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Abstract—ARM is one of the most widely used 
32-bit processors, which is embedded in 
smartphones, tablets, and various electronic 
devices. The ARM NEON is the SIMD engine inside 
ARM core which accelerates multimedia and 
signal processing algorithms. NEON is widely 
incorporated in the recent ARM processors for 
smartphones and tablets. In this paper, various 
assembly level software optimizations are 
provided such as instruction scheduling, 
instruction selection, and loop unrolling for the 
NEON architecture. The proposed techniques are 
expected to be applied directly in the software 
development for the ARM NEON processors.  
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I.  INTRODUCTION 

ARM is one of the most widely used 32-bit 
processors, which is embedded in smartphones, 
tablets, automobiles, and various electronic devices. In 
2015, about 15 billion ARM-based chips were shipped, 
and ARM maintains a more than 95% market share of 
mobile phones and tablets [2]. 

The first successful commercial version is ARMv4 
[13], and numerous approaches have been proposed 
to enhance the ARM architecture to meet the market 
demands. In 2000, ARMv5EJ is introduced where the 
ARM DSP instruction set extension [10] and Jazelle 
java execution accelerator [6], which enables the 
architecture to execute java bytecode by hardware. It 
improves performance by eight times compared to the 
software implemented java virtual machine, and 
reduces power consumption by 80%. It also adds new 
DSP instructions to speed up signal processing 
applications. This extension is incorporated in various 
processors such as ARM926EJ-S and ARM1026EJ-S. 

In 2002, ARMv6 is introduced which adopts the 
SIMD (Single Instruction Multiple Data) instructions 
which can operate simultaneously on two 16-bit or four 
8-bit data packed in a 32-bit register. This extension 
achieves 75% performance improvement for 
multimedia applications, and is implemented in the 
ARM11 processors. 

The ARMv7 architecture supports the advanced 
SIMD extension called NEON [5, 7, 8]. The new 
instructions can handle data stored in the 64-bit 
doubleword and 128-bit quadword registers. It 
accelerates multimedia, signal processing applications, 
graphics, and image processing algorithms. The 
architecture is implemented in the recent ARM Cortex-
A processors such as Cortex-A7, Cortex-A8, Cortex-
A9, Cortex-A15, and Cortex-A53. 

The ARMv8 architecture [3, 4] introduces a 64-bit 
architecture, named AArch64, and a new A64 
instruction set to the existing instruction set to support 
the 64-bit operation and the virtual addressing. 

In this paper, various assembly software 
optimization techniques are proposed for the ARM 
NEON architecture. Practical example code is given to 
the optimization technique, whose performance is 
analyzed, compared to the original code. 

The rest of this paper is organized as follows. 
Section II shows the overview of the assembly 
optimizations, and Section III presents each technique 
in detail with an example. Conclusions are presented 
in Section IV. 

II. ASSEMBLY OPTIMIZATION OVERVIEW 

NEON is the SIMD (Single Instruction Multiple Data) 
accelerator in the ARM core, which can handle 16 data 
simultaneously in a single instruction. NEON has 
separate register set, which can be used various 
configurations such as 32 64-bit (Dx register) or 16 
128-bit register (Qx register). For example, instruction 
„VADD.I16 D2, D1, D0‟ performs four 16-bit additions 
in parallel and stores the result into D2 where D0, D1, 
and D2 are 64-bit registers, respectively. 

The AP (Application processor) main vendors such 
as Qualcomm, Samsung Electronics, Apple and 
NVidia have licensed ARM core from the ARM Limited. 
Table I shows the recent smartphone processors and 
their ARM cores. Cortex-A9 is used in NVidia‟s Tegra3. 
Cortex-A15 and Cortex-A7 are adopted in Samsung‟s 
Exynos 5. Qualcomm‟s Krait is replacing Qualcomm‟s 
Scorpion, which is based on the ARMv7 architecture. 
Apple‟s Swift adopts the ARMv7s architecture, which is 
the enhanced version of ARMv7 by Apple. Most recent 
smartphones have ARM SIMD (Single Instruction 
Multiple Data) accelerators named NEON, and thus, it 
is necessary to optimize the NEON code which is 
widely used in the multimedia software. 

