
Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 3159-0040

Vol. 3 Issue 1, January - 2016

www.jmest.org

JMESTN42351332 3747

Software Source Code Plagiarism Detection: A
Survey

Mr. Bhramadeo Vishnu Deokate

ME-2
nd

 Year Student Computer Engineering,
Vidya Pratishthan’s college of engineering,

Baramati, Pune, India.
deokatebv@gmail.com

Prof. Dinesh Bhagwan Hanchate
 Dept. of Computer Engineering,

 Vidya Pratishthan’s college of engineering,
Baramati, Pune, India.

dineshbhanchate@gmail.com

Abstract—Now a day’s, big amount of data is
avaliable on internet i.e information or source
code. In this world of utilization, it is very difficult
to find out the similarity or plagiarism, duplication
of data in research, publications and practical
program assignment in academics. Academics
often use plagiarism detection tools to detect
similar source-code duplication and similar files.
In this paper, summary of the varius techniques
and methods are explained how one should find
out the plagiarisms in source code. A large
organization or academic institute can easily find
out the plagiarism in source code and research
publications. The main problem is near-
duplication of code that has been created by
copying and modifying code with an editor that is
code theft.

Keywords—Software plagiarism detection,
dynamic code identification.

 I. INTRODUCTION

In the computer science field, there are number of
probably that code theft may occurre. In the education
field, students submit their projects work or the
programming assignments, there may be possibility of
duplication in source code. The manually plagiarism
detection in the source code is a very difficult task.
Mostly the people in computer science are using
programming assignments of another one [7].
 The plagiarism detection process consists of two
parts. In the first part, it generates a representation
from a given program. The intermediate
representation is used for evaluating the similarity
between two programs or projects. A token sequence
is often used by intermediate representation.

Plagiarism detection system uses the token
sequence. In the second part, system evaluates
similarity for each pair of programs [14].
Several techniques are developed for identifying
similar code fragments in programs. These same
fragments are referred as code clones. Some
research has been dedicated to the methods for the
detection of similar code fragments in programs.
Software projects with similar codes, which may be
introduced by many commonly adopted software
development practices, and due to reusing a generic
framework, following a specific programming pattern,
and directly copying and pasting code. Some times,
these practices can decrese the productivity of
software application [15].
Source code plagiarism is easy to do, but it is not
easy to detect. Usually, when students are solving the
same problem by using the same programming
language source code, there is a high possibility that
their assignment solutions will be more similar.
Strategies of source code modification exist that can
be used to mask source code plagiarism. Examples of
such strategies are renaming identifiers and
combining several segments copied from different
source code files. These modifications increase the
difficulty in recognizing plagiarism [9].
Plagiarism in coding is not entirely a new
phenomenon. The issue has been discussed and
studied previously by researchers to identify the
severity of the problem and amount of factors
contribute to the act of plagiarism. In programming
assignment, plagiarism does necessarily only involve
copying the source code but input data and interface
designs that can also be considered as possibility of
plagiarizing content [1].

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 3159-0040

Vol. 3 Issue 1, January - 2016

www.jmest.org

JMESTN42351332 3748

 II. LITERATURE SURVEY

Sr.
No.

Author and Year Outcome
Methods /
Algorithm

Tools Purpose

1.
Brenda S. Baker

1995

Work on source code is
exactly matched or near

matched.

Text matching,
parameter matches

Much duplication has been

found.

2.
T. Kamiya

2002
Code clone detection

technique.

Token based code
clone detection

method
CCFinde

Detecting the similar term into
source code.

3.
Mark Gabel

2004
Identifying similar code
fragments in programs.

Clone Detection
Method

CloneDR
Detecting fragments into single

program.

4. C.Collberg 2007
Identify duplication in java

code.
Java code obfuscetor

To cheaking the code
duplication.

5.
Enrique Flores,

2011

To detect cross-language
reuse between source

codes.

Character N-Grams
comparison model

To detect cross-language reuse

between source codes.

6.

Ameera Jadalla &
Ashraf

Elnagar
 2007

To create a one engine that
detect the source code

plagiarism in Java.

Clustering, N-Gram,
Tokenization

JPlag
Performance of the system, pair

wise similarity measurement.

7.
A. Bugarín, M.

Carreira

This paper shows how
software tools detect the

plagiarism.

JPlag and
Turnitin

There are mainly two tools
used, One is JPlag and another

is Turnitin.

8. Dong-Kyu Chae
Main aims of this research is

to create a software
plagiarism detection system.

API- labeled control
flow graph

 Accuracy and credibility in a
reasonable computation time.

