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Abstract— In the present paper, the governing 
equations of generalized thermo-magneto-electro-
elastic solid are formulated in one-dimension. The 
time-harmonic plane wave solution of these 
equations leads to a velocity equation, which 
shows the existence of two plane waves namely 
longitudinal and thermal waves. A particular 
example of LiNbO3 is taken for numerical 
computation of the speeds of longitudinal and 
thermal waves. The effects of electric, magnetic 
and thermal parameters are shown graphically on 
the speeds of these plane waves. 
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I. INTRODUCTION  

Biot (1956) developed the coupled theory of 
thermoelasticity. In the classical theory of 
theromoelasticity, when an elastic solid is subjected to 
a thermal disturbance, the effect is felt at a location far 
from the source, instantaneously. This implies that the 
thermal wave propagates with an infinite speed, a 
physically impossible result. In contrast to the 
conventional thermoelasticity, nonclassical theories 
came into existence during the last four decades. 
These theories, referred to as generalized 
thermoelasticity, were introduced into the literature in 
an attempt to eliminate the shortcomings of the 
classical dynamical thermoelasticity. For example, 
Lord and Shulman (1967), by incorporating a flux-rate 
term into Fourier's law of heat conduction, formulated 
a generalized theory which involves a hyperbolic heat 
transport equation admitting a finite speed for thermal 
signals. Green and Lindsay (1972), by including 
temperature rate among the constitutive variables, 
developed a temperature-rate-dependent 
thermoelasticity that does not violate the classical 
Fourier law of heat conduction, when the body under 
consideration has a centre of symmetry and this 
theory also predicts a finite speed for heat 
propagation. Chandrasekharaiah (1986) referred to 
this wave like thermal disturbance as ‘second sound’. 
Lord and Shulman theory of generalized 
thermoelasticity was further extended by Dhaliwal and 
Sherief (1980) for anisotropic case. A survey article of 
representative theories in the range of generalized 
thermoelasticity was presented by Hetnarski and 
Ignaczak (1999). Wide literature on generalized 
thermoelasticity is available in books by Suhubi 

(1975), Iesan and Scalia (1996), Iesan (2004), 
Ignaczak and Ostoja-Starzewski (2009) and 
Encyclopaedia of Thermal Stresses (2013) edited by 
R. B. Hetnarski.  

Wave propagation in thermo-magneto-electro-
elastic solid is of much importance due to wide use of 
piezoelectric and piezomagnetic materials in 
aerospace and automobile industries. Thermo-
magneto-electro-elastic solid are extensively used as 
electric packaging, sensors and actuators. Kaliski 
(1965), Coleman and Dill (1971), Amendola (2000), Li 
(2003) and Aouadi (2007) contributed towards the 
development of theory of thermo-magneto-
electroelasticity. Wave propagation in a generalized 
thermo-magneto-electro-elastic solid has not been 
studied so far. In the present paper, one-dimensional 
governing equations of generalized thermo-magneto-
electro-elastic solid are formulated. These equations 
are solved to show the existence of two plane waves 
namely longitudinal and thermal waves. The speeds 
of longitudinal and thermal waves are computed for a 
particular example LiNbO3. The effects electric, 
magnetic and thermal parameters are shown 
graphically on the speeds of these plane waves.  

II. FUNDAMENTAL EQUATIONS 

We consider a body that occupies the region V of 
the Euclidean three-dimensional space at some 
instant and is bounded by the piecewise smooth 

surface V. The motion of the body is referred to the 
reference configuration V and a fixed system of 
rectangular Cartesian axes Oxi (i = 1, 2, 3). Following 
Lord and Shulman (1967), Coleman and Dill (1971), 
Amendola (2000), Li (2003) and Aouadi (2007) the field 
equations governing the generalized theory of thermo-
magneto-electro-elasticity are:  

The equations of motion  

 𝜎𝑗𝑖,𝑗 + 𝐹𝑖 = 𝜌�̈�𝑖 , (1) 

The equations of the electric and magnetic fields 

𝐷𝑖,𝑖 = 𝜌0, 𝐵𝑖,𝑖 = 𝜎, (2) 

The energy equation 

𝜌𝑇0�̇� = 𝑞𝑖,𝑖 + 𝜌ℎ, (3)  

The constitutive equations 

𝜎𝑖𝑗 = 𝑐𝑖𝑗𝑘𝑙𝑒𝑘𝑙 + 𝐹𝑖𝑗𝑘𝜁𝑘 + 𝜆𝑖𝑗𝑘𝐸𝑘 − 𝑎𝑖𝑗𝑇, (4) 

