
Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 3159-0040

Vol. 3 Issue 1, January - 2016

www.jmest.org

JMESTN42351339 3777

Adaptive Tools And Technology In Big Data
Analytics

Reza Shokri Kalan, İlker Kocabaş
International Computer Institute

Ege University
İzmir, Turkey

reza.shokri@hotmail.com, ilker.kocabas@ege.edu.tr

Abstract—In 2015, number of people plugging to
Internet rise to 3 billion. Beside human activity in
social networks, billions of connected devices,
sensor and instrument uninterrupted make
amount of data. Irrespective of how data created,
a natural question comes to mind is: How we
could manage data analytics and what sort of
tools should be adapted for handling this task in
effective way? This paper discusses approaches
and environments about big data. It revolves
around three important areas of big data tools and
talent, namely (i) data management (ii)
infrastructure and technology, and (iii) query
performance. The goal of big data management is
to ensure a high level of data quality and
accessibility which strongly depend on data
transforming and storing. Using index improve
query performance, however, many traditional
indexing approaches in big data trinity involve a
significant upfront cost for index creation. The key
contribution of this paper is that using right tools
over right data, and providing effective index to
minimize upfront cost.

Keywords—Big Data, Analytic, Cloud
computing, Hadoop, MapReduce, Adaptive
Indexing

I. INTRODUCTION

In the Big data-Bang theory, online potential rapidly
changes social activity and transforms our lives by
migrating from paper base information to electronical
media such as googling, facing, twitting and texting. In
a competitive market place, smart organization try to
understand customer behaviors and offer customized
service by mining and exploring data collecting from
different resources. Data mining and knowledge
discovery aims to find hidden relation between
different attribute [1,2]. Mining requires integrated,
cleaned, trustworthy, and efficiently accessible data
[3]. However, according to the nature of big data,
analyzing and managing is more complicated. Data
integration focuses on collecting and combining
different forms of data and reshaping all of them in
new platforms. Without doubt, well designed and
smaller set of data can be analyzed quickly and
productively. Therefore, big data integration (BDI)
process requires careful data classification. However,
integration huge volume of data saved in variety file
format is a big challenge. Furthermore, data velocity

increases this complexity. Performing analytics on
large volumes of data requires efficient methods to
store, filter, transform, and retrieve the data [4]. By the
way big data management is labor task and need a
specific computing algorithm and infrastructure. Cloud
as bedrock of big data processing enables
organizations to pay only for the resources and
services they use. Cloud computing is an extremely
successful paradigm of service oriented computing.
Although offering resources in a pay-as-you-go fashion
is more cost effective and improves availability and
elasticity, but it brings new challenges. Some of this
challenge and solutions have been addressed in
[5,6,7,8]. Since everything around big data is changing
very fast, big data is more complex than as a
structured database and relation between
components. To overcome this complexity and find
value of mine this information we need new tools and
talent. In this paper, we share effective solution in
order to minimize I/O costs and utilize the available
resources and parallelism of large clusters for
indexing. We first review the big data state-of-the-art
and introduce the general background related
technologies, such as could computing. We then focus
on big data indexing in relational database and
MapReduce technology. For each system, we
introduce the general background, discuss the
technical challenges, and review the latest advances.
These discussions aim to provide a comprehensive
overview and big-picture to readers of this exciting
area.

II. BACKGROUND

The popularity of big data brings new business
fashion, therefore, all market place and industry sector
have started big data management in effective and
valuable manners. The concept of big data analytics is
successful application in different business, science
and social domain. Advanced of big data analysis
offers a cost-effective opportunity in critical decision
making area such as healthcare, security, economic,
crime, natural disaster and recourse management
[9,10]. Big data is more complex ecosystem with
hidden relation and unstructured data which is growing
rapidly. In fact big data are a revolution in different
domain. Therefore, the big data solution must be able
to offer deep analytic, high agility, massive scalability
with low cost and latency [11].

mailto:reza.shokri@hotmail.com
mailto:ilker.kocabas@ege.edu.tr

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 3159-0040

Vol. 3 Issue 1, January - 2016

www.jmest.org

JMESTN42351339 3778

As shown in Fig. 1. nature of big brings new
challenge in data capturing, storing and access
mechanism. The first impression of big data is its
volume, so the accessibility of big data is on the top
priority of the knowledge discovery process [12]. Cloud
computing as a bedrock provide cost effective service
for storing and processing big data comes from
different resources. Although the emergence of cloud
computing bring new enterprise opportunity, but still
there is more obstacle in use of big data leverage such
as integration, confidentially, and accessibility.
Furthermore, the network bandwidth capacity is the
bottleneck in the cloud and distributed systems,
especially when the volume of communication is large
[12]. Last but not least, cloud storage also leads to
data security problems [13].

