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Abstract—The effective inertia of reciprocating 

machines is varied considerably over a cycle of a 

crankshaft. Due to this, the system expected a nonlinear 

linear torsional vibration, and also a harmonic 

excitation torque is produced. Consequently, large 

amplitudes of harmonic excitation torque, lead to the 

failure of the crankshaft, especially in heavy 

reciprocating machines. Neglecting of variation in 

inertia, lead to linear torsional vibration analysis, and it 

may not adequate one. In this paper, a mathematical 

expression for the variation in the inertia of the 

connecting rod, in terms of the crankshaft angle, is 

derived based on Fourier analysis. The nonlinear 

torsional vibration governing differential equation is 

obtained by using Lagrange’s equation. The torsional 

vibration displacement considering variable inertia of 

the reciprocating parts is examined by developing a 

computer program using MATLAB/Simulink. The 

simulation results indicate the greater effect of variable 

inertia on the torsional vibration displacement and the 

system may depict large amplitudes with increasing 

engine speed. Also, the range of the critical speed is 

changed. This attributed to producing the harmonic 

excitation torque due to considering the variable inertia 

term.  Which in turn give a rise to the phenomenon of 

secondary harmonic resonance. The present model is 

compared with equivalent inertia model. The results 

show irregular periodic motion and different trend of 

the frequencies and amplitudes. The present research is 

aimed to enhancement of the nonlinear torsional 

vibration analysis of reciprocating machines.  

Keywords—nonlinear; torsional vibration; variable 

inertia; reciprocating machines 

I. INTRODUCTION  

In the previous time, the issues concerning the analysis 
of the torsional vibration of reciprocating engines or 
machines were carried out with the effect of the variable 
inertia of reciprocating parts are often disregarded or 
simplified which would  be result in linear torsional 
vibration analysis. But, during the last decay, the 
mathematical modeling and experimental study give an 
attention for the phenomenon arising due to the variable 
inertia of the moving part in reciprocating machines which 
emphasize the nonlinear torsional vibration nature of these 
machines. It was also verified that, the secondary 
phenomenon is responsible for many structural failure. 
Pasricha and Hashim [1] studied the effect of reciprocating 
mass on torsional vibration of diesel engine using an 
equivalent mass for reciprocating parts and taken into 

account the variation of inertia of the system. Their results 
show the region of instabilities at different speeds of engine 
rotation. Xiang J H, and Liao R D. [2] studied the variable 
inertia torsional vibration of crankshaft. Their study is based 
on the instantaneous kinetic energy method. They shown 
that the displacement and angular velocity of reciprocating 
components are vary with crankshaft motion, and resulting 
in generation of non constant inertia for the crankshaft 
assembly. Amin [3] proposed a new comprehensive model 
and solution method using analytical formulations to study 
both steady state and transient response of complex 
reciprocating trains. The analytical results recommended 
torsional reliable trains, to overcome the shaft torsional 
oscillations which may results in failure of rotating 
components of reciprocating trains due to secondary 
resonance. Ying, H et.al [4] presented and derived a general 
expression for the non-constant inertia of crank shaft 
assembly based on the instantaneous kinetic energy 
equivalence method. The natural frequency and mode 
shapes of crankshaft assembly are investigate using Eigen 
vector method. Their results indicated that when the non-
constant inertia taken into account, the additional excitation 
torque due to non-constant inertia activities the 2

nd
 order 

rolling vibration. Also, it is found that, the additional 
damping torque resulting from the non-constant inertia is the 
main nonlinear factor. Joshi, N.K., and Pravin, V.K. [5] 
analyzed torsional vibrations of typical marine propulsion. 
Their linear analysis constitutes of modal analysis, order 
analysis, harmonic analysis, stress analysis, corresponding 
to critical speeds of the system. Also, the non-constant 
inertia effect on the critical speeds and mode shapes was 
carry out using a developed computer program. They found 
that the range of critical speed over which hazardous 
vibration stress was widened due to the consideration of 
non-constant inertia. Cheng et.al [6] analyzed the crank shaft 
torsional vibration using a calculation method based on a 
flexible multi-body dynamics. Their developed model was 
simulated by ADAMS software. The results showed that 
before transformation the natural frequency of the 
crankshaft was closed to the excitation frequency, thus 
caused the vibration amplitude of crankshaft too large. 
 Nerubenko, [7] implemented a new design concept in 
hybrid power train to overcome the problem of torsional 
resonance vibrations which may be always represented the 
main problem for  hybrid  automobile power train. The new 
design approach based on optimal insertion in power train 
structure the device based on George Nerubenko US patent 
7464800, having the control system with instantaneous 
frequencies tuner and variable damping device adjusted for 
all operational frequencies. Tests results and mathematical 
simulation illustrate the effectiveness of the new concept 
approach. Wei et.al [8] analyzed torsional vibration of 
motorized wheel vehicle by using a lumped mass method. In 
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their work the inertia force of the reciprocating parts are 
included and the differential equations of non-linear 
torsional vibration were obtained. Their experimental and 
simulation results indicate that the torsional vibration is 
strongly nonlinear in their nature and resonance 
phenomenon occurs under the combined effect of non-linear 
parameters and external excitation. Joshi, N.K., and Pravin, 
V.K. [9] investigated experimentally the effect of torsional 
excitation of variable inertia effects in multi cylinder 
reciprocating engine. Their experimental results indicated 
that the nonlinear coupling was observed and the 
phenomenon of secondary resonance was approved, which 
in turn emphasized on the nonlinear nature of the torsional 
vibration of reciprocating multi cylinder engine. 

