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Abstract—In 2015, number of people plugging to 
Internet rise to 3 billion. Beside human activity in 
social networks, billions of connected devices, 
sensor and instrument uninterrupted make 
amount of data. Irrespective of how data created, 
a natural question comes to mind is: How we 
could manage data analytics and what sort of 
tools should be adapted for handling this task in 
effective way? This paper discusses approaches 
and environments about big data. It revolves 
around three important areas of big data tools and 
talent, namely (i) data management (ii) 
infrastructure and technology, and (iii) query 
performance. The goal of big data management is 
to ensure a high level of data quality and 
accessibility which strongly depend on data 
transforming and storing. Using index improve 
query performance, however, many traditional 
indexing approaches in big data trinity involve a 
significant upfront cost for index creation. The key 
contribution of this paper is that using right tools 
over right data, and providing effective index to 
minimize upfront cost. 
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I.  INTRODUCTION 

In the Big data-Bang theory, online potential rapidly 
changes social activity and transforms our lives by 
migrating from paper base information to electronical 
media such as googling, facing, twitting and texting. In 
a competitive market place, smart organization try to 
understand customer behaviors and offer customized 
service by mining and exploring data collecting from 
different resources. Data mining and knowledge 
discovery aims to find hidden relation between 
different attribute [1,2]. Mining requires integrated, 
cleaned, trustworthy, and efficiently accessible data 
[3]. However, according to the nature of big data, 
analyzing and managing is more complicated. Data 
integration focuses on collecting and combining 
different forms of data and reshaping all of them in 
new platforms. Without doubt, well designed and 
smaller set of data can be analyzed quickly and 
productively. Therefore, big data integration (BDI) 
process requires careful data classification. However, 
integration huge volume of data saved in variety file 
format is a big challenge. Furthermore, data velocity 

increases this complexity. Performing analytics on 
large volumes of data requires efficient methods to 
store, filter, transform, and retrieve the data [4]. By the 
way big data management is labor task and need a 
specific computing algorithm and infrastructure. Cloud 
as bedrock of big data processing enables 
organizations to pay only for the resources and 
services they use. Cloud computing is an extremely 
successful paradigm of service oriented computing. 
Although offering resources in a pay-as-you-go fashion 
is more cost effective and improves availability and 
elasticity, but it brings new challenges. Some of this 
challenge and solutions have been addressed in 
[5,6,7,8]. Since everything around big data is changing 
very fast, big data is more complex than as a 
structured database and relation between 
components. To overcome this complexity and find 
value of mine this information we need new tools and 
talent. In this paper, we share effective solution in 
order to minimize I/O costs and utilize the available 
resources and parallelism of large clusters for 
indexing. We first review the big data state-of-the-art 
and introduce the general background related 
technologies, such as could computing. We then focus 
on big data indexing in relational database and 
MapReduce technology. For each system, we 
introduce the general background, discuss the 
technical challenges, and review the latest advances. 
These discussions aim to provide a comprehensive 
overview and big-picture to readers of this exciting 
area. 

II. BACKGROUND 

The popularity of big data brings new business 
fashion, therefore, all market place and industry sector 
have started big data management in effective and 
valuable manners. The concept of big data analytics is 
successful application in different business, science 
and social domain. Advanced of big data analysis 
offers a cost-effective opportunity in critical decision 
making area such as healthcare, security, economic, 
crime, natural disaster and recourse management 
[9,10]. Big data is more complex ecosystem with 
hidden relation and unstructured data which is growing 
rapidly. In fact big data are a revolution in different 
domain. Therefore, the big data solution must be able 
to offer deep analytic, high agility, massive scalability 
with low cost and latency [11].  
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As shown in Fig. 1. nature of big brings new 
challenge in data capturing, storing and access 
mechanism. The first impression of big data is its 
volume, so the accessibility of big data is on the top 
priority of the knowledge discovery process [12]. Cloud 
computing as a bedrock provide cost effective service 
for storing and processing big data comes from 
different resources. Although the emergence of cloud 
computing bring new enterprise opportunity, but still 
there is more obstacle in use of big data leverage such 
as integration, confidentially, and accessibility. 
Furthermore, the network bandwidth capacity is the 
bottleneck in the cloud and distributed systems, 
especially when the volume of communication is large 
[12]. Last but not least, cloud storage also leads to 
data security problems [13]. 