Fig. 1. Big data resources and nature

Some of the most significant potential of big data
comes from the bridge among resource and data
streams. We can aggregate big data from three
sources: traditional (structured data), sensory (log
data, metadata), and social media (unstructured data).
Instance, in the health care system, the outcome of
combination multiple data comes from patient
behavior, clinic, service and cost, medical research
and the weather report is more desirable an cost
effective. Regardless of how the data are created, data
management focus on data structure and processing
skills. Big data are often stored using non-relational
DBMSs such as: Column based, key-value, graph, and
document based.

A. Big Data Definition and Properties

There are many different stories about big data
definition and properties. From the best knowledge of
the authors, the common definition has three V’s: (1)
Volume, (2) Variety and (3) Velocity of data.
Furthermore, big data processing lead to big (4) Value
and finally the main aim of big data are (5) Veracity.
While the first three V’s are more technical and related
to data engineering such as collection, summarizing,
storage or transferring, the last two V’s focused on

data mining such as analytic, knowledge extraction
and decision making. All of these factors covered
under the complexity umbrella (Fig. 2). Organizations
expect the value of these emerging techniques to soar.
All the smartest organizations are embedding analytics
to transform information into wisdom and then action.
Organizations that know where they are in terms of
analytics adoption are better prepared to turn
challenges into opportunities.

Fig. 2. Big data life cycle and property

B. Big Data Infrastructure and Tools

Big data processing requires secure and powerful
computing capability. Multi core computer or multi
clustering may overcome the processing lack.
However, high performance computing is non-
economic. The big data infrastructure must be able to
support deeper and faster data mining even in
distributed environments. Furthermore, data
infrastructure must ensure data security and data
ownership protection [14]. Because of local system
limitation such as memory and CPU bottleneck,
distributed system is used to store and processing big
data. The cloud analytic solution can be good address
to this problem, but there are still some challenges
include privacy, scalability and query response time.
Some of the solution such as Google file system (GFS)
which are currently used in Cloud [7] attempted to
provide the robustness, scalability and reliability that
certain internet service need [8]. Amazon simple
storage service (S3) and Windows Azure binary large
object (Blob) storage are examples of object-store
solution which tries by replicating file across multiple
geographical sites improve redundancy, scalability,
and data availability. Although these solutions provide
the scalability and redundancy that many Cloud
applications require, they sometimes do not meet the
concurrency and performance needs of certain
analytics applications [8]. Without doubt, distributed
storage increase safety, but lead to redundancy
problem. We will discuss about Cloud computing in
next section.

C. Big Data and Analytical Challenges

Businesses seeking to increase profitability,
improve customer retention, extend product lines and
reduce risk through analytics are constrained by

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 3159-0040

Vol. 3 Issue 1, January - 2016

www.jmest.org

JMESTN42351339 3779

traditional data integration approaches that slow
analytics adoption. These include three significant
challenges:

 Data agility and quality- in dynamic businesses

new data sources need to be brought on
board quickly and existing sources modified to
support each new analytic requirement.
Furthermore, data virtualization eliminates
many root causes of poor data quality.

 Big data integration- since data sources are
more heterogeneous in content and structure
and many of the data sources are very
dynamic, big data integration (BDI) is the
biggest bottleneck. A challenge with current
big data analysis is the lack of coordination
between database systems [9]. Traditional
tools that extract, transform and load (ETL) are
not more suitable for big data. It is possible to
use built-in Hadoop tools such as Hive and Pig
to extract, load, and transform data, rather
than using traditional ETL tools. In the section
four we will discuss about Apache Hadoop
and explain that why Hadoop is not a good
choose always.

 Query performance- since query performance is
a critical success factor, most of big dataset
are indexed to optimize the SQL query
performance. Relational database
management system (SQL) and developer-
centric specialized systems (NoSQL) solutions
are two classes of big data processing
systems. SQL based system requires a good
structure with defined attributes to hold the
data in order to use effect index system. On
the contrary, NoSQL databases which usually
allow free-flow operations. NoSQL is a
distributed, highly scalable, key-value
databases provide very fast performance, and
can rapidly store large numbers of
transactions, but need a more complex query
pattern which generally it is more difficult for
end users. While index improves query
performance why general Hadoop does not
use it? And why we need to use the
MapReduce system which just expert know
about? We will answer this question in section
five, by investigating advantage and
disadvantage of using processing technique in
both DBMSs and MapReduce systems such
as Hadoop and HAIL.

III. BIG DATA ANALYTICS PARADIGMS

It is proved there is no single system that would be
most suitable for every need [8, 15]. Therefore,
analytic paradigm can be mixed of three models:

 Real-time: In-memory, scale-out engines that

provide low-latency,
 Interactive: Includes distributed MPP

(massively parallel processing)

 Machine learning: HDFS (Hadoop distributed

file system)

Such a design forward data processing toward
enterprise data warehouse (EDW). This approach,
compromised SQL and NoSQL data structure. As we
know, data locality has impact effect in data
processing. A machine learning approach based on
MapReduce is new approach cover data locality
problem. Hadoop, as open source Map reducer
implementation use HDFS to partition and distribute
big data over multi clusters. Also HDFS reduces the
failure probability, by replicating data at least on three
nodes. Hive-Hadoop is SQL friendly query language
integrated multiple data sources.