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 3159-0040 

Vol. 3 Issue 2, February - 2016 

www.jmest.org 
JMESTN42351416 4124 

 𝐷𝑘 = −𝜆𝑘𝑖𝑗𝑒𝑖𝑗 + 𝛼𝑘𝑖𝜁𝑖 + 𝛾𝑘𝑖𝐸𝑖 + 𝑝𝑘𝑇, (5) 

 𝐵𝑘 = −𝐹𝑘𝑖𝑗𝑒𝑖𝑗 + 𝐴𝑘𝑖𝜁𝑖 + 𝛼𝑘𝑖𝐸𝑖 + 𝑚𝑘𝑇, (6) 

𝜌𝜂 = 𝑎𝑖𝑗𝑒𝑖𝑗 + 𝑚𝑘𝜁𝑘 + 𝑝𝑘𝐸𝑘 + 𝑐𝑒𝑇, (7) 

 𝐾𝑖𝑗𝑇,𝑗 = 𝑞𝑖 + 𝜏0�̇�𝑖 , (8) 

  

The geometrical equations 

𝑒𝑖𝑗 =
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖),  

 𝐸𝑖 = −𝜓,𝑖 , 𝜁𝑖 = 𝜙,𝑖 , (9)  

where 𝐹𝑖 , 𝜌0  and σ are the body force, electric 
charge density, and electric current density, 
respectively; ρ is the mass density; h is the heat 

supply; 𝑢𝑖 , 𝜓 and  are the displacement vector, the 
electric potential, and the magnetic potential, 
respectively; 𝜎𝑖𝑗 , 𝐷𝑘 ,𝐵𝑘 and η are stress tensor, the 

dielectric displacement vector, the magnetic intensity, 
and the entropy density, respectively; 𝑒𝑖𝑗 ,  𝐸𝑖 , 𝜁𝑖 and T 

are strain tensor, electric field, magnetic field, and 
temperature change to a reference temperature 𝑇0 , 
respectively; 𝐾𝑖𝑗 is the conductivity tensor; 

𝑐𝑖𝑗𝑘𝑙 ,  𝛾𝑘𝑗 , 𝐴𝑘𝑗  and ce are constitutive moduli connecting 

fields like stress and strain; 𝜆𝑖𝑗𝑘 , 𝐹𝑖𝑗𝑘 , 𝛼𝑘𝑗 , 𝑎𝑖𝑗 , 𝑝𝑖  and 𝑚𝑖 

are coupling coefficients connecting various fields like 
mechanical, magnetic, thermal and electric fields and 
𝜏0 is relaxation time. Subscripts preceded by a comma 
denote partial differentiation with respect to the 
corresponding Cartesian coordinate. The superposed 
dot denotes the partial differentiation with respect to 
the time t. 

 The constitutive parameters satisfy the 

following symmetry conditions 

 𝑐𝑖𝑗𝑘𝑙 = 𝑐𝑘𝑙𝑖𝑗 = 𝑐𝑗𝑖𝑘𝑙  , 𝜆𝑖𝑗𝑘 = 𝜆𝑘𝑖𝑗 = 𝜆𝑘𝑗𝑖 , 𝐹𝑖𝑗𝑘 = 𝐹𝑘𝑖𝑗  =

𝐹𝑘𝑗𝑖 , 𝑎𝑖𝑗 = 𝑎𝑗𝑖  , 𝛾𝑖𝑗 = 𝛾𝑗𝑖  ,  𝛼𝑖𝑗 = 𝛼𝑗𝑖  , 𝐾𝑖𝑗 = 𝐾𝑗𝑖  , 𝐴𝑖𝑗 =

𝐴𝑗𝑖 . (10) 

III. GOVERNING EQUATIONS IN ONE DIMENSION 

We consider one-dimensional disturbance of the 
medium. Using equations (1) to (10), we obtain the 
following equations of motion for generalized thermo-
magneto-electroelasticity in one-dimension 

 𝑐11
𝜕2𝑢1

𝜕𝑥2 − 𝐹11
𝜕2𝜙

𝜕𝑥2 − 𝜆11
𝜕2𝜓

𝜕𝑥2 − 𝑎1
𝜕𝑇

𝜕𝑥
= 𝜌

𝜕2𝑢1

𝜕𝑡2 , (11) 

𝜆11
𝜕2𝑢1

𝜕𝑥2 + 𝛼1
𝜕2𝜙

𝜕𝑥2 + 𝛾1
𝜕2𝜓

𝜕𝑥2 − 𝑝1
𝜕𝑇

𝜕𝑥
= 0, (12) 