 

 

Fig. 1. Big data resources and nature 

Some of the most significant potential of big data 
comes from the bridge among resource and data 
streams. We can aggregate big data from three 
sources: traditional (structured data), sensory (log 
data, metadata), and social media (unstructured data). 
Instance, in the health care system, the outcome of 
combination multiple data comes from patient 
behavior, clinic, service and cost, medical research 
and the weather report is more desirable an cost 
effective. Regardless of how the data are created, data 
management focus on data structure and processing 
skills. Big data are often stored using non-relational 
DBMSs such as: Column based, key-value, graph, and 
document based. 

A. Big Data Definition and Properties 

There are many different stories about big data 
definition and properties. From the best knowledge of 
the authors, the common definition has three V’s: (1) 
Volume, (2) Variety and (3) Velocity of data. 
Furthermore, big data processing lead to big (4) Value 
and finally the main aim of big data are (5) Veracity. 
While the first three V’s are more technical and related 
to data engineering such as collection, summarizing, 
storage or transferring, the last two V’s focused on 

data mining such as analytic, knowledge extraction 
and decision making. All of these factors covered 
under the complexity umbrella (Fig. 2). Organizations 
expect the value of these emerging techniques to soar. 
All the smartest organizations are embedding analytics 
to transform information into wisdom and then action. 
Organizations that know where they are in terms of 
analytics adoption are better prepared to turn 
challenges into opportunities. 

 

Fig. 2. Big data life cycle and property 

B. Big Data Infrastructure and Tools 

Big data processing requires secure and powerful 
computing capability. Multi core computer or multi 
clustering may overcome the processing lack. 
However, high performance computing is non-
economic. The big data infrastructure must be able to 
support deeper and faster data mining even in 
distributed environments. Furthermore, data 
infrastructure must ensure data security and data 
ownership protection [14]. Because of local system 
limitation such as memory and CPU bottleneck, 
distributed system is used to store and processing big 
data. The cloud analytic solution can be good address 
to this problem, but there are still some challenges 
include privacy, scalability and query response time. 
Some of the solution such as Google file system (GFS) 
which are currently used in Cloud [7] attempted to 
provide the robustness, scalability and reliability that 
certain internet service need [8]. Amazon simple 
storage service (S3) and Windows Azure binary large 
object (Blob) storage are examples of object-store 
solution which tries by replicating file across multiple 
geographical sites improve redundancy, scalability, 
and data availability. Although these solutions provide 
the scalability and redundancy that many Cloud 
applications require, they sometimes do not meet the 
concurrency and performance needs of certain 
analytics applications [8]. Without doubt, distributed 
storage increase safety, but lead to redundancy 
problem. We will discuss about Cloud computing in 
next section. 

C. Big Data and Analytical Challenges 

Businesses seeking to increase profitability, 
improve customer retention, extend product lines and 
reduce risk through analytics are constrained by 
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traditional data integration approaches that slow 
analytics adoption. These include three significant 
challenges:  

 Data agility and quality- in dynamic businesses 

new data sources need to be brought on 
board quickly and existing sources modified to 
support each new analytic requirement. 
Furthermore, data virtualization eliminates 
many root causes of poor data quality. 

 Big data integration- since data sources are 
more heterogeneous in content and structure 
and many of the data sources are very 
dynamic, big data integration (BDI) is the 
biggest bottleneck. A challenge with current 
big data analysis is the lack of coordination 
between database systems [9].  Traditional 
tools that extract, transform and load (ETL) are 
not more suitable for big data. It is possible to 
use built-in Hadoop tools such as Hive and Pig 
to extract, load, and transform data, rather 
than using traditional ETL tools. In the section 
four we will discuss about Apache Hadoop 
and explain that why Hadoop is not a good 
choose always. 

