
Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 3 Issue 4, April - 2016 

www.jmest.org 

JMESTN42351503 4505 

Comparative Analysis of the Structural and 
Weighted Properties in Albanian Social 

Networks 
 

Eva Noka (Jani) 
Department of Applied Mathematics 

Faculty of Natural Sciences, University of Tirana 
Albania 

eva.jani@fshn.edu.al 

Fatmir Hoxha 
Department of Applied Mathematics 

Faculty of Natural Sciences, University of Tirana 
Albania 

fatmir.hoxha@fshn.edu.al 

Abstract—In this paper, we perform a 
comparative analysis of two Albanian social 
networks, which are constructed using the data of 
scientific collaborations and the records of 
communications (calls and text messages) 
between mobile phone users. Both networks 
display similar structural properties in accordance 
with other social networks, such as a broad 
degree distribution, high clustering and a 
community structure. The link weights vary in a 
wide range indicating a strong heterogeneity of 
the tie strengths in both networks. Exploring the 
correlations between tie strengths and topology, 
we observe significant differences. The 
communities in the collaboration network are 
mostly associated with the weak ties, whereas 
strong ties act as bridges connecting different 
communities. On the contrary, in the 
communication network, the strong ties mainly 
reside within the communities and the weak ties 
play the important role for overall network 
connectivity. These findings suggest that despite 
the structural similarities, the networks under 
consideration are driven by different mechanisms 
of network tie formation determining qualitatively 
different roles of the weak and strong ties at both 
local and global levels. 
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I.  INTRODUCTION 

A social network is a map of the social structure, 
where every node represents a person, group or 
organization and pairs of nodes are linked through 
some kind of relation. A relation may refer to 
acquaintance, kinship, friendship, scientific co-
authorship or other. This representation provides not 
only the observation of individuals and their attributes, 
but the relationships between them, their global 
structure and dynamics. The main outcome of the 
extensive research to understand, measure and model 
the structure of human-driven real world networks, has 
been to reveal that real networks significantly differ 
from random networks and despite the inherent 
differences, they share many similar topological 
properties [1, 2, 3]. 

Nevertheless, all these properties assume the links 
to be equivalent to each other, whereas, in the real life, 
the relationships that people maintain have not the 
same intensity, importance and role [4, 5]. For this 
reason, the social networks are better described in 
terms of weighted networks, where each link    carries 
a numerical value     as a weight, which measures the 

strength of the tie [6, 7]. Exploring the tie strengths and 
their correlations with the topological structure helps in 
a better description of the hierarchies, organizational 
principles of the networks and the dynamics of many 
phenomena, such as communities’ formation, 
information spreading and social influence [8, 9, 10, 
11]. 

We explore in a comparative way to social 
networks based on the data of scientific collaborations 
of the Albanian researchers and the communication 
records of the mobile phone users from an Albanian 
cellular operator. We find that both networks display 
many characteristic features of other social networks, 
such as broad degree/weight distributions, high 
clustering coefficient and community structures. 

In the networks with a community structure the ties 
can be distinguished by their position. A tie can either 
resides within a community or acts as a bridge 
connecting different communities. The intercommunity 
ties are characterized by a high betweenness 
centrality, defined as the number of shortest paths in 
the network passing through a given link [12]. This 
implies that intercommunity ties have a high control on 
the information flow in the network. On the other hand, 
depending on their weights, the ties may be strong or 
weak. Hence, exploring the link position-weight 
relationships in weighted networks provides an 
additional source to unveil the driving mechanisms of 
tie formation and reinforcement. If there should not any 
correlation between the topology and the link weight, 
the strength of a particular tie should be only related to 
the nature of the relationship between the two 
individuals and thus is independent of the network 
structure around that tie. This is known as the dyadic 
hypothesis. Many real networks are self-organized 
according to the global efficiency principle, meaning 
that the tie strengths are optimized to maximize the 
overall flow in the network. In this case, the strongest 
ties in the network should be mainly intercommunity 
ties having a high betweenness, whereas the ties 
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inside the communities should be weak. Another 
hypothesis is known as “the strength of weak ties” and 
comes from sociology [4]. It predicts that the strength 
of a tie between two individuals increases with the 
overlap of their friendship circles, implying that the ties 
within communities tend to be stronger than the ones 
between them. This hypothesis may be seen as the 
opposite of the global efficiency principle. 

