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Abstract—Software reliability models are very 
important for prediction and estimation of 
software reliability. In this paper the application of 
Gompertz Software Reliability Model with 
Statistical Process Control for software reliability 
is presented. Maximum Likelihood Estimation is 
used to estimate the parameters of the model. The 
model is applied on the cumulative quantities of 
Time domain software failure data collected from 
different sources. 
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I. INTRODUCTION 

Over the past four decades, the deployment of 
computer system has grown more intensely. Software 
is everywhere, but we need reliable software. Software 
Reliability is defined as the probability of failure-free 
operation of a computer program in a specified 
environment for a specified time. 

In general SRGMs are applicable to the late stages 
of testing in software development. They can provide 
very useful information about how to improve the 
reliability of software products. The problem with using 
SRGM to estimate failure content is that they have 
underlying assumptions that are often violated in 
practice, but empirical evidence has shown that many 
are quite robust despite these assumption violations. 
The problem is that, because of assumption violations, 
it is often difficult to know which models to apply in 
practice. Reliability quantities have usually been 
defined with respect to time, although it is possible to 
define them with respect to other variables. Most 
software reliability models are formulated in terms of 
random processes. It is traditional and important to use 
Non Homogenous Poisson Process (NHPP) to model 
the failure process. Models considered the probability 
of failure times or failures experienced and the nature 
of the variation of the random process with time. So, 
most models are time-based. Specification of a model 
generally includes specification of a function of time 
such as the mean value or failure intensity function. 

Both static and dynamic software reliability models 
exist to assess the quality aspect of software. A static 
model uses software metrics, like complexity metrics, 
results of inspections, etc. to estimate the number of 
defects (or faults) in the software. A dynamic model 

uses the past failure discovery rate during software 
execution or cumulative failure profile over time to 
estimate the number of failures. It includes a time 
component, typically time between failures. 

A failure is a departure from how software should 
behave during operation according to the 
requirements. Failures are dynamic: The software 
must be executing for a failure to occur. A fault is a 
defect in a program, that when executed causes 
failure(s). While a fault is a property of the program, a 
failure is a property of the program's execution. 

Dynamic models measure and model the failure 
process itself. Because of this, they include a time 
component, which is typically based on recording 
times ti of successive failure i  and i-1. Time may be 
recorded as execution time or calendar time. These 
models focus on the failure history of software. Failure 
history is influenced by a number of factors, including 
the environment within which the software is executed 
and how it is executed. A general assumption of these 
models is that software must be executed according to 
its operational profile; that is, test inputs are selected 
according to their probabilities of occurring during 
actual operation of the software in a given 
environment.  

The expected value function for cumulative failures 
can be put into two shape classes: concave and S-
shaped. S-shaped models are first convex, then 
concave. The S-shaped growth curves start at some 
fixed point and increase their growth rate 
monotonically to reach an inflection point. After this 
point, the growth rate approaches a final value 
asymptotically. The S-shaped models reflect an 
assumption that early testing is not as efficient as later 
testing, so there is a period during which the failure-
detection rate increases. This period terminates, 
resulting in an inflection point in the S-shaped curve, 
when the failure-detection rate starts to decrease. 

SPC concepts and methods are used to monitor 
the performance of a software process over time in 
order to verify that the process remains in the state of 
statistical control. The control chart is one of the seven 
tools for quality control. Software process control is 
used to secure the quality of the final product which 
will conform to predefined standards. In any process, 
regardless of how carefully it is maintained, a certain 
amount of natural variability will always exist. A 
process is said to be statistically “in-control” when it 
operates with only chance causes of variation. On the 
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other hand, when assignable causes are present, then 
we say that the process is statistically “out-of-control.” 

Control charts should be capable to create an 
alarm when a shift in the level of one or more 
parameters of the underlying distribution or a non-
random behavior occurs. Normally, such a situation 
will be reflected in the control chart by points plotted 
outside the control limits or by the presence of specific 
patterns. The most common non-random patterns are 
cycles, trends, mixtures and stratification (Koutras, 
2007). For a process to be in control the control chart 
should not have any trend or nonrandom pattern. 

 

II. NHPP MODELS 

The NHPP group of models provides an analytical 
framework for describing the software failure 
phenomenon during testing. They are proved to be 
quite successful in practical software reliability 
engineering. They have been built upon various 
assumptions. If ‘t’ is a continuous random variable with 

probability density function: 1 2( , , , , )kf t    , and 

cumulative distribution function:  F t .where 

1 2, , , k   are k unknown constant parameters. The 

mathematical relationship between the pdf and cdf is 

given as:  ( ) 'f t F t . 