 Query performance- since query performance is 
a critical success factor, most of big dataset 
are indexed to optimize the SQL query 
performance. Relational database 
management system (SQL) and developer-
centric specialized systems (NoSQL) solutions 
are two classes of big data processing 
systems. SQL based system requires a good 
structure with defined attributes to hold the 
data in order to use effect index system. On 
the contrary, NoSQL databases which usually 
allow free-flow operations. NoSQL is a 
distributed, highly scalable, key-value 
databases provide very fast performance, and 
can rapidly store large numbers of 
transactions, but need a more complex query 
pattern which generally it is more difficult for 
end users. While index improves query 
performance why general Hadoop does not 
use it? And why we need to use the 
MapReduce system which just expert know 
about? We will answer this question in section 
five, by investigating advantage and 
disadvantage of using processing technique in 
both DBMSs and MapReduce systems such 
as Hadoop and HAIL. 

  

III. BIG DATA ANALYTICS PARADIGMS 

It is proved there is no single system that would be 
most suitable for every need [8, 15]. Therefore, 
analytic paradigm can be mixed of three models:  

 Real-time: In-memory, scale-out engines that 

provide low-latency,  
 Interactive: Includes distributed MPP 

(massively parallel processing)  

 Machine learning: HDFS (Hadoop distributed 

file system) 

Such a design forward data processing toward 
enterprise data warehouse (EDW). This approach, 
compromised SQL and NoSQL data structure. As we 
know, data locality has impact effect in data 
processing. A machine learning approach based on 
MapReduce is new approach cover data locality 
problem. Hadoop, as open source Map reducer 
implementation use HDFS to partition and distribute 
big data over multi clusters. Also HDFS reduces the 
failure probability, by replicating data at least on three 
nodes. Hive-Hadoop is SQL friendly query language 
integrated multiple data sources. 

 

A. Big Data Resource Organization 

Since the volume of big data is giant, it need to 
more powerful computing, application and 
infrastructure capability rather than traditional systems. 
High performance computing, storage, network, and 
data centric service models are fundamental resources 
for big data. Disks are still the major bottleneck (I/O 
bandwidth) in query execution over large datasets 
even in parallel mode. As an Amdahl’s Law, any new 
or hot data that must be accessed more frequently, is 
stored on faster and more expensive storage media, 
while less critical data is stored on slower, but cheaper 
media.  

 

B. Cost Effective, Scalable and Parallelizable 
System 

Every industry has its big data analytics under 
certain condition include (i) data volume and velocity, 
(ii) impacts of computing, storage, and network 
resources, and (iii) types of environments [16]. Cloud 
is complete software stack that support elasticity and 
provide restrict API to applications designed to run on 
top of a shared-nothing architecture with on demand 
scalability [5, 17]. Three most popular cloud paradigms 
include: Infrastructure as a Service (IaaS), Platform as 
a Service (PaaS), and Software as a Service (SaaS). 
The concept, however can also be extended to Data 
as a Service (DaaS) or Analytic as a Service (AaaS). 
In this section we discuss about opportunity and 
limitation of deploying big data on the Cloud platform. 
Firstly, we point to some characteristic of cloud 
computing and then show why current available 
systems are not ideally-suited for cloud deployment. 

  

C. Data Management in the Cloud 

Data locality is the key point of big data analysis 
application. Despite transferring small file to powerful 
computing system is the preferred option, however, 
this is not suitable for big data because of data 
volume.  In such a case moving data to remote 
computing machine decreases efficiency due to 
transmission time. Since data transferring is more time 
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costly, therefore data have to be stored as distributed 
manner. Thus, bringing processing unit near to data is 
more common and logical. Regardless of underlying 
infrastructure such as Cloud computing, correct tools 
and talent for big data mining has high priority. Any 
provided tools should assist customers to estimate the 
costs and risks of performing analytics on the Cloud. 