To improve the performance of program code, 
optimizations are performed for the compiler generated 
assembly code. The proposed technique reduces 
pipeline stalls by performing instruction scheduling, 
increases the number of instructions in the basic block, 
and selects the optimized instructions.  
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TABLE I.  ARM CORE IN RECENT SMARTPHONES 

Mobile CPU 
Samsung 

Exynos 5 Dual 

Samsung 

Exynos 5 Octa 
Apple A6, A6X Nvidia Tegra 3 

Qualcomm 

APQ8064T 

Phone 

Model 

Samsung 
Chromebook, 
Google Nexus 10 

Samsung Galaxy 5 
Apple iPhone 5, 

4G iPad 
Google Nexus 7 

LG Optimus G 
Pro, Samsung 
Galaxy S4 (GT-
I9505) 

ARM Core 

ARM 

Cortex-A15 

(ARMv7) 

ARM 

Cortex-A15, 

Cortex-A7 

(ARMv7) 

Swift 

(ARMv7s) 

ARM 

Cortex-A9 

(ARMv7) 

Krait 

(ARMv7) 

NEON 

inside 
O O O O O 

 

Table II shows the overview of the proposed 
assembly optimizations. Instruction scheduling 
reorders the instructions to reduce pipeline stalls and 
increase instruction-level parallelism [1, 12]. Take the 
dual-issue Cortex-A8 processor for the target 
processor. Before instruction scheduling, the code 
takes 4 cycles. In the code, „ADD R10, R9, R5‟ and 
„ADD R2, R1, #2‟ instructions have no dependence 
each other, and thus, they can be reordered. This 
reordering can reduce execution cycles from 4 to 3 as 
shown in the Table. 

Instruction selection improves the compiler 
generated code. It replaces the compiler selected 

instruction with the optimized one. The details will be 
discussed in Table III. 

Loop unrolling [1, 12] replaces the body of a loop 
by multiple copies. This reduces the control hazard 
from the branch instruction because the number of 
loop iteration is decreased by the unrolling. On the 
other hand, it increases the number of instructions in a 
loop, which accordingly, increases instruction level 
parallelism and provides the opportunities for other 
optimizations such as CSE (Common Subexpression 
Elimination) [1, 12]. The details will be discussed in 
Table IV. 

 

TABLE II.  ASSEMBLY OPTIMIZATION OVERVIEW 

Type Description Example 

Instruction 

scheduling 
Reorder instructions to reduce pipeline stalls 

- Before scheduling (Cortex-A8, dual-issue) 

LDR R5,[R4]          ; cycle 1 

ADD R10,R9,R5        ; cycle 3 

MOV R1,#1            ; cycle 3 

ADD R2,R1,#2         ; cycle 4 

 

- After scheduling  

LDR R5,[R4]        ; cycle 1 

MOV R1,#1          ; cycle 1 

ADD R2,R1,#2       ; cycle 2 

ADD R10,R9,R5      ; cycle 3 

Instruction 

selection 

Improve code quality by replacing the 
existing instructions with the optimized 
instructions 

Refer to Table III 

Loop 

unrolling 

Unroll loop to reduce branch hazard and 
increase instruction level parallelism 

Refer to Table IV 
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III. ASSEMBLY OPTIMIZATION EXAMPLE 

This chapter discusses the various assembly 
optimizations by examples, and analyzes the 
performance of the optimized code.  

Table III shows the instruction selection for the 
compiler generated code. The C program finds and 
stores max value element from two matrices. To 
improve the performance, the compiler unrolls the loop 
8 times, resulting in the 32 loop iterations from the 
original 256 iterations where eight max values are 
handled in each iteration. Consider the compiler 
generated assembly code. One vector containing eight 
16-bit data is stored in d0 and d1. The other vector is 
stored in d2 and d3. Now, vector compare operation is 
performed by „VCGT.S16 q2, q0, q1‟, which compares 

two 16-bit data from q0 and q1, and If the first data is 
greater than the second data, the corresponding 
element in the destination register is set to all ones, 
and zeros otherwise. Then, VBIT (Vector Bitwise Insert 
if True) instruction inserts each bit from the first 
operand register into the destination register if the 
corresponding bit of the second operand register is 
one, and leaves the destination register unchanged 
otherwise. These two instructions can extract and save 
the max value from two array elements, but it is more 
desirable to use „VMAX‟ instruction directly, which get 
the maximum value between two values. The use of 
this instruction reduces the number of instructions in 
each loop from eight to seven. 

