
Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 3 Issue 3, March - 2016

www.jmest.org

JMESTN42351465 4314

Software reliability using SPC: Gompertz

Dr. R.Satya Prasad
Associate Professor

Dept. of CS&E.
Nagarjuna Nagar.

ANU

V.Surya Narayana
Associate Professor

Dept. of CS&E.
Ramachandra College of Engg.

Eluru.

Dr. G.Krishna Mohan
Associate Professor

Dept. of CS&E.
KL University.
Vaddeswaram

Abstract—Software reliability models are very
important for prediction and estimation of
software reliability. In this paper the application of
Gompertz Software Reliability Model with
Statistical Process Control for software reliability
is presented. Maximum Likelihood Estimation is
used to estimate the parameters of the model. The
model is applied on the cumulative quantities of
Time domain software failure data collected from
different sources.

Keywords-Statistical Process Control,
Maximum Likelihood Estimation, Gompertz,
Software Reliability Growth Model, Non
Homogenous Poisson Process.

I. INTRODUCTION

Over the past four decades, the deployment of
computer system has grown more intensely. Software
is everywhere, but we need reliable software. Software
Reliability is defined as the probability of failure-free
operation of a computer program in a specified
environment for a specified time.

In general SRGMs are applicable to the late stages
of testing in software development. They can provide
very useful information about how to improve the
reliability of software products. The problem with using
SRGM to estimate failure content is that they have
underlying assumptions that are often violated in
practice, but empirical evidence has shown that many
are quite robust despite these assumption violations.
The problem is that, because of assumption violations,
it is often difficult to know which models to apply in
practice. Reliability quantities have usually been
defined with respect to time, although it is possible to
define them with respect to other variables. Most
software reliability models are formulated in terms of
random processes. It is traditional and important to use
Non Homogenous Poisson Process (NHPP) to model
the failure process. Models considered the probability
of failure times or failures experienced and the nature
of the variation of the random process with time. So,
most models are time-based. Specification of a model
generally includes specification of a function of time
such as the mean value or failure intensity function.

Both static and dynamic software reliability models
exist to assess the quality aspect of software. A static
model uses software metrics, like complexity metrics,
results of inspections, etc. to estimate the number of
defects (or faults) in the software. A dynamic model

uses the past failure discovery rate during software
execution or cumulative failure profile over time to
estimate the number of failures. It includes a time
component, typically time between failures.

A failure is a departure from how software should
behave during operation according to the
requirements. Failures are dynamic: The software
must be executing for a failure to occur. A fault is a
defect in a program, that when executed causes
failure(s). While a fault is a property of the program, a
failure is a property of the program's execution.

Dynamic models measure and model the failure
process itself. Because of this, they include a time
component, which is typically based on recording
times ti of successive failure i and i-1. Time may be
recorded as execution time or calendar time. These
models focus on the failure history of software. Failure
history is influenced by a number of factors, including
the environment within which the software is executed
and how it is executed. A general assumption of these
models is that software must be executed according to
its operational profile; that is, test inputs are selected
according to their probabilities of occurring during
actual operation of the software in a given
environment.

The expected value function for cumulative failures
can be put into two shape classes: concave and S-
shaped. S-shaped models are first convex, then
concave. The S-shaped growth curves start at some
fixed point and increase their growth rate
monotonically to reach an inflection point. After this
point, the growth rate approaches a final value
asymptotically. The S-shaped models reflect an
assumption that early testing is not as efficient as later
testing, so there is a period during which the failure-
detection rate increases. This period terminates,
resulting in an inflection point in the S-shaped curve,
when the failure-detection rate starts to decrease.

SPC concepts and methods are used to monitor
the performance of a software process over time in
order to verify that the process remains in the state of
statistical control. The control chart is one of the seven
tools for quality control. Software process control is
used to secure the quality of the final product which
will conform to predefined standards. In any process,
regardless of how carefully it is maintained, a certain
amount of natural variability will always exist. A
process is said to be statistically “in-control” when it
operates with only chance causes of variation. On the

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 3 Issue 3, March - 2016

www.jmest.org

JMESTN42351465 4315

other hand, when assignable causes are present, then
we say that the process is statistically “out-of-control.”

Control charts should be capable to create an
alarm when a shift in the level of one or more
parameters of the underlying distribution or a non-
random behavior occurs. Normally, such a situation
will be reflected in the control chart by points plotted
outside the control limits or by the presence of specific
patterns. The most common non-random patterns are
cycles, trends, mixtures and stratification (Koutras,
2007). For a process to be in control the control chart
should not have any trend or nonrandom pattern.