A. Big Data Resource Organization

Since the volume of big data is giant, it need to
more powerful computing, application and
infrastructure capability rather than traditional systems.
High performance computing, storage, network, and
data centric service models are fundamental resources
for big data. Disks are still the major bottleneck (I/O
bandwidth) in query execution over large datasets
even in parallel mode. As an Amdahl’s Law, any new
or hot data that must be accessed more frequently, is
stored on faster and more expensive storage media,
while less critical data is stored on slower, but cheaper
media.

B. Cost Effective, Scalable and Parallelizable
System

Every industry has its big data analytics under
certain condition include (i) data volume and velocity,
(ii) impacts of computing, storage, and network
resources, and (iii) types of environments [16]. Cloud
is complete software stack that support elasticity and
provide restrict API to applications designed to run on
top of a shared-nothing architecture with on demand
scalability [5, 17]. Three most popular cloud paradigms
include: Infrastructure as a Service (IaaS), Platform as
a Service (PaaS), and Software as a Service (SaaS).
The concept, however can also be extended to Data
as a Service (DaaS) or Analytic as a Service (AaaS).
In this section we discuss about opportunity and
limitation of deploying big data on the Cloud platform.
Firstly, we point to some characteristic of cloud
computing and then show why current available
systems are not ideally-suited for cloud deployment.

C. Data Management in the Cloud

Data locality is the key point of big data analysis
application. Despite transferring small file to powerful
computing system is the preferred option, however,
this is not suitable for big data because of data
volume. In such a case moving data to remote
computing machine decreases efficiency due to
transmission time. Since data transferring is more time

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 3159-0040

Vol. 3 Issue 1, January - 2016

www.jmest.org

JMESTN42351339 3780

costly, therefore data have to be stored as distributed
manner. Thus, bringing processing unit near to data is
more common and logical. Regardless of underlying
infrastructure such as Cloud computing, correct tools
and talent for big data mining has high priority. Any
provided tools should assist customers to estimate the
costs and risks of performing analytics on the Cloud.

D. Cloud Storage Locality

Nowadays, public clouds natively provide many
kinds of big data analytics platforms and tools in order
to speed up data analytics at an affordable cost [16]. In
public clouds, customers rent and run services without
exact information about the data storage location. As
discussed before remote processing is not suitable for
big data because of data availability. Access to data
through large geographical distances is more time
costly and increase response time. To address this
challenge WAN optimization technology must maturing
quickly to substantially reduce network latency while
transmitting large amounts of data from one system to
another among geographically distributed clouds.

E. Cloud Storage and Untrusted Host

In general, moving data off premises increases
accessibility, confidentiality and privacy risks.
Although, cloud provider loyal the privacy of its
customers, but there is no 100% guarantee. Firstly, in
multi talent system security risk increase, secondly,
under some condition government restricts customer
to access own data. Furthermore, national security
allows the government to demand access to the data
stored on any data storage. Without doubt, any
security leakage or privacy violations in transactional
databases that includes sensitive information like
personal information or financial data is unacceptable.
Although, data encryption increase data security, but it
is more time costly. Therefore, deploying a
transactional database and application on public cloud
are not well suited.

IV. DATA STRUCTURES AND ARCHITECTURE

Usually selective queries that scans through the
complete dataset are not efficient. This is same as
looking for a needle in a haystack. Therefore,
proposed approach must be far away from (i) high
upfront cost which increase waiting time to run actually
start querying and (ii) need for better knowledge of
workload in order to choose the index to create-
generally all users does not have this professionally.

A. SQL Data Modeling and Parallel DBMSs

All SQL friendly database system stores data in
standard relational tables. In distributed form, all tables
partitioned over the nodes in the cluster. In shared
nothing architecture, the database system is deployed

on multiple independent machines, each with local
resources, connected together through high speed
network. Data locality improves total performance by
reducing the amount of data transferred over the
network. In the application level user interact with the
system though SQL commands and never face up with
underlying technical detail. Then database system
transforms and divides the SQL command and
execute in distributed form. The DBMS system has a
schema on write which means the user need to have
knowledge about data structure.

B. Not only SQL Data Modeling

Relational modeling is typically driven by the
structure of available data. NoSQL data modeling is
typically driven by application-specific query patterns
(what answer vs what question). Since structured
database tries to eliminate duplicated data by using
normalization, while aggregation and de-normalization
(data duplication), cluster friendly, open source, no
relational and schema-less are first-class attribute in
NoSQL. In fact de-normalization, store data in query
friendly manner by copying the same data into multiple
documents or tables in order to simplify/optimize query
processing or to fit the user’s data into a particular data
model [18]. It is helpful in I/O per query and processing
complexity vs total data volume.