Let  N t  be the cumulative number of software 

failures by time ‘t’. A non-negative integer-valued 

stochastic process  N t  is called a counting process, 

if  N t represents the total number of occurrences of 

an event in the time interval [0, t] and satisfies these 
two properties: 

If 1 2t t , then    1 2N t N t  

If 1 2t t , then    2 1N t N t is the number of 

occurrences of the event in the interval  1 2,t t . 

One of the most important counting processes is 

the Poisson process. A counting process,  N t , is 

said to be a Poisson process with intensity  if 

The initial condition is N(0) = 0. 

The failure process, N(t), has independent 
increments. 

The number of failures in any time interval of length 

s has a Poisson distribution with mean s , that is, 

    
 
!

nse s
P N t s N t n

n

 

   
 

Describing uncertainty about an infinite collection of 
random variables one for each value of ‘t’ is called a 

stochastic counting process denoted by   , 0N t t    . 

The process   , 0N t t   is assumed to follow a 

Poisson distribution with characteristic Mean Value 

Function  m t , representing the expected number of 

software failures by time ‘t’. Different models can be 

obtained by using different non decreasing  m t . The 

derivative of  m t  is called the failure intensity function

 t . 

A Poisson process model for describing about the 
number of software failures in a given time (0, t) is 
given by the probability equation.  

 
( )[ ( )]

( ) , 0,1,2,...
!

m t ye m t
P N t y y

y



    

Where,  m t  is a finite valued non negative and 

non decreasing function of ' 't  called the mean value 

function. Such a probability model for  N t  is said to 

be an NHPP model. The mean value function  m t  is 

the characteristic of the NHPP model.  

The NHPP models are further classified into Finite 
and Infinite failure models. Let ‘a’ denote the expected 
number of faults that would be detected given infinite 
testing time in case of finite failure NHPP models. 
Then, the mean value function of the finite failure 

NHPP models can be written as: ( ) ( )m t aF t . The 

failure intensity function  t  is given by: 

   't aF t 
.  

III. GOMPERTZ SOFTWARE RELIABILITY 

MODEL 

The simplest form of a software reliability growth 
model is an exponential one. However, S-shaped 
software reliability is more often observed than the 
exponential one. Some models use a non-
homogeneous Poisson process (NHPP) to model the 
failure process. The NHPP is characterized by its 
expected value function, m(t). This is the cumulative 
number of failures expected to occur after the software 
has executed for time t. Gompertz SRGM is based on 
an NHPP. In fact, many Japanese computer 
manufacturers and software houses have applied the 
Gompertz curve model, which is one of the simplest S-
shaped software reliability growth models (Kececioglu, 
1991). The Gompertz curve model gave good 
approximation to cumulative number of software faults 
observed (Satoh, 2000). It takes the number of faults 
per unit of time as independent Poisson random 
variables. The Gompertz model equation for software 
reliability is,  

 
tcm t ab
  

Where, ‘a’ is the upper limit approached the 
reliability, R at time t. 0<b<1, 0<c<1 are parameters to 
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be estimated form any one of the parameter estimation 
methods. 

where 

a is the expected total number of failures that would 
occur if testing was infinite.  

b is the rate at which the failures detection rate 
decreases. 

c models the growth pattern (small values model 
rapid early reliability growth, and large values model 
slow reliability growth). 

The Gompertz distribution plays an important role 
in modeling survival times, human mortality and 
actuarial tables. According to the literature, the 
Gompertz distribution was formulated by Gompertz 
(1825) to fit mortality tables. Recently, many authors 
have contributed to the statistical methodology and 
characterization of this distribution. For example, Read 
(1983), Gordon (1990), Makany (1991), Franses 
(1994) and Wu & Lee (1999). Garg et al. (1970) 
studied the properties of the Gompertz distribution and 
obtained the maximum likelihood estimates for the 
parameters. There are several forms for the Gompertz 
distribution given in the literature. Some of these are 
given in Johnson et al. (1994). Gompertz software 
reliability model is a popular model to estimate 
remaining failures. It has been widely used to estimate 
software error content, it is a modified model of 
Moranda reliability model. 