 

 

TABLE III.  NEON INSTURCIONT SELECTION OPTIMIZATION 

C Code 

__inline max(int a, int b) 

{ 

 if (a > b) return a; 

 return b; 

} 

 

void setMax (unsigned short * __restrict pDst, short * __restrict pSrc1, 

short * __restrict pSrc2) 

{ 

  int i; 

 for (i = 0; i < 256; i++) { 

  pDst[i] = max(pSrc1[i], pSrc2[i]); 

        } 

} 

Compiler 

generate 

code 

setMax PROC 

MOV      r3,#0x20 

|L1.4| 

VLD1.16  {d2,d3},[r2]! 

SUBS     r3,r3,#1 

VLD1.16  {d0,d1},[r1]! 

VCGT.S16 q2,q0,q1 

VBIT     q1,q0,q2 

VST1.16  {d2,d3},[r0]! 

BNE      |L1.4| 

BX       lr 

ENDP 

Instruction 

selection 

setMax PROC 

MOV      r3,#0x20 
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|L1.4| 

VLD1.16  {d2,d3},[r2]! 

SUBS     r3,r3,#1 

VLD1.16  {d0,d1},[r1]! 

VMAX.S16 q1,q0,q1 

VST1.16  {d2,d3},[r0]! 

BNE      |L1.4| 

BX       lr 

ENDP 

 

 

Table IV shows the loop unrolling optimization. For 
the C code, the compiler generates the loop which 
consists of three instructions, which are „VLD1.16 {d0, 
d1}, [r1]!‟, „VMUL.I16 q0, q0, q1‟, and „VST1.16 {d0, 
d1}, [r0]!‟. Because these instructions handle 8 data in 
parallel, the loop iterates 32 times. One loop iteration 
takes 9 cycles including 6 cycles for „VMUL.I16 q0, q0, 
q1‟. For the next iteration, it requires additional 2 stalls 
from the last instruction of the loop „VST1.16 {d0, d1}, 
[r0]!‟ to the first instruction „VLD1.16 {d0, d1}, [r1]!‟. 
Therefore, it requires (9+2) x (32-1) cycles for the 31 

loop iterations, and 9 cycles for the last loop iteration, 
which is 351 cycles in total.  

In the assembly optimized code, the loop is 
additionally unrolled 4 times such that the number of 
loop iteration is reduced from 32 to 8. Now, one 
iteration requires 39 cycles, and the required total 
cycles become 327. Thus, it can improve the compiler 
generated code by 6.8%. 

 

 

TABLE IV.  LOOP UNROLLING OPTIMIZATION 

C Compiler generated code loop unrolling optimized code by hand 

Execution time: 351 cycles Execution time: 327 cycles (6.8% improvement) 

NEON instruction total cycles (Cortex-A8) 

(Loop iteration: 32) 

1 + (9+2) x (32-1) + 9 = 351 

NEON instruction total cycles (Cortex-A8) 

(Loop iteration: 8) 

1+ (39 +2) x (8-1) + 39 = 327 

Instruction Loop cycle Instruction Loop cycle 
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||sfC|| PROC  

VDUP.16 q1,r2 

MOV r2,#0x20 

|L1.16| 

VLD1.16 {d0,d1},[r1]! 

VMUL.I16 q0,q0,q1  

VST1.16 {d0,d1},[r0]! 

SUBS r2,r2,#1  

BNE |L1.16|  

BX lr 

ENDP 

 

 

 

1 

2 

9 

 

||sfC|| PROC  

VDUP.16 q4,r2 

MOV r2,#0x8 

|L1.16| 

VLD1.16 {d0,d1},[r1]! 

VMUL.I16 q0,q0,q4  

VST1.16 {d0,d1},[r0]! 

 

VLD1.16 {d2,d3},[r1]!  

VMUL.I16 q1,q1,q4  

VST1.16 {d2,d3},[r0]! 

 

VLD1.16 {d4,d5},[r1]! 

VMUL.I16 q2,q2,q4  

VST1.16 {d4,d5},[r0]!  

 

VLD1.16 {d6,d7},[r1]!  

VMUL.I16 q3,q3,q4  

VST1.16 {d6,d7},[r0]! 

SUBS r2,r2,#1  

BNE |L1.16| 

BX lr 

ENDP 
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IV. CONCLUSIONS 

In this paper, various assembly level software 
optimization techniques are presented for the ARM 
NEON accelerator which is widely used in recent 
smartphones. The proposed techniques are expected 
to be directly applied in the software development for 
ARM NEON processors.  
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