III. RELETED WORK
 The goal of plagiarism detection approaches is
showing potentially plagiarised source code pairs. A
system determines which case pairs are likely to be
plagiarised by analysing the similarity levels between
texts in the programs code. If the similarity level
between a case pair is high, the system indicates the
case pair is suspicious and suggests to the user that
this pair may require further investigation [8].

Table: comparison of four plagiarism detection tool

Detecting Source Code Re-Use: It detect source
code reuse in the many programming languages or
projects. The main target of this is to provide new
technologies to detecting source code duplication.
Using these tools, it decides whether the source code
has been reused or not. DeSoCoRe compares two
source codes at the level of functions and method

even when written in different programming languages
[6].
 Plagiarism Detection Engine For Java Source
Code: Here in this research article, authors Ameera
Jadalla & Ashraf Elnagar developed PDE4Java model
that is basically used for plagiarism detection in java
source code. Method used in this research is data
mining, clustering, N-Gram, tokenization. At the end
of the research it shows performance of the “system
pair wise similarity” in programing language [15].
Detecting source code reuse across programming
languages is based on character. The problem of
cross-programming language reuse of source code at
document and fragment levels in first part. In the
second parts, fragments of source codes are
compared with detecting only those fragments in the
source code.

Plagiarism Detection Tools:

 Software Similarity Tester: SIM is used to detect
plagiarism in source code written in Java, C, C++,
Pascal, .NET and python. This tool is also used to
check similarity between source codes. SIM converts
the source code into strings of token and then
compare these strings by using dynamic programming
string alignment method. This method is used in string
matching. The alignment is very expensive and
exhaustive computationally for all applications
because for large source code repositories SIM is not
scalable. The source code of SIM is available
publically but it is no more actively supported.

 Measure of Software Similarity: MOSS tool is
available free to use in academics and it is accessible
as an online service. Moss support Ada programs,
Java, C, C++, plain text and Pascal. The MOSS tool is

Tools JPLAG SIM MOSS PLAGGIE

Open
source

NO YES NO YES

Local/Onlin
e

Web Local Web Local

Codebase
/File

Code
base

File
base

Code
base

Code base

Language
Support

6 5 23 1

Founded
Year

1996 1989 1994 2002

Founded By Guido
Malpohl

Dick
Grune

Aikenetal Ahtiaine
netal

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 3159-0040

Vol. 3 Issue 1, January - 2016

www.jmest.org

JMESTN42351332 3749

also support to UNIX and windows operating systems.
It uses a string matching algorithm to divide the
source-code programs into k-grams, hash them,
select a subset of these hashes as fingerprints and
finally compare these fingerprints.

Plague: The earliest structure-oriented system is
Plague. Plague only support programs written in C.
This tool works in numbers of steps. The first step
source code is converted into structure files. After this
Plague use Heckel algorithm to compare generated
structure files of first step. The algorithm is basically
designed for plain text files and it is introduced by
Paul Heckel. Plague’s detection results are returned
in the form of lists .Plague returns use an interpreter
to process this list to show results in a way, so that
common user can understand easily.

Yet Another Plague: YAP was developed based on
Plague with some enhancements. The first version
was created by Michael Wise. Then it was optimized
into YAP2. YAP2 came into market a bit later after
YAP1 and finally the YAP3 of YAP family was
developed in 1996. The final version YAP3, which can
also be used to detect text plagiarism. YAP shows
result in a plan text file. If token pairs have percent
match value larger then lowest value set by user then
the matching pair will be consider as plagiarized pair.
.
Data Sources:

1) Java project: In java project function, class,
methods are repeated so, that project accuracy
decreses.
2) Java Assignment: Number of times java
assignment are repeated in a education acedima.
3) Java Tutorial: The practise program or a sample
codes should be duplicated.

Applications:
1) Education System: Plagiarism is a big problem in
education system. Academics often use plagiarism
detection tools to detect similar source-code files or
java program. Once similar files are detected in a
project the academic precedure its duplication or a
reuse. The investigation process which involves
identifying the similar source-code fragments proving
plagiarism. So the plagiarism process is necessary in
that system.

2) Corporate: Code duplication has been practiceing
from the earliest days of programming. Developer has
always reused part of code, templates, functions, and
procedures. Code reuse possibility is a recognized in
industry. Developer works on project on time code
reuse in program so, to degrade the project quality.

3) Publication system: Redundant publication in the
paper some part is similar to a published paper by
the same author. Publishing without acknowledging
the source and without obtaining the permission of the
original copy right holder comes under this categery.