In the present paper an attempt was made to consider the 
effect of the variation of the inertia of the reciprocating parts 
on the torsional vibration of reciprocating machines. The 
study is based on a development of closed form expression 
for the inertia of the reciprocating parts by using Fourier 
analysis. A mathematical model defining the variation on 
the mass moment of inertia of the reciprocating parts over a 
cycle of crankshaft was derived. The governing nonlinear 
differential equation of the torsional vibration of the system 
was found by using the energy method. The effect of the 
inertia ratio parameters on torsional vibration amplitudes 
and the variation on the frequency ratio over a crankshaft 
cycle are examined.     

II. MATHEMATICAL FORMULATION 

A. Kinematical analysis of reciprocating machines  

 The geometrical arrangement of a crankshaft-connecting 
rod-reciprocating mass of reciprocating engines or 
compressor is shown graphically in Fig.1.  

Referring to Fig.1, the radial distance, rco , between the 
center of gravity of the connecting rod and the center of 
rotation of the crankshaft may given by :- 

22 )cos()sin(  axarco 
 (1)

Where  

a: distance from center of gravity of connecting rod to 
the small end. 

x: distance between crankshaft center and reciprocating 
mass.  

angular position of the connecting rod with respect 
to the linear displacement of the mass Mr.  

 

 

 

 

 

 

Also, from the geometrical relationship it can be seen 
that:- 
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Where n is the ratio of crankshaft radius, rc, to the 
connecting rod length, l, and b is the distance from center of 
gravity of connecting rod to the big end . 

Substituting of (2) in (1), then the radial distance rco can 
be expressed in terms of the crankshaft angular displacement 

 by:- 
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Also, it can be seen that from Fig.1, the angular 

displacement, co, of the radial distance, rco, measured from 
the horizontal line (the same datum of the crankshaft) is 
given by:- 

co

co
r

an 


sin
sin 

   

The derived expressions of both the radial distance rco and 

the angular displacement co can be used in the subsequent 
analysis to determine the kinetic energy of the connecting 
rod. But, because both expressions are periodic functions in 

terms of the crankshaft angle , their derivatives with the 
time producing complicated terms, and cannot be easily 
manipulated to obtain the final form of the system torsional 
vibration equations. 

 Fortunately, any periodic function can be 
represented by Fourier series expansion as an infinite sum of 
sins and cosines terms [10]. Consequently, the radial 

distance rco and the angular displacement co that are given 
in (3) and (4) can be reproduced by using Fourier analysis. 
Thus, a mathematical closed form solution of the system 
nonlinear torsional vibration displacement can be derived by 
using energy method.   

  

B. Fourier Series Analysis 

In order to apply a Fourier series presentation in the 
present work, the following reciprocating machine 
parameters are adopted, as shown in Table I below :-    

TABLE I.      RECIPROCATING MACHINE PARAMETERS  

Parts 
Mass 

(kg) 

Mass moment of 

inertia (kg.m2) 

Dimensions 

(mm) 

Crankshaft - Ic =0.203*10-3 rc = 37 

Connecting 

rod 
0.417 Icog = 0.663*10-3 a=92.18, b=28.6 

Reciprocating 

mass 
0.283 - - 

 

The Fourier series representation of any periodic 
function is given by:-   
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Fig. 1. Geometrical arrangement of a crankshaft-connecting  rod-
reciprocating mass 
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In many cases the integrals of the coefficients ao, an, bn, 

cannot be evaluated easily when the function y () does not 
have simple form. Accordingly, if graphical representations 

of rco and co are available, then, the coefficients can be 
evaluated numerically by using a numerical integration 
procedure like the trapezoidal or Simpson’s rule [10]. Thus, 
the coefficients are given by:- 
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Where N is an even number of equidistance of points 

over the period  

The numerical evaluation of the coefficients ao, an, and 
bn results in obtaining the reproduced forms of both rco and 

co, as shown below:- 

)cos29.1(0286.0cos0286.0037.0  cor
 (9) 