 

IV. MAXIMUM LIKELIHOOD ESTIMATION OF THE MODEL 

PARAMETERS 

There are two methods of parameter determination. 
Parameter prediction and parameter estimation. 
Parameter prediction tries to establish the parameters 
of a model from the properties of the software product 
and the development process. Parameter estimation is 
used in subsystem or system test or operational phase 
where failure data are available. It is a statistical 
method trying to estimate model parameters based on 
failure times. A number of  procedures can be used to 
estimate the parameters of Gompertz reliability model. 
Among these methods, The maximum likelihood 
estimation has been frequently considered to estimate 
the parameters of the Gompertz model. 

The likelihood function of the sample is given by 

   
1

1

log log

n

tn tc i
i

n
m t

i

i

n
tab c

i

L e t

L e ab c b c












 
 





  

      1 

It is usually easier to maximize the natural logarithm 
of the likelihood function rather than the 

likelihood function itself. So, the natural logarithm of 
the likelihood function can be written as: 

 

       
1

log log log log log log log log
t ti n

i

n
tc c

i

L a b c b c ab


      
 

2 

The first derivatives of the natural logarithm of the 
total likelihood function in (2) with respect to a, b and c 
are given by: 

log tncL n
ab

a a


 

     3 
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By equating equation (3) and (4)  to zero, the 
maximum likelihood estimate of a and b can be given 
by the following estimation equation: 

tnc

n
a

b


      6 

1

n
t tn i

i

n

nc c

b e 


      7 

Substituting ‘b’ in the equation (5), we get 

2
1
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8 

Obviously, it is very difficult to obtain a closed-form 
solution, iterative procedures must be used to solve 
these equations, numerically. The Newton-Raphson 
method is used to obtain the MLE of ‘c’. Therefore, 
take the 2nd derivative with respect to ‘c’ and equating 
it to Zero. 
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Thus, once the value of  cˆ is determined, an 
estimate of bˆ is easily obtained from (7). They are 
then substituted in equation (6) to get an estimate of 
aˆ. 
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V. TIME DOMAIN FAILURE DATA  

The success of applying and using a software 
reliability model depends highly on the quality and 
accuracy of failure data collection which in turn 
depends on careful planning and organization. The 
data which is considered has been transformed so as 
to suit to the model under consideration. 

The following tables shows the number of errors 
and the inter failure time. 

TABLE I.  DATA SET #1: DATA COLLECTED FROM (XIE, 2002). 

Failu
re 

Num
ber 

Cumul
ative 
Time 

Betwee
n 

Failure
(h) 

Failu
re 

Num
ber 

 
Cumul
ative 
Time 

Betwee
n 

Failure
(h) 

Failu
re 

Num
ber 

 
Cumul
ative 
Time 

Betwee
n 

Failure
(h) 

1 0.3002 11 1.1534 21 2.5681 

2 0.3146 12 1.2157 22 2.7388 

3 0.5393 13 1.2496 23 2.7787 

4 0.5529 14 1.3407 24 4.5393 

5 0.5872 15 1.3625 25 5.35 

6 0.7192 16 1.5178 26 5.3727 

7 0.7707 17 1.775 27 5.529 

8 0.809 18 1.8029 28 6.7368 

9 1.019 19 1.8221 29 7.0449 

10 1.1487 20 1.8634 30 7.3868 

TABLE II.  DATA SET #2: ON-LINE DATA ENTRY IBM SOFTWARE 

PACKAGE 

The data reported by Ohba (1984a) are recorded 
from testing an on-line data entry software package 
developed at IBM.  

Failu
re 

Num
ber 

Cumul
ative 
Inter 

Failure 
Time 

Failu
re 

Num
ber 

Cumul
ative 
Inter 

Failure 
Time 

Failu
re 

Num
ber 

 
Cumul
ative 
Inter 

Failure 
Time 

1 0.1 6 0.7 11 1.69 

2 0.19 7 0.88 12 1.99 

3 0.32 8 1.03 13 2.31 

4 0.43 9 1.25 14 2.56 

5 0.58 10 1.5 15 2.96 

VI. RESULTS 

The control limits for the chart are defined in such a 
manner that the process is considered to be out of 
control when the time to observe exactly one failure is 
less than LCL or greater than UCL. Our aim is to 
monitor the failure process and detect any change of 
the intensity parameter. When the process is normal, 
there is a chance for this to happen and it is commonly 
known as false alarm. The traditional false alarm 
probability is to set to be 0.27% although any other 
false alarm probability can be used. Assuming an 
acceptable probability of false alarm, the control limits 
can be obtained as (Xie et al, 2002): 