The exploring of the weight-topology correlations in 
our networks suggest that the collaboration network is 
organized according to the global efficiency principle, 
whereas the weak tie hypothesis is verified in the 
mobile phone communication network. 

In the next Section we describe the data sets and 
the construction of the networks. Then, we analyze 
some basic characteristic and find that both networks 
display a community structure. We further address 
correlations between tie strengths and the structure of 
the networks. Exploring the link percolation properties 
we show that the strong ties have a global important 
role for the connectivity of the collaboration network, 
while this role in the communication network is played 
by the weak ties. 

II. DATA  SETS 

A. Scientific collaborations 

The first dataset contains all papers published in the 
Bulletin of the Faculty of Natural Sciences of the 
University of Tirana, from the No. 1 in the year 2004 to 
the No. 18 in 2015. We construct a collaboration 
network (ACN), which is a simple graph, where 
authors are identified with nodes and there is a link 
between a pair of nodes if the corresponding 
scientists have co-authored at least one paper. The 
network has       nodes,         links. The 
average degree is 〈 〉      , which means that each 

scientist collaborates on average with 3    other 
scientists. The largest connected component (LCC) 
amounts to       of the total number of nodes.  

To measure the intensity     of the collaboration 

between two scientists   and  , we use the definition of 
the link weight introduced by Newman in [7] as: 

     ∑
 

         ,   is the set of papers where 

scientists   and   have collaborated and    is the 

number of co-authors of paper  . The motivation of this 
definition is based on a reasonable assumption that 
the collaboration intensity of two scientists on a paper 
with many other authors is less than on a paper with 
fewer authors. Each scientist who collaborates on a 
paper   with    co-authors divides his/her time evenly 

(on average) among      other authors, hence the 

intensity of his/her collaboration with each of them is 
        . 

B. Mobile phone communications 

The second dataset contains all the records of calls 
and text messages (SMS) exchanged between the 
mobile phone users (anonymized) of a single Albanian 
operator during a period of one month. To give a 

representation of the social ties close to the real one, 
we construct a mutual communication network (MCN), 
where two users   and   are connected with an 
undirected link if there had been at least one 
reciprocated pair of communications (call or SMS) 
between them, i.e.   has initiated a call or SMS to   and 
vice versa [9]. The network has          nodes and 

         links. The average degree is 〈 〉     , 
meaning that a user communicates reciprocally with 
about 2-3 persons averagely. The LCC constitutes 
      of the total number of nodes. We quantify the 

weight of a link    by the total number of 

communication events (calls or SMS) occurred 
between the users i and j over the studied period. 

III. RESULTS 

A. Basic characteristics 

The basic characteristic of the nodes in a network 
is the degree distribution denoted as     , which gives 
the probability that a randomly chosen node has 
degree  . Panels A and B in Fig. 1 show the 
cumulative degree distributions        of the networks 
ACN and MCN, respectively. The skewed degree 
distributions with fat tails in both networks reflect the 
heterogeneous structure of the networks, a common 
feature for complex networks [13]. For the 
collaboration network ACN, this means that while most 
scientists have only a few collaborators, a small 
minority collaborates with many others. One scientist 
collaborates maximally with 42 others or more than 7% 
of the total number of authors. Although the 
communication network MCN has a large size, its 
maximum degree is        , indicating that the 
hubs are few. The reciprocal communication criterion 
for the construction of MCN filter out the abnormal 
large nodes, which in most cases are associated with 
business-like subscriptions, customer service lines, 
etc., hence the resulting mutual network is dominated 
by trusted interactions. 

Link weights display a broad distribution in both 
networks (Fig. 2 A, B), reflecting the large variability of 
the interactions’ intensity between individuals in their 
professional relationships as well as in their friendship 
relations. We observe that most ties are weak, 
whereas a tiny fraction of them are strong. 

The local clustering coefficient    measures the 
density of links in the immediate neighborhood of the 
node   [14]. It is defined as: 

 

Fig. 1. Cumulative degree distributions for the 
collaboration network ACN (A) and for the 
communication network MCN (B). 
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Fig. 2. Cumulative weight distributions for the collaboration 
network ACN (A) and for the communication network 
MCN (B). 