C. Hadoop and MapReduce

Hadoop works in parallel fashion which each
cluster includes many nodes. The input data file
distributed over all nodes in the cluster by HDFS
underlying file system with at least three replication
factor (Fig .3). Hadoop ecosystem is a good platform
for unstructured data set. It can support the variety of
components, including the HDFS, Pig, HBase
(database/data store), and MapReduce (distributed
sorting and hashing). Original Hadoop scans whole
data set because it does not support any index.
MapReduce is used for developing novel solutions on
massive datasets such as web analytics, relational
data analytics, machine learning, data mining, and
real-time analytics. Hadoop MapReduce scales easily
to very large clusters of thousands of machines. In
addition, the upfront investment for using MapReduce
is small: no need to use schemas, no integrity
constraints, no normalization, and NoSQL. Although,
HDFS provides high fault-tolerance capabilities by
providing multiple replica. However, the performance
of MapReduce in many cases is far from the one of an
optimized structured DBMS [14].

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 3159-0040

Vol. 3 Issue 1, January - 2016

www.jmest.org

JMESTN42351339 3781

Fig. 3. MapReduce Architecture

V. PARALLEL DATA PROCESSING (MAPREDUCE VS

DBMS)

A database system implementation based on
indexing, following three lessons [19]: (i)  Schemas are
good, (ii)  Separation of the schema from the
application is good, (iii) High-level access languages
are good, but MapReduce has learned none of these
lessons, it is a poor implementation based on brute
force instead of indexing. The main question comes in
mind if the database system is so good, why Hadoop
popularity increase day to day? To answer this
question we survey both systems specific architecture
includes replication, indexing, complexity and flexibility.

A. Pre-replication Layout

A parallel processing is a good solution to big data
processing. The parallelism increase performance by
obtaining a high throughput for online transaction
processing (OLTP) load, and low response time for
online analytic processing (OLAP) to answering multi-
dimensional analytical (MDA) queries. As mentioned
before general Hadoop does not support any index.
Since Hadoop uses three replicas, therefore, it is
possible change HDFS to store each physical copy in
a different data layout. This approach looks very
promising, because it helpful in a lot in several query
workloads, at the same time, I/O times improved [15].
Most indexes are too large to fit into memory, which
means that they are going to be stored on disk. Since
I/O is usually the most expensive thing you can do in a
computer system, thus indexes need to be stored in an
I/O efficient way.

Page attributes across (PAX) as a well-known
layout solution significantly improves cache
performance by grouping together all values of each
attribute within each page [20]. Since the relational
database system has traditionally optimized for I/O
performance, PAX minimize storage penalty. Although
PAX was originally invented for cache-conscious
processing, but it has been adapted in the context of
MapReduce [21]. Furthermore, data replication not
only reduce index building time, but also increase
scalability of the architecture and lead to more
availability and reliability. Finally, sharing nothing
architecture eliminate sharing either memory of the
disk across nodes.

B. Big Data Indexing

While the query return similar result from database,
indexing improves query response time. However, if
the table is updated all the time, the overhead of the
index management and re-organization may lead us to
not choose the index. Every data entry of modification
potentially involves updating the indexes, which can
lead to slower performance of data updates.
Regardless of negligible disadvantage of indexing, the
main question is: when and where we need to create
an index?

Indexes are the easiest way to improve the
performance of long running queries with full table
scans. Furthermore, using index improves replication
response and network load. The major index type can
be listed as row based and column based index. Since
row index is more efficient in add/delete row, but read
useless data. On the flip side, column index has
efficient access to useful data, however inefficient in
add/delete row. Therefore, columnar layout is better for
big data, with lots of columns. However, the time
needed to build a data series index becomes
prohibitive as the data grows. Finding the most
efficient index based on state-of-the-art indexing
method for very large data is often hard. Major
problems with big data indexing are:

 Scalability

 Expensive index creation

 High dimensional indexing
 Which attribute to create an index
 re-indexing the whole document, when indexes

become corruptor or new features are added

However, the proposed solution for big data indexing

must be covered:

 Size of index -  Index size should be a fraction of

the original data

 Speed of search- Search over billions – trillions

data value in seconds

 Parallelism-  should be easily partitioned into

pieces for parallel processing

 Speed of index generation-  index should be built

at the rate of data generation

 Multi-variable queries-  be efficient for combining

results from individual variable search results

1) Static and Dynamic Indexing:

Low latency is the main advantage of static
indexing. However, in lack of a suitable index creating
new index is more time costly. Furthermore,
inadaptability to changes in workloads without the
intervention of a DBA, are big disadvantage of static
index technique [22]. Since, we do not know the data
access pattern, determining which attributes or criteria
would be indexed during uploading data to HDFS is
still problematic. Therefore, using any traditional
indexing technique is non-promising, because they
cannot adapt well to unknown or changing query
workloads. To address this problem dynamic index
was invented. The main idea behind this approach is

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 3159-0040

Vol. 3 Issue 1, January - 2016

www.jmest.org

JMESTN42351339 3782

to analyze query workload and make index based on
statically observation.