 

D. Cloud Storage Locality  

Nowadays, public clouds natively provide many 
kinds of big data analytics platforms and tools in order 
to speed up data analytics at an affordable cost [16]. In 
public clouds, customers rent and run services without 
exact information about the data storage location. As 
discussed before remote processing is not suitable for 
big data because of data availability. Access to data 
through large geographical distances is more time 
costly and increase response time. To address this 
challenge WAN optimization technology must maturing 
quickly to substantially reduce network latency while 
transmitting large amounts of data from one system to 
another among geographically distributed clouds. 

 

E. Cloud Storage and Untrusted Host 

In general, moving data off premises increases 
accessibility, confidentiality and privacy risks. 
Although, cloud provider loyal the privacy of its 
customers, but there is no 100% guarantee. Firstly, in 
multi talent system security risk increase, secondly, 
under some condition government restricts customer 
to access own data. Furthermore, national security 
allows the government to demand access to the data 
stored on any data storage. Without doubt, any 
security leakage or privacy violations in transactional 
databases that includes sensitive information like 
personal information or financial data is unacceptable. 
Although, data encryption increase data security, but it 
is more time costly. Therefore, deploying a 
transactional database and application on public cloud 
are not well suited. 

 

IV. DATA STRUCTURES AND ARCHITECTURE 

Usually selective queries that scans through the 
complete dataset are not efficient. This is same as 
looking for a needle in a haystack. Therefore, 
proposed approach must be far away from (i) high 
upfront cost which increase waiting time to run actually 
start querying and (ii) need for better knowledge of 
workload in order to choose the index to create-
generally all users does not have this professionally. 

 

A. SQL Data Modeling and Parallel DBMSs 

All SQL friendly database system stores data in 
standard relational tables. In distributed form, all tables 
partitioned over the nodes in the cluster. In shared 
nothing architecture, the database system is deployed 

on multiple independent machines, each with local 
resources, connected together through high speed 
network. Data locality improves total performance by 
reducing the amount of data transferred over the 
network.  In the application level user interact with the 
system though SQL commands and never face up with 
underlying technical detail. Then database system 
transforms and divides the SQL command and 
execute in distributed form. The DBMS system has a 
schema on write which means the user need to have 
knowledge about data structure.  

 

B. Not only SQL Data Modeling 

Relational modeling is typically driven by the 
structure of available data. NoSQL data modeling is 
typically driven by application-specific query patterns 
(what answer vs what question). Since structured 
database tries to eliminate duplicated data by using 
normalization, while aggregation and de-normalization 
(data duplication), cluster friendly, open source, no 
relational and schema-less are first-class attribute in 
NoSQL. In fact de-normalization, store data in query 
friendly manner by copying the same data into multiple 
documents or tables in order to simplify/optimize query 
processing or to fit the user’s data into a particular data 
model [18]. It is helpful in I/O per query and processing 
complexity vs total data volume.  

 

C. Hadoop and MapReduce 

Hadoop works in parallel fashion which each 
cluster includes many nodes. The input data file 
distributed over all nodes in the cluster by HDFS 
underlying file system with at least three replication 
factor (Fig .3). Hadoop ecosystem is a good platform 
for unstructured data set. It can support the variety of 
components, including the HDFS, Pig, HBase 
(database/data store), and MapReduce (distributed 
sorting and hashing). Original Hadoop scans whole 
data set because it does not support any index. 
MapReduce is used for developing novel solutions on 
massive datasets such as web analytics, relational 
data analytics, machine learning, data mining, and 
real-time analytics. Hadoop MapReduce scales easily 
to very large clusters of thousands of machines. In 
addition, the upfront investment for using MapReduce 
is small: no need to use schemas, no integrity 
constraints, no normalization, and NoSQL. Although, 
HDFS provides high fault-tolerance capabilities by 
providing multiple replica. However, the performance 
of MapReduce in many cases is far from the one of an 
optimized structured DBMS [14].   
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Fig. 3. MapReduce Architecture 