      
   

         
   (1) 

where   is the number of triangles connected to node  . 
In general, in social networks, the clustering coefficient 
is considerably higher than for a random network with 
similar number of nodes and links [3]. We have plotted 
(Fig. 2 A, B) the average local clustering coefficient 
〈   〉 of all the nodes with the same degree   as a 

function of  , for both networks ACN and MCN. For 
each network, we compare the results with those taken 
from a configuration model. This reference model is 
obtained from the original network by preserving its 
degree sequence, but the links are rewired pairwise 
randomly to remove the local structural correlations 
present in the network. We observe different behaviors 
of 〈   〉  in the original networks and in their 
randomized counterparts. The small degree nodes 
have a much higher 〈   〉  in the empirical networks 
than in the link-randomized networks, meaning that the 
local structure around the small degree nodes is 
denser than expected by chance. While in the link-
randomized networks, 〈   〉 is independent of  , in the 

original networks 〈   〉 shows a decreasing trend with 
the increase of  . This means that the empirical 
networks display a hierarchical structure [3], where the 
small degree nodes are part of small dense 
communities, while large degree nodes link different 
communities to each other. These observations 
suggest that the links in our empirical networks are not 
random. On the contrary, 

 

Fig. 3. Clustring coefficient. (A) Average clustering 
coefficient for the ACN (purple dots) and the randomized 
network (green dots). (B) Average clustering coefficient 
for the MCN (purple dots) and the randomized network 
(green dots). 

the nodes arrange themselves locally in well-
organized structures, reflecting the tendency of the 
individuals to be organized in tightly knit groups 
according to their interests, the needs for social 
cohesion and access to resources and new 
information [4, 14, 15] under time and cognitive 
constraints [16, 17, 18] 

B. Weight-topology correlations 

The intensity of a subgraph is an important concept 
designed for studying the coupling between the 
network structure and tie strengths [onnela ]. The 
intensity of a subgraph   with nodes    and links    is 

given by the geometric mean of its weights as: 

      (∏         )
 

|  |⁄
  (2) 

We analyze the intensity distributions of the k-
cliques (fully connected subgraph with   nodes) for 

        and   in the largest connected components 
(LCC) of the empirical networks. For each of them, we 
set up a weight permuted reference [9, 19] generated 
by randomly reshuffling the weights in the network. 
This reference model removes weight correlations in 
the original network keeping the topology unaltered. 
The k-clique intensity distributions for the LCC of the 
empirical networks and their respective reference 
models are displayed in Fig. 3. 

Fig. 4. Clique intensity distributions. The probability 
distribution of cliques of oreder         in the LCC of 
the ACN (left column), MCN (right column) and their 
reference models. The reference distribution is an 
average over 100 realizations. 
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 In the collaboration network, we observe that for each 
order, most cliques have low intensity, while only a 
small number of cliques have high intensity. On the 
contrary, in the communication network, the intensity 
of cliques is considerably higher than in the 
randomized counterpart. The differences become 
more evident for larger cliques. Furthermore, the 
median  -clique intensities (        ) in the 
collaboration network are smaller than in the 
reference model, while the opposite is true in the 
communication network (Table I). The abundance of 
low-intensity cliques in the collaboration network 
indicates that dense network neighborhoods are 
mainly associated with the weak ties, whereas in the 
communication network, the intracommunity ties are 
seen to be stronger. 

TABLE I.  MEDIAN INTENSITY 

Order 
k 

Median intensity 

Collaboration Communication 

O R O R 

3 0.333 0.395 22.915 14.675 

4 0.287 0.404 26.066 14.972 

5 0.267 0.410 24.858 14.981 

Median intensity of cliques of oreder  , in the LCC of the 
original collaboration and communication networks (O) 
and their reference models (R). 

A local topological property of a link is the 
neighborhood overlap [6]. For a link    , the overlap 

    represents the proportion of the neighbors 

common to its endpoints   and  . It is defined as: 

     
   

       (    )    
     (2) 

where    (  ) is the degree of the node   ( ) and     is 

the number of the neighbors common to both nodes   
and  . If two connected nodes  ,   have no common 
neighbor, then       and the link     is a potential 

bridge between disparate communities. If all the 
neighbors of the nodes   and   are common to both, 

     , which means that the link     is part of a 

single community. 