2) Adaptive Indexing:

Since we try to index more data, the initialization
time to build a state of-the-art data series index (Fig .4)
becomes a prohibitive factor [23]. Adaptive index
instead of building the complete index over the
complete data set up-front and querying only later,
interactively and adaptively build parts of the index,
only for the parts of the data on which the users pose
queries [15]. As more queries are posed, the index is
continually refined and subsequent queries enjoy even
better execution times. [23]. Adaptive indexing is an
automatic process that is not explicitly requested by
users and therefore should not unexpectedly impose
significant performance penalties on users’ jobs [22].
With the leverage of adaptive indexing, users can
immediately start exploring the data series instead of
waiting for valuable periods of time for the index
creation.

This intuition is similar to soft indexes approach,
where the index creation based on a single incoming
query attribution [24]. The concept of adaptive indexing
works with column-store databases [25]. The main
idea is that, instead of building database indexes up-
front, indexes are built during query processing,
adapting to the workload [23, 25, 26]. However, lack of
knowledge about future query is the dark side of this
approach. Also, adaptive index focus on creating non-
clustered indexes in the first place, and hence, it is
only beneficial for highly selective queries.
Furthermore, it is hard to apply existing adaptive
indexing works in MapReduce systems because of (i)
High I/O-costs: adaptive index considers main memory
systems and thus do not factor in the I/O cost for
reading/writing data from/to disk. (ii) Global index
convergence: there are at least three physical data
block replicas. (iii) Centralized approach: existing
adaptive indexing approaches were mainly designed
for single-node DBMSs.

3) Hadoop++ and Trojan Layout:

It is a buzz that Hadoop may suffer from
performance issues when running analytical queries.
Because, Hadoop MapReduce wastes a significant
amount of time reading unnecessary data from disk as
it stores data in row layout. Also, the original
implementation of Hadoop does not provide index due
to the lack of prior knowledge about schema and
MapReduce jobs. Therefore, changing the data layout
in Hadoop in order to be more suitable for analytical
query processing is the biggest challenge.
Unfortunately, Hadoop implements a hard-coded
processing pipeline whose structure is very hard to
change. Therefore, the overall goal of Hadoop++
project is to improve Hadoop's performance for
analytical queries.

Hadoop++ project by focusing on user-defined
functions (UDFs) such as map () and reduce () try to
inject the new changes in the current framework. The
idea behind Hadoop++ is, we can create appropriated
index if we know schema and anticipate MapReduce
jobs. Hadoop ++ use benefit of Trojan index such as
optimal access path, and no more overhead for
creating indexes. In this approach, all data in an HDFS
block (i.e., horizontal partition of data of 64MB by
default), is stored in a column layout yielding up the
performance. This avoids the problems with network
I/O for tuple reconstruction and still gives column-like
access. Hadoop stores, three copies of an HDFS block
for fault-tolerance, which all of them are byte-identical.
By allowing the different copies of a logical HDFS
block to have different physicals layouts, we are able
to optimize the different copies for different types of
queries. Furthermore, several indexes can be created
on same split, but only one of them can be the primary
index. In summary, Trojan layouts improves query run
times both over row layouts and over PAX layouts
without modifying the underlying Hadoop MapReduce
and HDFS engines [26].

Fig. 4. Query pattern in different type of index

4) Effective Cost Indexing with Zero Overhead:

Obviously the preferred index structure should have
minimal overhead (e.g. Cheaper to create in main
memory, cheaply to write to disk, and cheap to query
from disk). A clustered index reorder the physical sort
of data in table, therefore, each table can have only
one clustered index. Since a non-clustered index is
sorted separately from actual data, so a table can have
more than one non-clustered index. Indexes use up
disc space to store, and take time to create and
maintain. Thus, as non-clustered indexes are dense by
definition, they require more write I/O than a sparse
clustered index and affect upload times [27].

Client queries run much faster on average, if
indexes on the right attributes exist. By increasing the
number of indices, the likelihood to find a suitable
index is increasing too, but having multiple indexes is
costly. Hadoop Aggressive Indexing Library (HAIL)
uses the benefit of Hadoop replication factors. In HAIL,
each data-node creates a different clustered index for
each HDFS block replica and stores it with the sorted
data [28]. HAIL can index HDFS blocks in parallel to
job execution. In such a condition, the new job can
already benefit from the previously indexed blocks.

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 3159-0040

Vol. 3 Issue 1, January - 2016

www.jmest.org

JMESTN42351339 3783

Even if we did not create the right indexes at upload
time, HAIL can create indexes adaptively at a job
execution time without incurring high overhead [22].