V. PARALLEL DATA PROCESSING (MAPREDUCE VS 

DBMS) 

A database system implementation based on 
indexing, following three lessons [19]: (i)  Schemas are 
good, (ii)  Separation of the schema from the 
application is good, (iii) High-level access languages 
are good, but MapReduce has learned none of these 
lessons, it is a poor implementation based on brute 
force instead of indexing. The main question comes in 
mind if the database system is so good, why Hadoop 
popularity increase day to day? To answer this 
question we survey both systems specific architecture 
includes replication, indexing, complexity and flexibility. 

 

A. Pre-replication Layout 

A parallel processing is a good solution to big data 
processing. The parallelism increase performance by 
obtaining a high throughput for online transaction 
processing (OLTP) load, and low response time for 
online analytic processing (OLAP) to answering multi-
dimensional analytical (MDA) queries. As mentioned 
before general Hadoop does not support any index. 
Since Hadoop uses three replicas, therefore, it is 
possible change HDFS to store each physical copy in 
a different data layout. This approach looks very 
promising, because it helpful in a lot in several query 
workloads, at the same time, I/O times improved [15]. 
Most indexes are too large to fit into memory, which 
means that they are going to be stored on disk. Since 
I/O is usually the most expensive thing you can do in a 
computer system, thus indexes need to be stored in an 
I/O efficient way. 

Page attributes across (PAX) as a well-known 
layout solution significantly improves cache 
performance by grouping together all values of each 
attribute within each page [20]. Since the relational 
database system has traditionally optimized for I/O 
performance, PAX minimize storage penalty. Although 
PAX was originally invented for cache-conscious 
processing, but it has been adapted in the context of 
MapReduce [21]. Furthermore, data replication not 
only reduce index building time, but also increase 
scalability of the architecture and lead to more 
availability and reliability. Finally, sharing nothing 
architecture eliminate sharing either memory of the 
disk across nodes.  

B. Big Data Indexing 

While the query return similar result from database, 
indexing improves query response time. However, if 
the table is updated all the time, the overhead of the 
index management and re-organization may lead us to 
not choose the index. Every data entry of modification 
potentially involves updating the indexes, which can 
lead to slower performance of data updates. 
Regardless of negligible disadvantage of indexing, the 
main question is: when and where we need to create 
an index?  

Indexes are the easiest way to improve the 
performance of long running queries with full table 
scans.  Furthermore, using index improves replication 
response and network load. The major index type can 
be listed as row based and column based index. Since 
row index is more efficient in add/delete row, but read 
useless data. On the flip side, column index has 
efficient access to useful data, however inefficient in 
add/delete row. Therefore, columnar layout is better for 
big data, with lots of columns. However, the time 
needed to build a data series index becomes 
prohibitive as the data grows. Finding the most 
efficient index based on state-of-the-art indexing 
method for very large data is often hard. Major 
problems with big data indexing are:  

 Scalability   

 Expensive index creation 

 High dimensional indexing  
 Which attribute to create an index 
 re-indexing the whole document, when indexes 

become corruptor or new features are added  

However, the proposed solution for big data indexing 

must be covered:  

 Size of index -  Index size should be a fraction of 

the original data 

 Speed of search- Search over billions – trillions 

data value in seconds 

 Parallelism-  should be easily partitioned into 

pieces for parallel processing  

 Speed of index generation-  index should be built 

at the rate of data generation 

 Multi-variable queries-  be efficient for combining 

results from individual variable search results 

 

1) Static and Dynamic Indexing: 

Low latency is the main advantage of static 
indexing. However, in lack of a suitable index creating 
new index is more time costly. Furthermore, 
inadaptability to changes in workloads without the 
intervention of a DBA, are big disadvantage of static 
index technique [22]. Since, we do not know the data 
access pattern, determining which attributes or criteria 
would be indexed during uploading data to HDFS is 
still problematic. Therefore, using any traditional 
indexing technique is non-promising, because they 
cannot adapt well to unknown or changing query 
workloads.  To address this problem dynamic index 
was invented. The main idea behind this approach is 

 



Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 3159-0040 

Vol. 3 Issue 1, January - 2016 

www.jmest.org 

JMESTN42351339 3782 

to analyze query workload and make index based on 
statically observation.  