II. NHPP MODELS

The NHPP group of models provides an analytical
framework for describing the software failure
phenomenon during testing. They are proved to be
quite successful in practical software reliability
engineering. They have been built upon various
assumptions. If ‘t’ is a continuous random variable with

probability density function: 1 2(, , , ,)kf t    , and

cumulative distribution function:  F t .where

1 2, , , k   are k unknown constant parameters. The

mathematical relationship between the pdf and cdf is

given as:  () 'f t F t .

Let  N t be the cumulative number of software

failures by time ‘t’. A non-negative integer-valued

stochastic process  N t is called a counting process,

if  N t represents the total number of occurrences of

an event in the time interval [0, t] and satisfies these
two properties:

If 1 2t t , then    1 2N t N t

If 1 2t t , then    2 1N t N t is the number of

occurrences of the event in the interval  1 2,t t .

One of the most important counting processes is

the Poisson process. A counting process,  N t , is

said to be a Poisson process with intensity if

The initial condition is N(0) = 0.

The failure process, N(t), has independent
increments.

The number of failures in any time interval of length

s has a Poisson distribution with mean s , that is,

    
 
!

nse s
P N t s N t n

n

 

   

Describing uncertainty about an infinite collection of
random variables one for each value of ‘t’ is called a

stochastic counting process denoted by   , 0N t t    .

The process   , 0N t t  is assumed to follow a

Poisson distribution with characteristic Mean Value

Function  m t , representing the expected number of

software failures by time ‘t’. Different models can be

obtained by using different non decreasing  m t . The

derivative of  m t is called the failure intensity function

 t .

A Poisson process model for describing about the
number of software failures in a given time (0, t) is
given by the probability equation.

 
()[()]

() , 0,1,2,...
!

m t ye m t
P N t y y

y



  

Where,  m t is a finite valued non negative and

non decreasing function of ' 't called the mean value

function. Such a probability model for  N t is said to

be an NHPP model. The mean value function  m t is

the characteristic of the NHPP model.

The NHPP models are further classified into Finite
and Infinite failure models. Let ‘a’ denote the expected
number of faults that would be detected given infinite
testing time in case of finite failure NHPP models.
Then, the mean value function of the finite failure

NHPP models can be written as: () ()m t aF t . The

failure intensity function  t is given by:

   't aF t 
.

III. GOMPERTZ SOFTWARE RELIABILITY

MODEL

The simplest form of a software reliability growth
model is an exponential one. However, S-shaped
software reliability is more often observed than the
exponential one. Some models use a non-
homogeneous Poisson process (NHPP) to model the
failure process. The NHPP is characterized by its
expected value function, m(t). This is the cumulative
number of failures expected to occur after the software
has executed for time t. Gompertz SRGM is based on
an NHPP. In fact, many Japanese computer
manufacturers and software houses have applied the
Gompertz curve model, which is one of the simplest S-
shaped software reliability growth models (Kececioglu,
1991). The Gompertz curve model gave good
approximation to cumulative number of software faults
observed (Satoh, 2000). It takes the number of faults
per unit of time as independent Poisson random
variables. The Gompertz model equation for software
reliability is,

 
tcm t ab

Where, ‘a’ is the upper limit approached the
reliability, R at time t. 0<b<1, 0<c<1 are parameters to

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 3 Issue 3, March - 2016

www.jmest.org

JMESTN42351465 4316

be estimated form any one of the parameter estimation
methods.

where

a is the expected total number of failures that would
occur if testing was infinite.

b is the rate at which the failures detection rate
decreases.

c models the growth pattern (small values model
rapid early reliability growth, and large values model
slow reliability growth).

The Gompertz distribution plays an important role
in modeling survival times, human mortality and
actuarial tables. According to the literature, the
Gompertz distribution was formulated by Gompertz
(1825) to fit mortality tables. Recently, many authors
have contributed to the statistical methodology and
characterization of this distribution. For example, Read
(1983), Gordon (1990), Makany (1991), Franses
(1994) and Wu & Lee (1999). Garg et al. (1970)
studied the properties of the Gompertz distribution and
obtained the maximum likelihood estimates for the
parameters. There are several forms for the Gompertz
distribution given in the literature. Some of these are
given in Johnson et al. (1994). Gompertz software
reliability model is a popular model to estimate
remaining failures. It has been widely used to estimate
software error content, it is a modified model of
Moranda reliability model.