 𝐹11
𝜕2𝑢1

𝜕𝑥2 + 𝐴1
𝜕2𝜙

𝜕𝑥2 + 𝛼1
𝜕2𝜓

𝜕𝑥2 − 𝑚1
𝜕𝑇

𝜕𝑥
= 0, (13) 

 𝑎11
𝜕2𝑢1

𝜕𝑥𝜕𝑡
− 𝑚1

𝜕2𝜙

𝜕𝑥𝜕𝑡
− 𝑝1

𝜕2𝜓

𝜕𝑥𝜕𝑡
+ 𝑐𝑒

𝜕𝑇

𝜕𝑡
=

𝐾1

𝑇0(1+𝜏0
𝜕

𝜕𝑡⁄ )

𝜕2𝑇

𝜕𝑥2 , (14)  

where 

 𝑐11 = 𝑐1111, 𝜆11 = 𝜆111,  𝑎1 = 𝑎11,  𝐹11  = 𝐹111, 

 𝛼1 = 𝛼11, 𝛾1 = 𝛾11 ,  𝐴1 = 𝐴11,  𝐾1 = 𝐾11 . 

IV. PLANE WAVE SOLUTION AND DISPERSION 

EQUATION 

For time harmonic plane wave propagating in the 
x-direction, we can take 

 {𝑢1, 𝑇, 𝜓, 𝜙} =  {�̅�1, �̅�, �̅�, �̅�}𝑒𝑖(𝑘𝑥−𝜔𝑡), (15) 

and using equation (15) in equations (11) to (14), 
we get 

 (−𝑘2𝑐11 + 𝜌𝜔2)�̅�1 − 𝑖𝑎1𝑘�̅� + 𝑘2𝐹11�̅� 

+𝑘2𝜆11�̅� = 0, (16)  

𝑘2𝜆11 �̅�1 + 𝑖𝑝1𝑘�̅� + 𝑘2𝛼1�̅� 

+𝑘2𝛾1  �̅� = 0, (17) 

  𝑘2𝐹11�̅�1 + 𝑖𝑚1𝑘�̅� + 𝑘2𝐴1�̅� 

+𝑘2𝛼1�̅� = 0, (18) 

 𝑘𝑎1𝜔𝑇0�̅�1 − (𝑖𝑐𝑒𝜔 +
𝐾1

1−𝑖𝜏0𝜔
𝑘2)�̅� − 𝑘𝑚1𝜔𝑇0�̅� −

𝑘𝑝1𝜔𝑇0�̅� = 0. (19) 

The homogeneous system of equations (16) to 
(19) has non-trivial solution if the determinant of 
coefficients vanishes, i. e.,  

 𝐴 𝑣4 + 𝐵 𝑣2 + 𝐶 = 0, (20)  

where 𝑣 = ω/k,  

𝐴 = 𝜌𝑐�̅�(𝛾1𝐴1 − 𝛼1
2) + 𝜌(2𝛼1𝑚1𝑝1 − 𝛾1𝑚1

2 − 𝐴1𝑝1
2), 

𝐵 = 𝜆11
2 𝑚1

2 + 𝐹11
2 𝑝1

2 + 𝛼1
2𝑎1

2 + 𝛾1𝐴1𝑎1
2 + 2𝛼1𝑎1𝑚1𝜆11

− 2𝑝1𝑚1𝜆11𝐹11 − 2𝑝1𝑎1𝐴11𝜆11

− 2𝛾1𝑎1𝑚11𝐹11 + 2𝑎1𝛼1𝑝1𝐹11

− (𝛾1𝐴1 − 𝛼1
2)(𝑐11𝑐�̅� + 𝜌�̿�)

− 𝑐11(2𝛼1𝑚1𝑝1 − 𝛾1𝑚1
2 − 𝐴1𝑝1

2)
+ 𝑐�̅�(2𝛼1𝜆11𝐹11 − 𝐴1𝜆11

2 − 𝛾1𝐹11
2 ), 

𝐶 = �̿�𝑐11(𝛾1𝐴1 − 𝛼1
2)  − �̿�(2𝛼1𝜆11𝐹11 − 𝐴1𝜆11

2 − 𝛾1𝐹11
2 ), 

and 

�̿� = 𝐾1/𝑇0(𝜏0 +
𝑖

𝜔
), 𝑐�̅� =

𝑐𝑒

𝑇0
. 