2) Adaptive Indexing: 

Since we try to index more data, the initialization 
time to build a state of-the-art data series index (Fig .4) 
becomes a prohibitive factor [23]. Adaptive index 
instead of building the complete index over the 
complete data set up-front and querying only later, 
interactively and adaptively build parts of the index, 
only for the parts of the data on which the users pose 
queries [15]. As more queries are posed, the index is 
continually refined and subsequent queries enjoy even 
better execution times. [23]. Adaptive indexing is an 
automatic process that is not explicitly requested by 
users and therefore should not unexpectedly impose 
significant performance penalties on users’ jobs [22]. 
With the leverage of adaptive indexing, users can 
immediately start exploring the data series instead of 
waiting for valuable periods of time for the index 
creation.  

This intuition is similar to soft indexes approach, 
where the index creation based on a single incoming 
query attribution [24]. The concept of adaptive indexing 
works with column-store databases [25]. The main 
idea is that, instead of building database indexes up-
front, indexes are built during query processing, 
adapting to the workload [23, 25, 26]. However, lack of 
knowledge about future query is the dark side of this 
approach. Also, adaptive index focus on creating non-
clustered indexes in the first place, and hence, it is 
only beneficial for highly selective queries. 
Furthermore, it is hard to apply existing adaptive 
indexing works in MapReduce systems because of (i) 
High I/O-costs: adaptive index considers main memory 
systems and thus do not factor in the I/O cost for 
reading/writing data from/to disk. (ii) Global index 
convergence: there are at least three physical data 
block replicas. (iii) Centralized approach: existing 
adaptive indexing approaches were mainly designed 
for single-node DBMSs.  

 

3) Hadoop++ and Trojan Layout: 

It is a buzz that Hadoop may suffer from 
performance issues when running analytical queries. 
Because, Hadoop MapReduce wastes a significant 
amount of time reading unnecessary data from disk as 
it stores data in row layout. Also, the original 
implementation of Hadoop does not provide index due 
to the lack of prior knowledge about schema and 
MapReduce jobs. Therefore, changing the data layout 
in Hadoop in order to be more suitable for analytical 
query processing is the biggest challenge. 
Unfortunately, Hadoop implements a hard-coded 
processing pipeline whose structure is very hard to 
change. Therefore, the overall goal of Hadoop++ 
project is to improve Hadoop's performance for 
analytical queries. 

Hadoop++ project by focusing on user-defined 
functions (UDFs) such as map () and reduce () try to 
inject the new changes in the current framework. The 
idea behind Hadoop++ is, we can create appropriated 
index if we know schema and anticipate MapReduce 
jobs. Hadoop ++ use benefit of Trojan index such as 
optimal access path, and no more overhead for 
creating indexes. In this approach, all data in an HDFS 
block (i.e., horizontal partition of data of 64MB by 
default), is stored in a column layout yielding up the 
performance. This avoids the problems with network 
I/O for tuple reconstruction and still gives column-like 
access. Hadoop stores, three copies of an HDFS block 
for fault-tolerance, which all of them are byte-identical. 
By allowing the different copies of a logical HDFS 
block to have different physicals layouts, we are able 
to optimize the different copies for different types of 
queries. Furthermore, several indexes can be created 
on same split, but only one of them can be the primary 
index. In summary, Trojan layouts improves query run 
times both over row layouts and over PAX layouts 
without modifying the underlying Hadoop MapReduce 
and HDFS engines [26]. 