IV. MAXIMUM LIKELIHOOD ESTIMATION OF THE MODEL

PARAMETERS

There are two methods of parameter determination.
Parameter prediction and parameter estimation.
Parameter prediction tries to establish the parameters
of a model from the properties of the software product
and the development process. Parameter estimation is
used in subsystem or system test or operational phase
where failure data are available. It is a statistical
method trying to estimate model parameters based on
failure times. A number of procedures can be used to
estimate the parameters of Gompertz reliability model.
Among these methods, The maximum likelihood
estimation has been frequently considered to estimate
the parameters of the Gompertz model.

The likelihood function of the sample is given by

   
1

1

log log

n

tn tc i
i

n
m t

i

i

n
tab c

i

L e t

L e ab c b c












 
 





 1

It is usually easier to maximize the natural logarithm
of the likelihood function rather than the

likelihood function itself. So, the natural logarithm of
the likelihood function can be written as:

       
1

log log log log log log log log
t ti n

i

n
tc c

i

L a b c b c ab


      
 

2

The first derivatives of the natural logarithm of the
total likelihood function in (2) with respect to a, b and c
are given by:

log tncL n
ab

a a


 

 3

1

log

og
n i

n
t t

i

L n
nc c

b l b


  




 4

1

1 1

log 1
log log

log
i n

n n
t t

i i n

i i

L n
t t c b n bt c

c c c



 

 
    

  
 

 5

By equating equation (3) and (4) to zero, the
maximum likelihood estimate of a and b can be given
by the following estimation equation:

tnc

n
a

b


 6

1

n
t tn i

i

n

nc c

b e 


 7

Substituting ‘b’ in the equation (5), we get

2
1

1 1

1 1

log 1

log
i n

n i n i

n n
t t

i i nn n
t t t ti i

i i

L n n n
t t c t c

c c c
nc c nc c



 

 

 
 
    

  
  

 

 
 

8

Obviously, it is very difficult to obtain a closed-form
solution, iterative procedures must be used to solve
these equations, numerically. The Newton-Raphson
method is used to obtain the MLE of ‘c’. Therefore,
take the 2nd derivative with respect to ‘c’ and equating
it to Zero.

 

2
1 1 12

2 22
1 1 1

1
1

2
1 1

1

12

log 1

log

1

log

i i n i

n i
n i

i

n i

n i

n n n
t t t t

i i n in
n

t ti i it t

i
i

n n
t

i in
t ti i

i

n
t t

i

n

L n n n
t c t c nt c t c

c c c cnc c nc c

n n
t c t

c c
nc c

nc c t

n t

  

  




 





 
 

    
           

  

 
 
   
 

 
 

 
 

 


  
 

 


   2 1 1 1

1

2

1

1 n n n i

n i

n
t t t t

n n i

i

n
t t

i

c c nt c t c

nc c

   





  
    

  

 
 

 





Thus, once the value of cˆ is determined, an
estimate of bˆ is easily obtained from (7). They are
then substituted in equation (6) to get an estimate of
aˆ.

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 3 Issue 3, March - 2016

www.jmest.org

JMESTN42351465 4317

V. TIME DOMAIN FAILURE DATA

The success of applying and using a software
reliability model depends highly on the quality and
accuracy of failure data collection which in turn
depends on careful planning and organization. The
data which is considered has been transformed so as
to suit to the model under consideration.

The following tables shows the number of errors
and the inter failure time.

TABLE I. DATA SET #1: DATA COLLECTED FROM (XIE, 2002).

Failu
re

Num
ber

Cumul
ative
Time

Betwee
n

Failure
(h)

Failu
re

Num
ber

Cumul
ative
Time

Betwee
n

Failure
(h)

Failu
re

Num
ber

Cumul
ative
Time

Betwee
n

Failure
(h)

1 0.3002 11 1.1534 21 2.5681

2 0.3146 12 1.2157 22 2.7388

3 0.5393 13 1.2496 23 2.7787

4 0.5529 14 1.3407 24 4.5393

5 0.5872 15 1.3625 25 5.35

6 0.7192 16 1.5178 26 5.3727

7 0.7707 17 1.775 27 5.529

8 0.809 18 1.8029 28 6.7368

9 1.019 19 1.8221 29 7.0449

10 1.1487 20 1.8634 30 7.3868

TABLE II. DATA SET #2: ON-LINE DATA ENTRY IBM SOFTWARE

PACKAGE

The data reported by Ohba (1984a) are recorded
from testing an on-line data entry software package
developed at IBM.