The dispersion equation (20) is a quadratic 
equation with complex coefficients. The two roots of 
equation (20) correspond to longitudinal and thermal 
waves. Further, 𝑣 = 𝑅𝑒(𝑣) +  𝑖 𝐼𝑚 (𝑣)  is a complex 
constant so that 𝑅𝑒(𝑣) is giving the wave speed. 

V. PARTICULAR CASES 

(i) In absence of thermal parameters , i.e for 
𝑎1 = 𝑝1 = 𝛼1 = 0, the equation (20) reduces to 

 𝑣2 =
𝑐11

𝜌
 +

𝜆11
2 𝐴1 + 𝑐11

2 𝛾1 − 2𝛼1𝜆11𝐹11

𝜌(𝛾1𝐴1 − 𝛼1
2)

,  

 (21)  

(ii) In absence of thermal, electric and magnetic 
parameters, i.e. for 𝑎1 = 𝑝1 = 𝑚1 = 𝜆11 = 𝐹11 = 0, the 
equation (20) reduces to 

 𝑣2 =  
𝑐11

𝜌
 , (22)  
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(iii) In absence of thermal and magnetic 
parameters, i.e. for 𝑎1 = 𝑝1 = 𝑚1 = 𝐹11 = 0, the 
equation (20) reduces to 

 𝑣2 =
𝑐11

𝜌
+

𝜆11
2

𝜌𝛾1
 , (23)  

(iv) In absence of thermal and electric 
parameters, i.e. for 𝑎1 = 𝑝1 = 𝑚1 = 𝜆11 = 0, the 
equation (20) reduces to 

 𝑣2 =
𝑐11

𝜌
+

𝐹11
2

𝜌𝐴1
 , (24)  

(v) In absence of electric and magnetic 
parameters, i.e. for 𝑝1 = 𝑚1 = 𝜆11 = 𝐹11 = 0, the 
equation (20) reduces to 

 𝑣2 =
𝑎1

2+𝜌2+𝑐11𝑐�̅�±√(𝑎1
2+𝜌2+𝑐11𝑐�̅�)2−4𝜌𝑐�̅��̿�𝑐11

2𝜌𝑐�̅�
 . (25) 

VI. NUMERICAL RESULTS AND DISCUSSIOIN 

Following relevant physical constants of LiNbO3 
are considered for numerical computation of wave 
speeds of longitudinal and thermal waves:  

𝜌 = 4.647 × 103 𝐾𝑔 𝑚−3,  

𝑐11 = 2.03 × 1011𝑁 𝑚−2, 

𝜆11 = 1.33 𝐶𝑚−2, 𝛾1 = 85.2,  

 𝐹11 = 0.2 × 10−2 𝐾𝑔,  

𝐴1 = 0.005, 

𝑎1 = 13.3 × 10−6𝐾−1, 

 𝐾 = 4 𝑊 𝑚−1𝐾−1,  

𝛼1 = 0.02, 𝑚1 = 0.006,  

𝑝1 = 0.133 × 105 𝑁 𝐶−1𝐾−1, 

 = 10 𝐻𝑧, 𝜏0 = 0.05𝑠  

The speed of longitudinal wave is plotted against 

frequency (0.01 Hz ≤  ≤ 20 Hz) in Figure 1, when  

𝜆11 =  1.33 𝐶𝑚−2,  𝐹11 =  0.2 × 10−2 𝐾𝑔 

 𝑎𝑛𝑑 𝜏0 = 0.05𝑠. The speed of longitudinal wave in 
thermo-magneto-electro-elastic solid half-space is 

7.814  10
4
 m s

-1
 at  = 0.01 Hz. It increases slowly 

with the increase in value of frequency and attains 

value 11.585  10
4
 m s

-1
 at  = 20 Hz. The variation of 

the speed is shown by solid curve in Figure 1. In 
absence of electric and magnetic parameters, the 
solid curve reduces to dotted curve. If we further 
neglect thermal effects, the dotted curve reduces to 
dotted line with center symbols, where speed is 
independent of frequency. The speed of thermal wave 

is also plotted against frequency (0.01 Hz ≤  ≤ 20 
Hz) in Figure 2. The speed of thermal wave in thermo-

magneto-electro-elastic solid half-space is 0.04  10
4
 

m s
-1

 at  = 0.01 Hz. It increases sharply with the 
increase in value of frequency and attains value 1.395 

 10
4
 m s

-1
 at  = 20 Hz. The variation of the speed is 

shown by solid curve in Figure 2. In absence of 
electric and magnetic parameters, the solid curve 

reduces to dotted curve. If we further neglect thermal 
effects, then the thermal wave does not exist.  