 

Fig. 4. Query pattern in different type of index 

4) Effective Cost Indexing with Zero Overhead: 

Obviously the preferred index structure should have 
minimal overhead (e.g. Cheaper to create in main 
memory, cheaply to write to disk, and cheap to query 
from disk). A clustered index reorder the physical sort 
of data in table, therefore, each table can have only 
one clustered index. Since a non-clustered index is 
sorted separately from actual data, so a table can have 
more than one non-clustered index. Indexes use up 
disc space to store, and take time to create and 
maintain. Thus, as non-clustered indexes are dense by 
definition, they require more write I/O than a sparse 
clustered index and affect upload times [27].  

Client queries run much faster on average, if 
indexes on the right attributes exist. By increasing the 
number of indices, the likelihood to find a suitable 
index is increasing too, but having multiple indexes is 
costly. Hadoop Aggressive Indexing Library (HAIL) 
uses the benefit of Hadoop replication factors. In HAIL, 
each data-node creates a different clustered index for 
each HDFS block replica and stores it with the sorted 
data [28]. HAIL can index HDFS blocks in parallel to 
job execution. In such a condition, the new job can 
already benefit from the previously indexed blocks. 
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Even if we did not create the right indexes at upload 
time, HAIL can create indexes adaptively at a job 
execution time without incurring high overhead [22]. 

C. Flexibility and Complexity 

DBMSs database system support schema on write. 
This means that we need to have knowledge about 
database architecture when we want to write 
something into the database. Hadoop on the other 
hand has a schema on read approach which increase 
complexity when we want to read some data set. The 
good news is, both classes of system support some 
form of user defined function which improve flexibility. 
Furthermore, some of the management and analyzing 
tools such as Hive, Impala and Sqoop is now 
beginning to natively write MapReduce programs and 
pre-packaged schemas on read. Loading data in 
parallel DBMS is considerably longer, however 
process time is fast. On the flip side, MapReduce very 
suit to extract a task load. Last but not least, under 
some processing condition, there is no other 
opportunity more than using Hadoop while the main 
part of world information include log file, text and 
image are often much bigger than transaction data 
kept out of the parallel DBMS system. Despite of SQL 
adaption and popularity, DBMS systems are inefficient 
in big data set processing.  

D. Fault Tolerant 

While both classes of systems use the same form 
of replication to deal with disk failures, architecture of 
the Hadoop frameworks provides a more sophisticated 
failure model than parallel DBMSs. Form the best 
knowledge of author Hadoop is more economical and 
scalable because of using commodity hardware.  

VI. BENCHMARKS 

Data loading and data processing are two main 
factors in data mining domain. Regardless of 
distribution overhead, it is adapted that parallel 
processing has better performance. In this section, first 
we will compare data loading performance in Hadoop 
and parallel DBMSs. Then we focus on indexing 
technique and compare effects of index in Hadoop, 
Hadoop++ and HAIL performance.  Some previous 
works [29] compare Hadoop data loading performance 
over DBMS-X, HadoopDB and Vertica, which are a 
parallel row-store database system, a hybrid system 
that connects multiple single-node DBMS with 
MapReduce, parallel column-store database system 
consequently. The proposed solution report load times 
for two data sets (Grep and User_visits). While Grep 
data is randomly generated and requires no 
preprocessing, User_visits needs to be repartitioned 
by destination URL and indexed by visit Date for all 
databases during the load in order to achieve better 
performance on analytical queries (Hadoop would not 
benefit from such repartition).  

A. Data loading 

Obviously, most users want to start analyzing their 
data early. Low upload time is a crucial aspect for to 

adopt a parallel data-intensive system. In fact, low 
startup costs is one of the big advantages of standard 
Hadoop over DBMSs. As shown in Fig. 5 load time in 
the DBMS system dramatically increases while the 
number of nodes changes from 10 to 100. It is 
because DBMS are not well designed for task load. 
However, Vertica, which is a column-store database 
has good performance. Data loading depends on three 
main factors: (i) number of indexes, (ii) replication 
factor, (iii) cluster scale up and scale out.  