C. Flexibility and Complexity

DBMSs database system support schema on write.
This means that we need to have knowledge about
database architecture when we want to write
something into the database. Hadoop on the other
hand has a schema on read approach which increase
complexity when we want to read some data set. The
good news is, both classes of system support some
form of user defined function which improve flexibility.
Furthermore, some of the management and analyzing
tools such as Hive, Impala and Sqoop is now
beginning to natively write MapReduce programs and
pre-packaged schemas on read. Loading data in
parallel DBMS is considerably longer, however
process time is fast. On the flip side, MapReduce very
suit to extract a task load. Last but not least, under
some processing condition, there is no other
opportunity more than using Hadoop while the main
part of world information include log file, text and
image are often much bigger than transaction data
kept out of the parallel DBMS system. Despite of SQL
adaption and popularity, DBMS systems are inefficient
in big data set processing.

D. Fault Tolerant

While both classes of systems use the same form
of replication to deal with disk failures, architecture of
the Hadoop frameworks provides a more sophisticated
failure model than parallel DBMSs. Form the best
knowledge of author Hadoop is more economical and
scalable because of using commodity hardware.

VI. BENCHMARKS

Data loading and data processing are two main
factors in data mining domain. Regardless of
distribution overhead, it is adapted that parallel
processing has better performance. In this section, first
we will compare data loading performance in Hadoop
and parallel DBMSs. Then we focus on indexing
technique and compare effects of index in Hadoop,
Hadoop++ and HAIL performance. Some previous
works [29] compare Hadoop data loading performance
over DBMS-X, HadoopDB and Vertica, which are a
parallel row-store database system, a hybrid system
that connects multiple single-node DBMS with
MapReduce, parallel column-store database system
consequently. The proposed solution report load times
for two data sets (Grep and User_visits). While Grep
data is randomly generated and requires no
preprocessing, User_visits needs to be repartitioned
by destination URL and indexed by visit Date for all
databases during the load in order to achieve better
performance on analytical queries (Hadoop would not
benefit from such repartition).

A. Data loading

Obviously, most users want to start analyzing their
data early. Low upload time is a crucial aspect for to

adopt a parallel data-intensive system. In fact, low
startup costs is one of the big advantages of standard
Hadoop over DBMSs. As shown in Fig. 5 load time in
the DBMS system dramatically increases while the
number of nodes changes from 10 to 100. It is
because DBMS are not well designed for task load.
However, Vertica, which is a column-store database
has good performance. Data loading depends on three
main factors: (i) number of indexes, (ii) replication
factor, (iii) cluster scale up and scale out.

Fig. 5. (a) Grep data load time (0.5 GB/node) [29]

 (b) User visits data load time (20GB/node) [29]

1) Number of Indexes:

Since Hadoop has good loading performance, then
we compare it with two other projects. As discussed in
section 4, general Hadoop has 0 indexes as it cannot
create any index. Also Hadoop++ cannot create more
than one index and finally HAIL support number of
indexes. As shown in Fig .6. index creation is time
costly and increase upload overhead. However, HAIL
has a negligible upload overhead when creates one
index per-replica. On the other hand, the result shows
that HAIL improves over Hadoop++ by a factor of
5.1when creating no index and by a factor of 7.3 when
creating one index [27].

Fig. 6. Upload times in three forms of replication datasets

synthetic [27]

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 3159-0040

Vol. 3 Issue 1, January - 2016

www.jmest.org

JMESTN42351339 3784

2) Number of Replica:

As illustrated in Fig .7. we see that HAIL
significantly out performs Hadoop for any replication
factor. Still, when increasing the replication factor even
further for HAIL, we see that HAIL has only a minor
overhead over Hadoop with three replicas only. These
results also show that choosing the replication factor
mainly depends on the available disk space. Index
space on disk is one of the main challenges in index
creating. Even in this respect, HAIL improves over
Hadoop. HAIL enables users to stress indexing to the
extreme to speed up their query workloads.

Fig. 7. Upload times in varies form of replication datasets

synthetic [27]

3) Resource scale:

Resource and underlying structure has big effect on
big data performance. Whenever the volume or
velocity of data overwhelms current processing
solution, resulting in performance that falls far short of
desired [30]. Three forms of scale that help to improve
performance are: (i) Scale down the amount of data
processed or the resources needed to perform the
processing and adjust in size relative to other things,
(ii) Scale up the computing resources on a node, via
parallel processing and redesigning new algorithm and
data structure to take advanced of faster
memory/storage technologies, and (iii) Scale out the
computing to distributed nodes in a cluster/cloud or at
the edge where the data resides.

