .We will prove that 

2( )g L G   .Let ( , )i iu S g  ,we assume that 

( )iF u is not surjective . 

 Since  

dimker ( ) dimcoker ( ) 0i iF u F u        (3.5) 

there exists 4 4
, 1i iv V v  ,such that  ( ) 0i iF u v 

i.e., 
2 ( ( ) ) 0i i iv f u v                    (3.6) 

Since  ig  is bounded in 
2 ( )L  ,in virtue of the a 

priri estmate obtained in Section 2 , we know that 

 iu  is bounded in 
4V  . 

The above properties of  iu  and  iv  enables 

us to extract subsequences (still denoted by  iu  and 

 iv ) such that  

,i iu u v v   weakly in 4V               (3.7) 

Since 
4 2( ) ( )H C   ,we deduce by (3.7) that 

,i iu u v v   in 
2 ( )C  ,Now we can pass to the 

limit in (3.6) and 
2 ( )i i iu f u g    ,we have  

2 ( )u f u g    ; 
2 ( ( ) ) 0v f u v     

i.e. , ( , )u S g   and ker ( )v F u . Since 

4
1, 0iv v  . Recalling that ( )F u  is a Fredholm 

operater of index 0,we conclude that u  is a critical 

point of F . Therefore  
2( )g L G    

iii) Let 
1 2, , , ,jG G G be the connected 

components of G ( iG is open), and let 0 1,g g  be two 

points in 
jG  for same j . Let 

1

0 0 0( ) ( , )u F g S g   .Since 
jG  is 

connected,There exists a continuous curve 

( ) :[0,1] jg t G  such that 0 1(0) , (1)g g g g   and 

the implicit function theorem implies that there exists a 

unique curve ( )u t  which satisfies 

0( ( )) ( ), (0)F u t g t u u  . 

Since ( )g t  is a regular value for every [0,1], ( )t u t  

is defined on the whole interval [0,1] ,therefore 
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1

1 1(1) ( ) ( , )u F g S g   ,Such a curve can be 

constructed from any point 0( , )ku S g  . Also two 

different curves cannot reach the same point *u  of 

1( , )S g  ,Otherwise this would be contradicts to the 

implicit funmction theorem around *u . 

   Hence there are at least as many points in 1( , )S g   

as in 0( , )S g  .By symmetry the number of the points 

in 0( , )S g  .and that of the point in 1( , )S g   are the 

same. 

 Let ( ) ( , )
j

j

g G

S G S g 


 .then we infer frome 

the above analysis that ( )jS G  can be divided into 

several parts and each part is a connected component 

of ( )jS G . 

  Let kS  be such a part of ( )jS G .then it is easily seen 

that the restriction of F  on kS  is a 
1C  differential 

isomorphism from kS  to 
jG . 
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