We explore the average overlap 〈   〉 as a function 

of link weight   in the largest connected component of 
the ACN and MCN as shown in the panels A, B of Fig. 
4 (purple dot-lines). The green dot-lines represent the 
average overlap 〈   〉  for the reference model. 
According to the dyadic hypothesis, the overlap is 
independent of the tie strengths in each of the link-
weight randomized network. The different behavior of 
〈   〉 in the original networks indicates that the dyadic 
hypothesis is not suited for our empirical networks, 
implying the existence of the correlations between the 
tie strengths and the network structures. 

Fig. 5. Average Overlap as a function of weight in the LCC 
of ACN (left) and MCN (right) and in their reference 
models. 

In the collaboration network, we observe that 〈   〉 
decreases with the increase of the weight up to 
      , which is followed by an increasing trend for 

larger values of  , constituting only    of the total 
links. This means that the ties within communities 
(with high overlap) are mainly weak, corroborating 
with the observations on the clique intensities. The 
intercommunity ties, which have a high flow control, 
are stronger, suggesting that the tie strength in the 
collaboration network is driven by the global efficiency 
principle. In contrast to the collaboration network, 
〈   〉  increases with the increase of link weight for 
most links. The links with weight in the decreasing 
region of 〈   〉  constitute only      of the total 
number of links. In line with the weak tie hypothesis, 
the tie strength in our communication network is 
depended on the immediate neighborhood of the 
individuals involved, meaning that the more friends in 
common they have, the stronger becomes their tie. 

C. Link percolation properties  

The observed differences in the weight-topology 
correlations between the networks in consideration 
may have important implications on the roles that the 
weak and strong ties play in the connectivity of the 
networks in both local and global level. To understand 
this role we examine the link percolation properties in 
both the LCC of empirical networks. As in [9 ], in each 
network, we remove the links in decreasing and 
increasing order of weight (overlap), and calculate the 
fraction of nodes in the LCC of the remaining network 
    , as a function of the control parameter  , the ratio 
of removed links. The results are displayed in Fig. 5. 
The responses of the networks to the removal of links 
according to their overlap are similar, presenting a 
further evidence of their similar topological properties. 
Both networks shrink faster when the links are 
removed in increasing order of the overlap than by 
removing first the high overlap link s. This means that 
the low overlap links positioned between the 
communities are more important for the global 
connectivity of both networks. On the other hand, the 
networks display different behaviors to the removal of 
the links by their weights. The collaboration network 
disintegrates faster by removing the links in 
decreasing order of the weights, indicating that the 
strong ties are the most important links for the global 
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Fig. 6. Link percolation in the LCC of the ACN (first row) 
and MCN (second row). 

connectivity, while the weak ties residing within 
communities are important for maintaining connected 
the community. In the communication network we 
observe that the removal of the weak ties first shrinks 
the network faster, indicating that the communities are 
linked with weak ties. At the local level, the strong ties 
play the role for the integrity of the communities. 

D. Conclusions 

Beside the topological characteristics of social 
networks, the tie strengths between individuals provide 
an additional source to a better understanding of their 
organizational principles and the driving mechanisms 
of tie formation and reinforcement. From this point of 
view, we analyzed two weighted social networks with 
data collected from the collaborations of Albanian 
scientists and mobile phone communications between 
the users of an Albanian operator. Both networks 
share many topological features observed in other 
social networks. They are characterized from the 
heterogeneity of both the degrees and tie strengths, 
high clustering coefficient and a community structure. 
Exploring the weight-topology correlations and the link 
percolation properties, we found that the networks 
have stark differences. In the collaboration network, 
we found that the tie strength depends on the global 
topology of the network, implying that the global 
efficiency principle is suited for this network. The ties 
between the scientists of different groups tend to be 
stronger and play important role for the overall 
connectivity of the network. This reflects the need of 
the scientists for avoiding the scientific isolation 
through interdisciplinary collaborations and the 
transmission of information in the network. On the 
contrary, in the communication network, the tie 
strength depends on the local structure around it in line 
with the weak tie hypothesis. The intercommunity ties 
are weak and act as bridges between communities 

and have the strength of keeping the network 
connected. 
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