There may be differences between the original and
the second paper such as a new title or a modified
abstract. It violates generaly copyright as in most of
the time, it creates problem.

IV. CONCLUSION

A survey on plagiarism detection system in a source
code and project has been introduced. The
information of plagiarism problem is studied to
education, publication, corporate and social websites.
The need of plagiarism detection system is must now
a days to improve academic integrity, and also
uniqueness in a project for increasing the quality of
programs and educational assignment. So that the
similar source code fragments should not occur for
proving the plagiarism.

V. ACKNOWLEDGMENTS

This paper would not have been written without the
valuable advices and encouragement of Asst. Prof.
D.B. Hanchate, guide of ME Dissertation work. We
thank to Prof. P. M. Patil and Prof. S. S. Nandgaonkar,
Head of Department and Hon’ble principal Prof. V. U.
Deshmukh, for their valuable support and for giving an
opportunity to work on Software Source Code
Plagairism Detection.

VI. REFERENCES

[1] B. S. Baker, “On finding duplication and near-
duplication in large software systems,” in Proceedings
of 2nd Working Conference on Reverse Engineering
(WCRE ’95), 1995, pp. 86–95.
[2] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and
L. Bier, “Clone detection using abstract syntax trees.”
in Int. Conf. on Software Maintenance, 1998.
[3] K. Kontogiannis, M. Galler, and R. DeMori,
“Detecting code similarity using patterns.” in Working
Notes of 3rd Workshop on AI and Software
Engineering, 1995.
[4] J. Krinke, “Identifying similar code with program
dependence graphs.” in Proceedings of Eighth
Working Conference on Reverse Engineering (WCRE
’01), 2001, pp. 301–309.
[5] T. Kamiya, S. Kusumoto, and K. Inoue.,
“CCFinder: a multilin-guistic token-based code clone
detection system for large scale source code.” IEEE
Transactions on Software Engineering, vol. 28,no. 7,
pp. 654–670, 2002.
[6] M. Gabel, L. Jiang, and Z. Su, “Scalable detection
of semantic clones,” in Proceedings of the 30th
International Conference on Software Engineering
(ICSE’08), 2008, pp. 321–330.
[7] L. Jiang, Z. Su, and E. Chiu, “Context-based
detection of clone related bugs,” in Proceedings of the
6th joint meeting of the European Software
Engineering Conference and the ACM SIGSOFT
symposium on the Foundations of Software
Engineering, ser. ESECFSE ’07, 2007, pp. 55–64.
[8] L. Jiang, G. Misherghi, Z. Su, and S. Glondu,
“DECKARD: Scalable and accurate tree-based

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 3159-0040

Vol. 3 Issue 1, January - 2016

www.jmest.org

JMESTN42351332 3750

detection of code clones,” in Proceedings of the 29th
International Conference on Software Engineering
(ICSE ’07), 2007, pp. 96–105.
[9] C. Collberg, C. Thomborson, and D. Low, “A
taxonomy of obfuscating transformations,” The
Univeristy of Auckland, Tech. Rep.148, Jul. 1997.
[10] C. S. Collberg, C. Thomborson, and D. Low,
“Manufacturing cheap, resilient, and stealthy opaque
constructs,” in Proceedings of the 25th ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL ’98), 1998, pp. 184–
196.
[11] C. Collberg, G. Myles, and A. Huntwork,
“Sandmark–a tool for software protection research,”
IEEE Security and Privacy, vol. 1, no. 4, pp. 40–49,
2003.
[12] M. Madou, L. Van Put, and K. De Bosschere,
“Loco: An interactive code (de)obfuscation tool,” in
Proceedings of the 2006 ACM SIG-PLAN symposium
on Partial evaluation and semantics-based program
manipulation (PEPM ’06), 2006, pp. 140–144.

[13] H. Tamada, K. Okamoto, M. Nakamura, and A.
Monden, “Dynamic software birthmarks to detect the
theft of Windows applications,” in Int’l Symp. On
Future Software Technology (ISFST), October 2004.
[14] F. Zhang, Y. Jhi, D. Wu, P. Liu, and S. Zhu, “A
first step towards algorithm plagiarism detection,” in
Proceedings of the 2012 International Symposium on
Software Testing and Analysis (ISSTA ’12).ACM,
2012, pp. 111–121.
[15] L. Luo, J. Ming, D. Wu, P. Liu, and S. Zhu,
“Semantics-based obfuscation-resilient binary code
similarity comparison with applications to software
plagiarism detection,” in Proceedings of the 22nd
ACM SIGSOFT International Symposium on the
Foundations of Software Engineering (FSE 2014),
November 2014.