Failu
re

Num
ber

Cumul
ative
Inter

Failure
Time

Failu
re

Num
ber

Cumul
ative
Inter

Failure
Time

Failu
re

Num
ber

Cumul
ative
Inter

Failure
Time

1 0.1 6 0.7 11 1.69

2 0.19 7 0.88 12 1.99

3 0.32 8 1.03 13 2.31

4 0.43 9 1.25 14 2.56

5 0.58 10 1.5 15 2.96

VI. RESULTS

The control limits for the chart are defined in such a
manner that the process is considered to be out of
control when the time to observe exactly one failure is
less than LCL or greater than UCL. Our aim is to
monitor the failure process and detect any change of
the intensity parameter. When the process is normal,
there is a chance for this to happen and it is commonly
known as false alarm. The traditional false alarm
probability is to set to be 0.27% although any other
false alarm probability can be used. Assuming an
acceptable probability of false alarm, the control limits
can be obtained as (Xie et al, 2002):

0.99865

tc

UT b 

0.5

tc

CT b 

0.00135

tc

LT b 

These limits are converted to ()Um t , ()Cm t and

()Lm t form respectively. They are used to find whether

the software process is in control or not by placing the
points in failure control chart shown in figure 1 & 2. A

point below the control limit ()Lm t indicates an

alarming signal. A point above the control limit ()Um t

indicates better quality. If the points are falling within
the control limits, it indicates the software process is in
stable condition. The estimated values of ‘a’, ‘b’ and ‘c’
and their control limits for the transformed data sets
are as follows.

TABLE III. PARAMETER ESTIMATES OF TIME DOMAIN DATA.

Data
Set

No. of
samples

Estimated Parameters

a B C

XIE 30 30.526286 0.055202 0.500320

IBM 15 16.419633 0.045773 0.303497

TABLE IV. CONTROL LIMITS OF TIME DOMAIN DATA.

Data
Set

No. of
samples

Control Limits

UCL CL LCL

XIE 30 30.485076 15.263143 0.041210

IBM 15 16.397466 8.209817 0.022167

TABLE V. SUCCESSIVE DIFFERENCES OF MEAN VALUES, XIE.

Failure
number

Cumulative
Time between
errors(days)

m(t)
successive
differences

1 0.3002 19.756979 0.408055

2 0.3146 19.348924 5.378005

3 0.5393 13.970919 0.272678

4 0.5529 13.698241 0.664307

5 0.5872 13.033934 2.269495

6 0.7192 10.764439 0.774197

7 0.7707 9.990242 0.539432

8 0.809 9.450809 2.479896

9 1.019 6.970914 1.194567

10 1.1487 5.776347 0.039213

11 1.1534 5.737134 0.495318

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 3 Issue 3, March - 2016

www.jmest.org

JMESTN42351465 4318

12 1.2157 5.241816 0.251314

13 1.2496 4.990503 0.617259

14 1.3407 4.373243 0.136012

15 1.3625 4.237231 0.853994

16 1.5178 3.383237 1.052763

17 1.775 2.330474 0.092354

18 1.8029 2.238120 0.061421

19 1.8221 2.176699 0.126466

20 1.8634 2.050232 1.311908

21 2.5681 0.738324 0.161818

22 2.7388 0.576507 0.032392

23 2.7787 0.544114 0.501699

24 4.5393 0.042415 0.029316

25 5.35 0.013099 0.000424

26 5.3727 0.012675 0.002569

27 5.529 0.010106 0.008351

28 6.7368 0.001755 0.000632

29 7.0449 0.001123 0.000439

30 7.3868 0.000684

Fig. 1. Failure control chart for Xie data

TABLE VI. SUCCESSIVE DIFFERENCES OF MEAN VALUES, IBM.

Failure
number

cumulative
failure time

m(t)
successive
differences

1 0.1 14.952484 1.208006

2 0.19 13.744478 1.574687

3 0.32 12.169791 1.190659

4 0.43 10.979132 1.438155

5 0.58 9.540977 1.013654

6 0.7 8.527323 1.322181

7 0.88 7.205142 0.943801

8 1.03 6.261341 1.165251

9 1.25 5.096091 1.063242

10 1.5 4.032848 0.657048

11 1.69 3.375800 0.826468

12 1.99 2.549332 0.659836

13 2.31 1.889496 0.394222

14 2.56 1.495274 0.466973

15 2.96 1.028301

Fig. 2. Failure control chart for IBM data

VII. CONCLUSION

In this paper, a theoretical review of the Gompertz
SRM is provided; several mathematical formulas of the
model’s characteristics are obtained. The MLE method
is used to estimate the parameters of SRM. This
procedure is applied on different sets of failure data
collected from literature. For the Xie software failure
data the first failure is observed at the 10th instance of
time and for the IBM data the successive differences of
mean values are within the control limits. Having the
successive differences within the limits indicate the
failure free operation of the software under
consideration. From the obtained results, we can
conclude that the proposed method of using SPC
techniques for assessing the quality of the software is
applicable in several instances.

