
Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 3 Issue 4, April - 2016

www.jmest.org

JMESTN42351494 4461

ARM NEON Assembly Optimization
Dae-Hwan Kim

Department of Computer and Information,
Suwon Science College, 288 Seja-ro, Jeongnam-myun,

Hwaseong-si, Gyeonggi-do, Rep. of Korea
kimdh@ssc.ac.kr

Abstract—ARM is one of the most widely used
32-bit processors, which is embedded in
smartphones, tablets, and various electronic
devices. The ARM NEON is the SIMD engine inside
ARM core which accelerates multimedia and
signal processing algorithms. NEON is widely
incorporated in the recent ARM processors for
smartphones and tablets. In this paper, various
assembly level software optimizations are
provided such as instruction scheduling,
instruction selection, and loop unrolling for the
NEON architecture. The proposed techniques are
expected to be applied directly in the software
development for the ARM NEON processors.

Keywords—ARM; NEON; embedded processor;
software optimization; assembly

I. INTRODUCTION

ARM is one of the most widely used 32-bit
processors, which is embedded in smartphones,
tablets, automobiles, and various electronic devices. In
2015, about 15 billion ARM-based chips were shipped,
and ARM maintains a more than 95% market share of
mobile phones and tablets [2].

The first successful commercial version is ARMv4
[13], and numerous approaches have been proposed
to enhance the ARM architecture to meet the market
demands. In 2000, ARMv5EJ is introduced where the
ARM DSP instruction set extension [10] and Jazelle
java execution accelerator [6], which enables the
architecture to execute java bytecode by hardware. It
improves performance by eight times compared to the
software implemented java virtual machine, and
reduces power consumption by 80%. It also adds new
DSP instructions to speed up signal processing
applications. This extension is incorporated in various
processors such as ARM926EJ-S and ARM1026EJ-S.

In 2002, ARMv6 is introduced which adopts the
SIMD (Single Instruction Multiple Data) instructions
which can operate simultaneously on two 16-bit or four
8-bit data packed in a 32-bit register. This extension
achieves 75% performance improvement for
multimedia applications, and is implemented in the
ARM11 processors.

The ARMv7 architecture supports the advanced
SIMD extension called NEON [5, 7, 8]. The new
instructions can handle data stored in the 64-bit
doubleword and 128-bit quadword registers. It
accelerates multimedia, signal processing applications,
graphics, and image processing algorithms. The
architecture is implemented in the recent ARM Cortex-
A processors such as Cortex-A7, Cortex-A8, Cortex-
A9, Cortex-A15, and Cortex-A53.

The ARMv8 architecture [3, 4] introduces a 64-bit
architecture, named AArch64, and a new A64
instruction set to the existing instruction set to support
the 64-bit operation and the virtual addressing.

In this paper, various assembly software
optimization techniques are proposed for the ARM
NEON architecture. Practical example code is given to
the optimization technique, whose performance is
analyzed, compared to the original code.

The rest of this paper is organized as follows.
Section II shows the overview of the assembly
optimizations, and Section III presents each technique
in detail with an example. Conclusions are presented
in Section IV.

II. ASSEMBLY OPTIMIZATION OVERVIEW

NEON is the SIMD (Single Instruction Multiple Data)
accelerator in the ARM core, which can handle 16 data
simultaneously in a single instruction. NEON has
separate register set, which can be used various
configurations such as 32 64-bit (Dx register) or 16
128-bit register (Qx register). For example, instruction
„VADD.I16 D2, D1, D0‟ performs four 16-bit additions
in parallel and stores the result into D2 where D0, D1,
and D2 are 64-bit registers, respectively.

The AP (Application processor) main vendors such
as Qualcomm, Samsung Electronics, Apple and
NVidia have licensed ARM core from the ARM Limited.
Table I shows the recent smartphone processors and
their ARM cores. Cortex-A9 is used in NVidia‟s Tegra3.
Cortex-A15 and Cortex-A7 are adopted in Samsung‟s
Exynos 5. Qualcomm‟s Krait is replacing Qualcomm‟s
Scorpion, which is based on the ARMv7 architecture.
Apple‟s Swift adopts the ARMv7s architecture, which is
the enhanced version of ARMv7 by Apple. Most recent
smartphones have ARM SIMD (Single Instruction
Multiple Data) accelerators named NEON, and thus, it
is necessary to optimize the NEON code which is
widely used in the multimedia software.

To improve the performance of program code,
optimizations are performed for the compiler generated
assembly code. The proposed technique reduces
pipeline stalls by performing instruction scheduling,
increases the number of instructions in the basic block,
and selects the optimized instructions.