VII. CONCLUSION

From a technical point of view, comparing parallel
DBMS and Hadoop MapReduce is unfair. MapReduce
is referred to as a new way of processing big data in
cloud computing. Building a big data analytical under
the umbrella of the MapReduce model requires great
programming skills and huge resource investment.
Therefore, it is not more suitable for end users.
Despite lacks some of the features, however, such
methods would be necessary to achieve high
scalability and fault tolerance in massive data
processing [31]. Therefore, the main challenge is to

achieve efficiency, without losing scalability and fault
tolerance. The efficiency problem is expected to be
overcome in two ways: (i) using the effective index
system and (ii) scale up clustering.

Providing multiple static indexes for a variety of
queries still have state-of-art index techniques when it
comes to unknown or changing workloads. Although
creating missing indexes is the dark side of adaptive
index, but automatically index creation during the job
execution time is more valuable. The result shows that
HAIL adaptive indexing has a very low overhead
compared to Hadoop full scan.

Although MapReduce has good performance in job
distribution, but reducing phase in Hadoop is time
costly. Therefore, at the first glance parallel DBMSs
are still a winner hours in processing battlefield.
However, by increasing the number of nodes in the
cluster, reducing time decrease. In other word
MapReduce system has better performance on big
data when it is distributed on thousands of servers.
Furthermore, we need an optimum number of
parallelism to reduce network overhead. Last but not
least, there is no other cost effective option better than
the MapReduce encounter of massive data
processing.

Obviously the dynamic nature of big data goes
beyond traditional tools and application. Therefore, any
new approach must be suitable enough for traditional
structured database and new unstructured data set. As
a part of this process, the agent responsible for fast
retrieval by focusing on classification, filtering and
storing data. Furthermore, immigration from
centralized to distributed approach improve response
time because of data locality, but albeit costly.

REFERENCES

[1] S. Loudcher, W. Jakawat, E. Morales, C. Favre,”
Combining OLAP and information networks for
bibliographic data analysis: a survey,” Scientometrics,
Volume 103, Issue 2, pp. 471-487, 2015

[2] U. Fayyad, G. Piatetsky-Shapiro , P. Smyth ”
The KDD process for extracting useful knowledge from
volumes of data,” Communication of the ACM, Volume
39 Issue 11, pp. 27–34, 1996

[3] H.A. Labrinidis, V. Jagadish,” Challenges and
Opportunities with Big Data,” Proceedings of the VLDB
Endowment, Volume 5 Issue 12, August, pp. 2032-
2033, 2012

[4] D.M Assuncao, N.R Calheiros ,S. Bianchi, A.S
Netto, R. Buyyab,” Big Data computing and clouds:
Trends and future directions,” Journal of Parallel and
Distributed Computing, Volumes 79–80, pp. 3–15,
2015

[5] D.J Abadi,” Data management in the cloud:
Limitations and opportunities,” IEEE Data Engineering
Bulletin 32 (1), pp. 3–12, 2009

http://link.springer.com/journal/11192
http://link.springer.com/journal/11192/103/2/page/1
http://www.sciencedirect.com/science/journal/07437315
http://www.sciencedirect.com/science/journal/07437315
http://www.sciencedirect.com/science/journal/07437315/79/supp/C

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 3159-0040

Vol. 3 Issue 1, January - 2016

www.jmest.org

JMESTN42351339 3785

[6] S. Sakr, A. Liu, D. Batista, M. Alomari,” A survey
of large scale data management approaches in cloud
environments,” IEEE Communications Surveys
Tutorials, 13 (3), pp. 311–336, 2011

[7] S. Ghemawat, H. Gobioff, S-T. Leung,” The
google file system,” Proceedings of the 9th ACM
Symposium on Operating Systems Principles (SOSP),
pp.29–43, 2003

[8] J. Yu, J. Ni,” Development Strategies for SME
E-Commerce Based on Cloud Computing,” Seventh
International Conference on Internet Computing for
Engineering and Science, 2013

[9] R. Tinati, S. Harford, L. Carr, C. Pope,” Big data:
methodological challenge and approaches for
sociological analysis,” Sociology 48(1), pp.23-39, 2014

[10] D.H. Shin, M.C. Choi,” 2015. Ecological view of
big data,” perspective and issue’ Telematics and
Informatics, Volume 32, Issue 2, pp.311–320, 2015

[11] J. Dittrich, J. Arnulfo, Q. Ruiz, A. Jindal,Y.
Kargin,V. Setty V, and J. Schad,” Hadoop++: Making a
Yellow Elephant Run Like a Cheetah (Without It Even
Noticing),” PVLDB, Volume 3, Issue (1-2), pp.515–529,
2010

[12] C.L P. Chen, C.Y. Zhang,” Data-intensive
applications, challenges, techniques and technologies:
A survey on Big Data,” Information Sciences. Volume
275, pp. 314–347, 2014

[13] Q. Wang, C. Wang, K. Ren, W. Lou, J. Li,”
Enabling public auditability and data dynamics for
storage security in cloud computing,” IEEE Trans.
Parallel and Distributed System. Volume 22, Issue 5,
pp.847–859, 2011