REFERENCES:

[1] Read, C.B. (1983). “Gompertz Distribution”,
Encyclopedia of Statistical Sciences, Wiley, New
York.

[2] Gordon, N.H. (1990). “Maximum Likelihood
Estimation for Mixtures of two Gompertz Distributions
when Censoring Occurs”, Communication in Statistics
– Simulation & Computation, 19, 733-747.

[3] Makany, R. (1991), “A Theoretical Basis of
Gompertz’s Curve”, Biometrical Journal, 33, 121-128.

[4] Franses, P.H. (1994). “Fitting a Gompertz
Curve”, Journal of the Operational Research Society,
45, 109-113.

[5] Wu, J.W. and Lee, W.C. (1999).
“Characterization of the Mixtures of Gompertz
Distributions by Conditional Expectation of Order
Statistics”, Biometrical Journal, 41, 371-381.

[6] Garg, M.L., Rao, B.R. and Redmond, C.K.
(1970). “Maximum Likelihood Estimation of the
Parameters of the Gompertz Survival Function”,
Journal of the Royal Statistical Society C, 19, 152-
159.

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 3 Issue 3, March - 2016

www.jmest.org

JMESTN42351465 4319

[7] Johnson, N.L., Kotz, S. and Balakrishnan, N.
(1994). “Continuous Univariate Distributions”, Vol. 1,
2nd ed., John Wiley and Sons, (pp. 25-26, 81-85).

[8] Gompertz, B. (1825). “On the Nature of the
Function Expressive of the Law of Human Mortality
and on the New Mode of Determining the Value of Life
Contingencies”, Phil. Trans. R. Soc.A., 115, 513-580.

[9] Satoh, D. (2000). “A discrete Gompertz
equation and a software reliability growth
model”. IEICE TRANSACTIONS on Information and
Systems, 83(7), 1508-1513.

[10] Kececioglu, D. (1991). “Reliability Engineering
Handbook, Vol. 2, Prentice-Hall, Englewood Cliffs,
N.J., 1991.

[11] Xie, M., Goh, T. N. and Ranjan. P., (2002).
“Some effective control chart procedures for reliability
monitoring”, Reliability engineering and System
Safety, 77, 143 -150.

[12] Ohba, M. (1984a). “Software reliability
analysis models”, IBM J Research Development, Vol
28(4).

[13] Koutras, M.V., Bersimis, S., Maravelakis,
P.E., 2007. “Statistical process control using shewart
control charts with supplementary Runs rules”
Springer Science + Business media 9:207-224.

A. Authors and Affiliations

Dr. R. Satya Prasad Received Ph.D.
degree in Computer Science in the
faculty of Engineering in 2007 from
Acharya Nagarjuna University, Andhra
Pradesh. He received gold medal from
Acharya Nagarjuna University for his
outstanding performance in a first rank

in Masters Degree. He is currently working as
Associative Professor in the Department of Computer
Science & Engineering, Acharya Nagarjuna University.
His current research is focused on Software
Engineering. He published 70 research papers in
National & International Journals.

V. SURYANARAYANA received
M.Tech. degree from JNTUK,
Kakinada and working as Assoc. Prof.
in CSE Department in Ramachandra
College of Engineering, Eluru. He is
pursuing Ph.D. in Computer Science &
Engineering in Acharya Nagarjuna
University, Nagarjuna Nagar. His area

of Research is Software Reliability Engineering.

Dr. G. Krishna Mohan, working as a Reader and
Head in the Department of Computer Science,
P.B.Siddhartha College, Vijayawada. He obtained his
M.C.A degree from Acharya Nagarjuna University,
M.Tech(CSE) from Jawaharlal Nehru Technological

University, Kakinada, M.Phil from Madurai Kamaraj

University and Ph.D(CSE) from Acharya Nagarjuna

University. He qualified, AP State Level

Eligibility Test. His research interests lies in

Data Mining and Software Engineering. He

published 33 research papers in various

National and International journals.

http://www.jmest.org/