        
Fig. 5. (a) Grep data load time (0.5 GB/node) [29] 

   (b) User visits data load time (20GB/node) [29] 

1) Number of Indexes: 

Since Hadoop has good loading performance, then 
we compare it with two other projects. As discussed in 
section 4, general Hadoop has 0 indexes as it cannot 
create any index. Also Hadoop++ cannot create more 
than one index and finally HAIL support number of 
indexes. As shown in Fig .6. index creation is time 
costly and increase upload overhead. However, HAIL 
has a negligible upload overhead when creates one 
index per-replica. On the other hand, the result shows 
that HAIL improves over Hadoop++ by a factor of 
5.1when creating no index and by a factor of 7.3 when 
creating one index [27]. 

 
Fig. 6. Upload times in three forms of replication datasets 

synthetic [27] 
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2) Number of Replica: 

As illustrated in Fig .7. we see that HAIL 
significantly out performs Hadoop for any replication 
factor. Still, when increasing the replication factor even 
further for HAIL, we see that HAIL has only a minor 
overhead over Hadoop with three replicas only. These 
results also show that choosing the replication factor 
mainly depends on the available disk space. Index 
space on disk is one of the main challenges in index 
creating.  Even in this respect, HAIL improves over 
Hadoop. HAIL enables users to stress indexing to the 
extreme to speed up their query workloads. 

 

 
Fig. 7. Upload times in varies form of replication datasets 

synthetic [27] 

3) Resource scale: 

Resource and underlying structure has big effect on 
big data performance. Whenever the volume or 
velocity of data overwhelms current processing 
solution, resulting in performance that falls far short of 
desired [30]. Three forms of scale that help to improve 
performance are: (i) Scale down the amount of data 
processed or the resources needed to perform the 
processing and adjust in size relative to other things, 
(ii) Scale up the computing resources on a node, via 
parallel processing and redesigning new algorithm and 
data structure to take advanced of faster 
memory/storage technologies, and (iii) Scale out the 
computing to distributed nodes in a cluster/cloud or at 
the edge where the data resides. 

 
 

 

VII. CONCLUSION 

From a technical point of view, comparing parallel 
DBMS and Hadoop MapReduce is unfair. MapReduce 
is referred to as a new way of processing big data in 
cloud computing. Building a big data analytical under 
the umbrella of the MapReduce model requires great 
programming skills and huge resource investment. 
Therefore, it is not more suitable for end users. 
Despite lacks some of the features, however, such 
methods would be necessary to achieve high 
scalability and fault tolerance in massive data 
processing [31]. Therefore, the main challenge is to 

achieve efficiency, without losing scalability and fault 
tolerance. The efficiency problem is expected to be 
overcome in two ways: (i) using the effective index 
system and (ii) scale up clustering. 

Providing multiple static indexes for a variety of 
queries still have state-of-art index techniques when it 
comes to unknown or changing workloads. Although 
creating missing indexes is the dark side of adaptive 
index, but automatically index creation during the job 
execution time is more valuable. The result shows that 
HAIL adaptive indexing has a very low overhead 
compared to Hadoop full scan.  

Although MapReduce has good performance in job 
distribution, but reducing phase in Hadoop is time 
costly. Therefore, at the first glance parallel DBMSs 
are still a winner hours in processing battlefield. 
However, by increasing the number of nodes in the 
cluster, reducing time decrease. In other word 
MapReduce system has better performance on big 
data when it is distributed on thousands of servers. 
Furthermore, we need an optimum number of 
parallelism to reduce network overhead. Last but not 
least, there is no other cost effective option better than 
the MapReduce encounter of massive data 
processing.  

Obviously the dynamic nature of big data goes 
beyond traditional tools and application. Therefore, any 
new approach must be suitable enough for traditional 
structured database and new unstructured data set. As 
a part of this process, the agent responsible for fast 
retrieval by focusing on classification, filtering and 
storing data. Furthermore, immigration from 
centralized to distributed approach improve response 
time because of data locality, but albeit costly.  
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