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 3 Issue 4, April - 2016

www.jmest.org

JMESTN42351494 4462

TABLE I. ARM CORE IN RECENT SMARTPHONES

Mobile CPU
Samsung

Exynos 5 Dual

Samsung

Exynos 5 Octa
Apple A6, A6X Nvidia Tegra 3

Qualcomm

APQ8064T

Phone

Model

Samsung
Chromebook,
Google Nexus 10

Samsung Galaxy 5
Apple iPhone 5,

4G iPad
Google Nexus 7

LG Optimus G
Pro, Samsung
Galaxy S4 (GT-
I9505)

ARM Core

ARM

Cortex-A15

(ARMv7)

ARM

Cortex-A15,

Cortex-A7

(ARMv7)

Swift

(ARMv7s)

ARM

Cortex-A9

(ARMv7)

Krait

(ARMv7)

NEON

inside
O O O O O

Table II shows the overview of the proposed
assembly optimizations. Instruction scheduling
reorders the instructions to reduce pipeline stalls and
increase instruction-level parallelism [1, 12]. Take the
dual-issue Cortex-A8 processor for the target
processor. Before instruction scheduling, the code
takes 4 cycles. In the code, „ADD R10, R9, R5‟ and
„ADD R2, R1, #2‟ instructions have no dependence
each other, and thus, they can be reordered. This
reordering can reduce execution cycles from 4 to 3 as
shown in the Table.

Instruction selection improves the compiler
generated code. It replaces the compiler selected

instruction with the optimized one. The details will be
discussed in Table III.

Loop unrolling [1, 12] replaces the body of a loop
by multiple copies. This reduces the control hazard
from the branch instruction because the number of
loop iteration is decreased by the unrolling. On the
other hand, it increases the number of instructions in a
loop, which accordingly, increases instruction level
parallelism and provides the opportunities for other
optimizations such as CSE (Common Subexpression
Elimination) [1, 12]. The details will be discussed in
Table IV.

TABLE II. ASSEMBLY OPTIMIZATION OVERVIEW

Type Description Example

Instruction

scheduling
Reorder instructions to reduce pipeline stalls

- Before scheduling (Cortex-A8, dual-issue)

LDR R5,[R4] ; cycle 1

ADD R10,R9,R5 ; cycle 3

MOV R1,#1 ; cycle 3

ADD R2,R1,#2 ; cycle 4

- After scheduling

LDR R5,[R4] ; cycle 1

MOV R1,#1 ; cycle 1

ADD R2,R1,#2 ; cycle 2

ADD R10,R9,R5 ; cycle 3

Instruction

selection

Improve code quality by replacing the
existing instructions with the optimized
instructions

Refer to Table III

Loop

unrolling

Unroll loop to reduce branch hazard and
increase instruction level parallelism

Refer to Table IV

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 3 Issue 4, April - 2016

www.jmest.org

JMESTN42351494 4463

III. ASSEMBLY OPTIMIZATION EXAMPLE

This chapter discusses the various assembly
optimizations by examples, and analyzes the
performance of the optimized code.

Table III shows the instruction selection for the
compiler generated code. The C program finds and
stores max value element from two matrices. To
improve the performance, the compiler unrolls the loop
8 times, resulting in the 32 loop iterations from the
original 256 iterations where eight max values are
handled in each iteration. Consider the compiler
generated assembly code. One vector containing eight
16-bit data is stored in d0 and d1. The other vector is
stored in d2 and d3. Now, vector compare operation is
performed by „VCGT.S16 q2, q0, q1‟, which compares

two 16-bit data from q0 and q1, and If the first data is
greater than the second data, the corresponding
element in the destination register is set to all ones,
and zeros otherwise. Then, VBIT (Vector Bitwise Insert
if True) instruction inserts each bit from the first
operand register into the destination register if the
corresponding bit of the second operand register is
one, and leaves the destination register unchanged
otherwise. These two instructions can extract and save
the max value from two array elements, but it is more
desirable to use „VMAX‟ instruction directly, which get
the maximum value between two values. The use of
this instruction reduces the number of instructions in
each loop from eight to seven.

TABLE III. NEON INSTURCIONT SELECTION OPTIMIZATION

C Code

__inline max(int a, int b)

{

 if (a > b) return a;

 return b;

}

void setMax (unsigned short * __restrict pDst, short * __restrict pSrc1,

short * __restrict pSrc2)

{

 int i;

 for (i = 0; i < 256; i++) {

 pDst[i] = max(pSrc1[i], pSrc2[i]);

 }

}

Compiler

generate

code

setMax PROC

MOV r3,#0x20

|L1.4|

VLD1.16 {d2,d3},[r2]!

SUBS r3,r3,#1

VLD1.16 {d0,d1},[r1]!

VCGT.S16 q2,q0,q1

VBIT q1,q0,q2

VST1.16 {d2,d3},[r0]!

BNE |L1.4|

BX lr

ENDP

Instruction

selection

setMax PROC

MOV r3,#0x20

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 3 Issue 4, April - 2016

www.jmest.org

JMESTN42351494 4464

|L1.4|

VLD1.16 {d2,d3},[r2]!

SUBS r3,r3,#1

VLD1.16 {d0,d1},[r1]!