 The speeds of longitudinal and thermal waves are 
also plotted against the electric parameter 0 ≤ 𝜆11 ≤
10 in Figures 3 and 4, respectively, when  =
10 𝐻𝑧,  𝐹11 = 0.2 × 10−2 𝐾𝑔 𝑎𝑛𝑑 𝜏0 = 0.05𝑠. The speed 

of longitudinal wave is 9.2928  10
4
 m s

-1
 at 𝜆11= 0. It 

first decreases slowly to 9.29  10
4
 m s

-1
 at 𝜆11= 0.75 

and then increases to 9.6  10
4
 m s

-1
 at 𝜆11= 10. This 

variation is shown by solid curve in Figure 3. In 
absence of magnetic and thermal parameters, it 
reduces to dotted curve. The speed of thermal wave is 

1.27356  10
4
 m s

-1
 at 𝜆11= 0. It first decreases slowly 

to 1.27332  10
4
 m s

-1
 at 𝜆11= 0.85 and then increases 

to 1.29725  10
4
 m s

-1
 at 𝜆11= 10. This variation is 

shown by solid curve in Figure 4. In absence of 
magnetic and thermal effect, this wave does not exist.  

 The speeds of longitudinal and thermal waves are 
also plotted against the magnetic parameter 0 ≤
𝐹11 ≤ 0.5 in Figures 5 and 6, respectively, when 

𝜆11 = 1.33 𝐶𝑚−2,  = 10 𝐻𝑧 𝑎𝑛𝑑 𝜏0 = 0.05𝑠.  The 

speed of longitudinal wave is 6.836  10
4
 m s

-1
 at 𝐹11= 

0. It increases to 19.69 10
4
 m s

-1
 at 𝐹11= 0.5. This 

variation is shown by solid curve in Figure 5. In 
absence of electric and thermal parameters, it 
reduces to dotted curve. The speed of thermal wave is 

0.6643 10
4
 m s

-1
 at 𝐹11= 0. It increases sharply to 

1.3524 10
4
 m s

-1
 at 𝐹11= 0.285 and then decreases 

slowly to 1.268 10
4
 m s

-1
 at 𝐹11= 0.5. This variation is 

shown by solid curve in Figure 6. In absence of 
electric and thermal effect, this wave does not exist.  

 The speeds of longitudinal and thermal waves are 
plotted against the thermal relaxation time 0 ≤ 0 ≤
0.5 in Figures 7 and 8, respectively, when 𝜆11 =
1.33 𝐶𝑚−2,  𝐹11 = 0.2 × 10−2 𝐾𝑔 𝑎𝑛𝑑  = 10 𝐻𝑧 . The 

speed of longitudinal wave is 9.105  10
4
 m s

-1
 at 

0 = 0. It increases to 10.48 10
4
 m s

-1
 at 0 = 0.08 

and then decreases to 8.816  10
4
 m s

-1
0 = 0.5. This 

variation is shown by solid curve in Figure 7. In 
absence of electric and magnetic parameters, it 
reduces to dotted curve. The speed of thermal wave is 

1.286  10
4
 m s

-1
 at 0 = 0. It decrease to 0.694  10

4
 

m s
-1

 at 0 = 0.5. This variation is shown by solid curve 
in Figure 8. In absence of electric and magnetic 
parameters, it reduces to dotted curve.  

VII. CONCLUSION 

The governing equations of thermo-magneto-
electro-elastic solid are formulated in one-dimension. 
These equations are solved for plane wave solution 
and a quadratic velocity equation is obtained. The 
velocity equation shows the existence of two plane 
waves namely longitudinal and thermal waves. The 
speeds of longitudinal and thermal waves are 
computed for LiNbO3. From numerical results, it is 
observed that the speeds of plane waves are affected 
significantly by electric, magnetic and thermal 
parameters.  
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Figure 1. Variations of speed of longitudinal wave 
against frequency. 

 

Figure 2. Variations of speed of thermal wave 
against frequency. 

 

Figure 3. Variations of speed of longitudinal wave 

against electric parameter 𝜆11. 

 

Figure 4. Variations of speed of thermal wave 

against electric parameter 𝜆11. 

 

Figure 5. Variations of speed of longitudinal wave 

against magnetic parameter 𝐹11. 

 

Figure 6. Variations of speed of thermal wave against 

magnetic parameter 𝐹11. 

 

Figure 7. Variations of speed of longitudinal wave 

against thermal reaxation parameter 0. 

 

Figure 8. Variations of speed of thermal wave 

against thermal reaxation parameter 0. 
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