 2sin6.0sin2.1 co    (10) 

A comparison between the actual function given by (3) 
and (4), and the approximate one given by (9) and (10) of 

both rco and co, are shown in Figs 2, and 3 respectively. The 
results indicate that the Fourier series expansion provides an 
acceptable mathematical expression for the radial distance 

rco and the angular displacement, co. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

These expressions can be used in the subsequent analysis to 
study the nonlinear torsional vibration of reciprocating 
machines with taken into consideration the variation of the 
mass moment of inertia of the reciprocating parts 
(connecting rod and reciprocating mass). 

III. NONLINEAR TORSIONAL VIBRATION ANALYSIS  

A. Energy method 

The system adopted in the present steady is 
schematically shown in Fig. 4. This system includes a 
flywheel (F) driven by  reciprocating mass (Mr)-connecting 
rod (co)-crankshaft (c) engine with assuming that the gas 
pressure is neglected and the motion of the reciprocating 
mass is a simple harmonic motion.       

The total kinetic energy T of the system is given by:- 

2
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Where the suffixes f, c, co, and r refer to the flywheel, 
crankshaft, connecting rod, and reciprocating mass, and I 

and  represent their corresponding values of the mass 
moment of inertia and angular displacement.                   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Connecting rod angle, co, versus crankshaft angle . 

Crankshaft angle deg.) 

C
o
n
n

ec
ti

n
g

 r
o
d

 a
n
g
le

, 


co
 (

d
eg

.)
 

 
 

Fig. 2. Connecting rod radial distance, rco, versus crankshaft angle  
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Fig. 4. Arrangement of reciprocating engine model. 
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 Using the definition of the radial distance rco, the mass 
moment of inertia of the connecting rod is given by:- 

2

cococogco rMII 
  (12) 

Where Icog and Mco are represent the mass moment of 
inertia and mass of the connecting rod respectively. 

Substituting of (9), (10) after differentiation for co



 , and 
(12) in (11),    then, the kinetic energy of the system is given 
by:- 
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The potential energy U of the system is given by:- 
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1
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Where kt represents the torsional stiffness constant of the 
crankshaft. 

The corresponding Lagrange’s equation in terms of the 

coordinate  is presented by:- 
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Substituting of (13) and (14), in (15), results in:- 
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The following relations are used in the subsequent 
analysis, and defined such that:- 
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Where:- 

Ieq: equivalent mass moment of inertia of the system. 

rf: frequency ratio. 

: torsional vibration displacement. 

: frequency of the crankshaft. 

n: natural frequency of the system 

1: inertia ratio of the crankshaft. 

2 and 3: inertia ratio of the connecting rod 
corresponding to mass moment of inertia and mass 
respectively. 
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Fig. 6. Torsional vibration dispalcement versus dimensioless time at 

frequency ratio, rf = 0.0833. 
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Fig. 5. Torsional vibration dispalcement versus dimensioless time at 

frequency ratio, rf = 0.111. 
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Substituting of (17), and neglecting higher order and 
product derivative terms, then (16), becomes:- 
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The above equation represents the equation of nonlinear 
torsional vibration of reciprocating machines including the 
terms of variable inertia of the reciprocating parts.  

  

IV. SIMULATION RESULTS 

The torsional vibration displacement including the 
variable inertia of reciprocating machines was developed by 
using MATLAB/Simulink. With appropriate initial 
conditions the time domain torsional vibration displacement 
is shown in Fig.5, with frequency ratio of rf =0.0833. The 
response emphasized on the fact of the nonlinear nature of 
the torsional vibration when the variation of the inertia of 
reciprocating parts is considered which in turn makes the 
system response unsteady. Also, with increasing the 
frequency ratio to rf = 0.111, as shown in Fig. 6, the 
response is being more unstable.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 This reflects the strong effect of variation in the inertia 
of reciprocating parts, which in turn, increasing the 
sensitivity of the system for the increase in speed engine. As 
well as, the variation in the inertia of the system result in 
changing the critical range of engine speed.  This may be 
attributed to the rising of what is called secondary harmonic 
resonance phenomenon as a direct effect of the cyclic 
variation of the inertia of reciprocating parts [4, 8, 9].  