 [14] D. Agrawal, S. Das, A. Abbadi,” Big data and
cloud computing: current state and future
opportunities. Proceedings of the 14th International
conference on Extending database Technology,”
EDBT/ICDT11, pp.530-533, 2011

[15] A. Jindal, Q. Ruiz, J. Dittrich,” Trojan data
layouts: right shoes for a running elephant,” SOCC,
2011

[16] C.P. Raj, S. Vanga,” Use big data and fast data
analytics to achieve analytics as a service (AaaS) Key
analytical platforms on IBM SoftLayer Cloud,” IBM
developer works, 2015

[17] A. Rathi, N. Parmar,” Secure Cloud Data
Computing with Third Party Auditor Control.
Proceedings of the 3rd International Conference on
Frontiers of Intelligent Computing,” Theory and
Applications (FICTA), Volume 328 pp.145-152, 2014

[18]https://highlyscalable.wordpress.com/2012/03/0
1/nosql-data-modeling-techniques/

[19] A. Pavlo, E. Paulson, A. Rasin, D. Abadi, D.
DeWitt, S. Madden, and M. Stonebraker,”A
Comparison of Approaches to Large-Scale Data
Analysis,” Proceedings of the 2009 ACM SIGMOD

International Conference on Management, pp. 165–
178, 2009

[20] A. Ailamaki, J. DeWitt David, D. Hill Mark,”
Data page layouts for relational databases on deep
memory hierarchies,” The International Journal on
Very Large Data Bases (VLDB), Volume 11 Issue 3,
pp. 198-215, 2002

[21] S. Chen,” Cheetah: a high performance,
custom data warehouse on top of MapReduce,”
PVLDB Volume 3, Issue (1-2), pp.459–1468, 2010

[22] S. S. Richter, Q. Ruiz, S. Schuh, J. Dittrich,”
Towards zero-overhead static and adaptive indexing in
Hadoop,” VLDB, Volume 23, Issue 3, pp 469-494,
2013

[23] K. Zoumpatianos, S. Idreos, T. Palpanas,”
Indexing for Interactive Exploration of Big Data Series,”
SIGMOD '14 Proceedings of the 2014 ACM SIGMOD
international conference on Management of data,
pp.1555-1566, 2014

[24] M. Lühring, K.U. Sattler, K. Schmidt, E.
Schallehn,” Autonomous management of soft indexes,”
ICDE Workshop on Self-Managing Database Systems,
pp. 450-458, 2007

[25] G. Graefe, F. Halim, S. Idreos, H.A. Kuno, S.
Manegold, and B. Seeger,” Transactional support for
adaptive indexing,” VLDB, Volume 23, Issue 2:pp.303–
328, 2014

[26] S. Idreos, S. Manegold, H. Kuno, and G.
Graefe,” Merging what’s cracked, cracking what’s
merged: adaptive indexing in main-memory column-
stores,” VLDB, Volume 4, Issue 9, pp.586–597, 2011

[27] J. Dittrich, S. Richter, S. Schuh, J. Arnulfo, Q.
Ruiz,” Efficient OR Hadoop: Why not both?,”
Schwerpunktbeitrag, Datenbank-Spektrum, Volume
13, Issue 1, pp.17-22, 2013

[28] J. Dittrich, J. Arnulfo, Q. Ruiz, S. Richter, S.
Schuh, A. Jindal, J. Schad,” Only Aggressive
Elephants are Fast Elephants,” Proceedings of the
VLDB Endowment, volume 5 Issue 11, pp.1591-1602,
2012

[29] A. Abouzeid, K. Bajda-Pawlikowski, D. Abadil,
A. Silberschatz, A. Rasin,” HadoopDB: An
Architectural Hybrid of MapReduce and DBMS
Technologies for Analytical Workloads,” Proceedings
of the VLDB Endowment, Volume 2 Issue 1, pp.922-
933, 2009

[30] B.P. Gibbons,” 2015. Scale Down, Scale Up,
Scale Out,” IEEE 29th International Parallel and
Distributed Processing Symposium, 2015

[31] K-H. Lee, Y-J. Lee, H. Choi, Y.D. Chung, B.
Moon,” Parallel Data Processing with MapReduce: A
Survey,” ACM SIGMOD, Volume 40, Issue 4, pp.11-
20, 2011

http://www.sciencedirect.com/science/journal/07365853/32/2
http://link.springer.com/book/10.1007/978-3-319-12012-6
http://link.springer.com/book/10.1007/978-3-319-12012-6
http://link.springer.com/book/10.1007/978-3-319-12012-6
https://highlyscalable.wordpress.com/2012/03/01/nosql-data-modeling-techniques/
https://highlyscalable.wordpress.com/2012/03/01/nosql-data-modeling-techniques/
http://link.springer.com/journal/778
http://www.sigmod.org/2014
http://link.springer.com/journal/13222
http://www.eecs.umich.edu/db/pvldb/