 
0.99865

tc

UT b 
 

 
0.5

tc

CT b 
 

 
0.00135

tc

LT b 
   

These limits are converted to ( )Um t , ( )Cm t and 

( )Lm t  form respectively. They are used to find whether 

the software process is in control or not by placing the 
points in failure control chart shown in figure 1 & 2. A 

point below the control limit ( )Lm t  indicates an 

alarming signal. A point above the control limit ( )Um t

indicates better quality. If the points are falling within 
the control limits, it indicates the software process is in 
stable condition. The estimated values of ‘a’, ‘b’ and ‘c’ 
and their control limits for the transformed data sets 
are as follows.  

TABLE III.  PARAMETER ESTIMATES OF TIME DOMAIN DATA. 

Data 
Set 

No. of 
samples 

Estimated Parameters 

a B C 

XIE 30 30.526286 0.055202 0.500320 

IBM 15 16.419633 0.045773 0.303497 

TABLE IV.  CONTROL LIMITS OF TIME DOMAIN DATA. 

Data 
Set 

No. of 
samples 

Control Limits 

UCL CL LCL 

XIE 30 30.485076 15.263143 0.041210 

IBM 15 16.397466 8.209817 0.022167 

 

TABLE V.   SUCCESSIVE DIFFERENCES OF MEAN VALUES, XIE. 

Failure 
number 

Cumulative 
Time between 
errors(days) 

m(t) 
successive 
differences 

1 0.3002 19.756979 0.408055 

2 0.3146 19.348924 5.378005 

3 0.5393 13.970919 0.272678 

4 0.5529 13.698241 0.664307 

5 0.5872 13.033934 2.269495 

6 0.7192 10.764439 0.774197 

7 0.7707 9.990242 0.539432 

8 0.809 9.450809 2.479896 

9 1.019 6.970914 1.194567 

10 1.1487 5.776347 0.039213 

11 1.1534 5.737134 0.495318 
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12 1.2157 5.241816 0.251314 

13 1.2496 4.990503 0.617259 

14 1.3407 4.373243 0.136012 

15 1.3625 4.237231 0.853994 

16 1.5178 3.383237 1.052763 

17 1.775 2.330474 0.092354 

18 1.8029 2.238120 0.061421 

19 1.8221 2.176699 0.126466 

20 1.8634 2.050232 1.311908 

21 2.5681 0.738324 0.161818 

22 2.7388 0.576507 0.032392 

23 2.7787 0.544114 0.501699 

24 4.5393 0.042415 0.029316 

25 5.35 0.013099 0.000424 

26 5.3727 0.012675 0.002569 

27 5.529 0.010106 0.008351 

28 6.7368 0.001755 0.000632 

29 7.0449 0.001123 0.000439 

30 7.3868 0.000684   

 

 

Fig. 1. Failure control chart for Xie data 

TABLE VI.   SUCCESSIVE DIFFERENCES OF MEAN VALUES, IBM. 

Failure 
number 

cumulative 
failure time  

m(t) 
successive 
differences 

1 0.1 14.952484 1.208006 

2 0.19 13.744478 1.574687 

3 0.32 12.169791 1.190659 

4 0.43 10.979132 1.438155 

5 0.58 9.540977 1.013654 

6 0.7 8.527323 1.322181 

7 0.88 7.205142 0.943801 

8 1.03 6.261341 1.165251 

9 1.25 5.096091 1.063242 

10 1.5 4.032848 0.657048 

11 1.69 3.375800 0.826468 

12 1.99 2.549332 0.659836 

13 2.31 1.889496 0.394222 

14 2.56 1.495274 0.466973 

15 2.96 1.028301   

 

 

Fig. 2. Failure control chart for IBM data 

VII. CONCLUSION 

In this paper, a theoretical review of the Gompertz 
SRM is provided; several mathematical formulas of the 
model’s characteristics are obtained. The MLE method 
is used to estimate the parameters of SRM. This 
procedure is applied on different sets of failure data 
collected from literature. For the Xie software failure 
data the first failure is observed at the 10th instance of 
time and for the IBM data the successive differences of 
mean values are within the control limits. Having the 
successive differences within the limits indicate the 
failure free operation of the software under 
consideration. From the obtained results, we can 
conclude that the proposed method of using SPC 
techniques for assessing the quality of the software is 
applicable in several instances.  
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