The variation of the engine reciprocating parts mass 
moment of inertia and system natural frequency over 
crankshaft angle is shown in Figs.7 and 8 respectively. The 
result of these two figures indicates the frequency coupling 
between the system natural frequency and the engine speed 
[9]. Also, it can be seen that, the cyclic variation in effective 
inertia of the engine resulting in cyclic variation of 
frequencies and corresponding amplitudes [4].  
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Fig. 9. Harmoinc excitation torque/(N.m) versus crankshaft angle at 

frequency ratio, rf = 0.0833. 
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Fig. 7. Engine effective mass moment of inertia versus crankshaft angle 

, at frequency ratio, rf = 0.0833. 
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Fig. 10. Torsional vibration dispalcement versus dimensionless 

time,, of equivalent ratio model at frequency ratio, rf = 0.1.  
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Fig. 11. Torsional vibration dispalcement versus dimensionless time , 

at frequency ratio, rf = 0.1 ( present model) 
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Fig. 8. Engine frequency ratio  versus crankshaft angle  
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 The variation of the harmonic excitation torque over a 
crankshaft angle is shown in Fig. 9. It can be seen that, the 
considering of the variation of the inertia of the 
reciprocating parts in the analysis results in introducing of a 
nonlinear harmonic excitation torque [4, 9].
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Fig. 13. Maximum Torsional vibration amlpitude versus percentage 

increase in 3 at frequency ratio rf =0.0833. 
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Fig. 12. Torsional vibration dispalcement versus dimensionless time,, at  

different frequency ratio, rf  

Fig.10 and Fig.11 show a comparison between the 
torsional vibration displacements with considering variable 
inertia of reciprocating parts in the present model with the 
equivalent inertia model followed by researchers such as [1]. 
It can be seen that the torsional vibration displacement of the 
variable inertia model is larger than that deduced by 
equivalent inertia model for the same engine speed. This is 
attributed to the complicated nature of the harmonic 
excitation torque introduced by the variable inertia of 
reciprocating parts [4, 8, 9]. 

  Fig.12 shows the variation of the torsional displacement 
with dimensionless time for different frequency ratios 
(engine speed). It is shown that the torsional vibration 
displacement is greatly affected by the engine speed and 
may be lead to a serious damage of the system rotating parts 
when in it is being near the harmonic resonance condition 
[5]. Also, with increasing frequency ratio, the torsional 
vibration trend of the system is being more closely to 
chaotic motion and irregular periodic oscillations (non 
harmonic). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The effect of inertia of reciprocating parts on torsional 
vibration displacement of reciprocating machines can be 
examined over a range of percentage inertia ratio of 

connecting rod (3), as shown in Fig. 13. It can be seen that 

with percentage increase of 70% in 3, the increase in max is 
with 3 orders of magnitude. This indicates that, with 
increasing the inertia ratio of connecting rod, the system 
torsional vibration is no longer within expectable values. 
Also, the attention should be given for the connecting rod 
part of reciprocating masses than other parts, because its 
inertia variation represents the main dominant part of the 
effective inertia of the system. Consequently, for heavy 
engines, such as marine engine, when the connecting rod 
inertia ratio of appreciable values, the torsional vibration 
analysis should be carried out with considering the variation 
in the inertia of reciprocating parts [4].  

The results obtained in the present work give an 
indication that the proposed analytical solution based on 
Fourier analysis provided acceptable results and can be 

followed to examine the nonlinear torsional vibration of 
variable inertia reciprocating machines.     

 

 

 

 

 

 

 

 

 

 

 

 

 

V. CONCLUSIONS 

The variation in the inertia of reciprocating parts is 
greatly effecting the torsional vibration displacement of the 
system, and with increasing the engine speed the torsional 
vibration trend of the system is being more closely to 
chaotic motion and irregular periodic oscillations (non 
harmonic) is excepted. 

 The introducing of the variable inertia of reciprocating 
parts in analysis produces the harmonic excitation torque, 
and gives a rising for the secondary harmonic excitation 
phenomenon. This in turn induced cyclic variation of the 
system frequencies and corresponding amplitudes over a 
cycle of crankshaft rotation. 

A comparison with equivalent inertia model show large 
torsional vibration amplitude deduced by the present model. 
This is attributed to the complicated nature of the harmonic 
excitation torque introduced by the variable inertia of 
reciprocating parts. 

With increasing the inertia ratio of connecting rod, the 
system torsional vibration is no longer within expectable 
values, and an attention should be given for the connecting 
rod part of reciprocating masses than other parts. Because its 
inertia variation part represents the main dominant part of 
the effective inertia of the system. Consequently, for heavy 
engines, such as marine engine, when the connecting rod 
inertia ratio of appreciable values, the torsional vibration 
analysis should be carried out with considering the variation 
in the inertia of reciprocating parts. 
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