VMAX.S16 q1,q0,q1

VST1.16 {d2,d3},[r0]!

BNE |L1.4|

BX lr

ENDP

Table IV shows the loop unrolling optimization. For
the C code, the compiler generates the loop which
consists of three instructions, which are „VLD1.16 {d0,
d1}, [r1]!‟, „VMUL.I16 q0, q0, q1‟, and „VST1.16 {d0,
d1}, [r0]!‟. Because these instructions handle 8 data in
parallel, the loop iterates 32 times. One loop iteration
takes 9 cycles including 6 cycles for „VMUL.I16 q0, q0,
q1‟. For the next iteration, it requires additional 2 stalls
from the last instruction of the loop „VST1.16 {d0, d1},
[r0]!‟ to the first instruction „VLD1.16 {d0, d1}, [r1]!‟.
Therefore, it requires (9+2) x (32-1) cycles for the 31

loop iterations, and 9 cycles for the last loop iteration,
which is 351 cycles in total.

In the assembly optimized code, the loop is
additionally unrolled 4 times such that the number of
loop iteration is reduced from 32 to 8. Now, one
iteration requires 39 cycles, and the required total
cycles become 327. Thus, it can improve the compiler
generated code by 6.8%.

TABLE IV. LOOP UNROLLING OPTIMIZATION

C Compiler generated code loop unrolling optimized code by hand

Execution time: 351 cycles Execution time: 327 cycles (6.8% improvement)

NEON instruction total cycles (Cortex-A8)

(Loop iteration: 32)

1 + (9+2) x (32-1) + 9 = 351

NEON instruction total cycles (Cortex-A8)

(Loop iteration: 8)

1+ (39 +2) x (8-1) + 39 = 327

Instruction Loop cycle Instruction Loop cycle

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 3 Issue 4, April - 2016

www.jmest.org

JMESTN42351494 4465

||sfC|| PROC

VDUP.16 q1,r2

MOV r2,#0x20

|L1.16|

VLD1.16 {d0,d1},[r1]!

VMUL.I16 q0,q0,q1

VST1.16 {d0,d1},[r0]!

SUBS r2,r2,#1

BNE |L1.16|

BX lr

ENDP

1

2

9

||sfC|| PROC

VDUP.16 q4,r2

MOV r2,#0x8

|L1.16|

VLD1.16 {d0,d1},[r1]!

VMUL.I16 q0,q0,q4

VST1.16 {d0,d1},[r0]!

VLD1.16 {d2,d3},[r1]!

VMUL.I16 q1,q1,q4

VST1.16 {d2,d3},[r0]!

VLD1.16 {d4,d5},[r1]!

VMUL.I16 q2,q2,q4

VST1.16 {d4,d5},[r0]!

VLD1.16 {d6,d7},[r1]!

VMUL.I16 q3,q3,q4

VST1.16 {d6,d7},[r0]!

SUBS r2,r2,#1

BNE |L1.16|

BX lr

ENDP

1

2

9

11

12

19

21

22

29

31

32

39

IV. CONCLUSIONS

In this paper, various assembly level software
optimization techniques are presented for the ARM
NEON accelerator which is widely used in recent
smartphones. The proposed techniques are expected
to be directly applied in the software development for
ARM NEON processors.

REFERENCES

[1] A. V. Aho, R. Sethi, and J.D. Ullman, Compilers:
Principles, Techniques, and Tools. Addison-
Wesley, Reading, MA, USA, 1986.

[2] ARM Ltd., ARM Annual Report & Accounts 2015,
ARM Ltd., 2016.

[3] ARM Ltd., ARM Architecture Reference Manual
ARMv8, for ARMv8-A architecture profile, ARM
Ltd., 2013.

[4] ARM Ltd., ARMv8 Instruction Set Overview, ARM
Ltd., 2012.

[5] ARM Ltd., Introducing NEON™ Development
Article, ARM Ltd., 2009.

[6] ARM Ltd., Steele S., Java Program Manager.
White paper: Accelerating to meet the challenge
of embedded java, 2001.

[7] ARM Ltd., NEON support in the ARM Compiler,
2008.

[8] ARM Ltd., Overview of NEON Technology, 2012.

[9] D. Brash., The ARM Architecture Version 6, ARM
White Paper, 2002.

[10] F. Hedley, ARM DSP-Enhanced Extensions,
ARM Ltd., 2001.

[11] J. L. Hennessy, and D. A. Patterson, David,
Computer Architecture, Fifth Edition: A
Quantitative Approach, Morgan Kaufmann
Publishers Inc., CA, USA, 2011.

[12] S.S. Muchnick, Advanced Compiler Design and
Implementation. Morgan Kaufmann, San
Francisco, CA, USA, 1997.

[13] S. Segars, K. Clarke, L. Goudge, “Embedded
control problems, Thumb, and the ARM7TDMI”.
IEEE Micro, Vol. 15, No. 5, 1995, pp.22-30.

