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Abstract— we consider an infinite cylinder in 
which part of the boundary is being heated while 
the other part is insulated. The resulting mixed 
boundary value problem is solved using the 
Wiener-Hopf technique. The temperature 
distribution and the heat flux are found in some 
special cases of interest.  
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I INTRODUCTION  

Heat conduction in cylindrical materials and tubes 
has been extensively studied due to various industrial 
applications. Carslaw and Jaeger [2] have discussed 
the boundary value problems in one and more 
dimensions arising from the problems of determination 
of heat distribution in solids having homogeneous or 
composite structure satisfying different boundary 
conditions. In engineering application, the cylindrical 
bars and tubes are extensively used due to various 
design advantages. The problem of heat transfer and 
temperature distribution becomes of interest in cooling 
of such cylindrical bars in rewetting and quenching 
process. In the nuclear reactors, cylindrical rods are 
heated internally by fission and are immersed in 
cooling fluid to produce energy using heat transfer at 
the surface. If these structures are totally immersed in 
coolants, the integral transforms can be used to study 
the temperature distribution and heat transfer rate 
assuming these to be cylinders of infinite extent. If 
however, the process by wetting  

or immersing in a fluid involves only part of the 
cylinder, a mixed boundary value problem is formed. 
In such cases, the Wiener-Hopf technique, based 
upon integral transform has been used by a number of 
researchers in the past. The technique was originally 
proposed to solve certain half-range singular integral 
equations [9]. In 1952, Jones [7] presented the 
modified Wiener-Hopf technique to solve the mixed 
boundary value problems directly. In Noble [10], an 
excellent exposure to this technique has been 
presented. Achenbach [1] has also given account of 
this technique as applied to the wave propagation 
problems. Mittra and Lee [9] have extensively used 
this technique in studying wave-guide problems. 
Evans [5] gave an explicit expression for a steady 
state temperature distribution within the cylinder at the 

point of entry into a cooling fluid. In Chakrabarti [2], 
the explicit solution of the sputtering temperature of a 
cooling cylindrical rod with an insulated core when 
allowed to enter into a cold fluid of large extent 
thereby giving rise to a mixed boundary condition 
which has been tackled using the Wiener-Hopf 
method. Georgiadis et al [6] considered infinite 
dissimilar half-spaces which are joined and brought in 
contact over half of their common boundary and the 
other half insulated all along the common boundary 
(interface). Chakrabarti and Bera [3] studied a mixed 
boundary-valued problem associated with the heat 
equation which involves the physical problem of 
cooling of an infinite slab in a two-fluid medium. An 
analytical solution is derived for the temperature 
distribution at the quench fronts. Similarly, Zaman [13] 
studied a heat conduction problem across a semi-
infinite interface in layered plates. Further, Zaman and 
Al-khairy [14] discussed the cooling problem of a 
composite layered plate comprising of dissimilar 
layers of uniform thickness having mixed interface 
thereby finding the closed forms of both the 
temperature field and the heat flux. Satapathy [10] 
considered a two-dimensional quasi-steady heat 
conduction equation governing conduction controlled 
by rewetting of an infinite cylinder with heat 
generation. The analytical solution obtained by 
Wiener–Hopf technique gave the quench front 
temperature as a function of various model 
parameters. Shafei and Nekoo [12], solved the heat 
conduction problem of a finite hollow cylinder using 
generalized finite Hankel transform which is based on 
the use of the integral transform method. Kedar and 
Deshmukh [8], considered the inverse heat 
conduction problem in a semi-infinite hollow circular 
cylinder under some specific assumptions.  

In this paper, we present the analytical solution of 
transient heat conduction in a solid homogenous 
infinite circular cylinder. The cylinder of uniform cross-
section of an isotropic material is subjected to general 
boundary conditions on both the positive and negative 
semi-infinite ranges of       . The Jones 
modification of the Wiener-Hopf technique is utilized 
due to the mixed nature of the boundary conditions. 

II FORMULATION OF THE PROBLEM  

We consider an infinite cylindrical rod of uniform 
cross section and finite radius  . The cylinder is 
assumed to have the general mixed boundary 
conditions on the boundary; that is, the temperature 
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distribution is given by  (      ) on        half-
plane while  (     ) stands for the heat flux on   
     as shown in figure 1. The temperature 

distribution     satisfies the governing equation  

    
 

 
   

 

          
 

 
  , (1) 

and when further assume that the temperature 
distribution is axially symmetric, that is equation (1) 
becomes  

    
 

 
       

 

 
  ,(2) 

where   is the thermal diffusivity, expressed as 

  
 

  
 where   is thermal conductivity,   is density 

and   is specific heat of the material. The initial and 
boundary conditions are as follow  

(i) The initial condition  

 (     )             (3) 

(ii) The temperature on    , 

 (     )   (      )            . (4) 

(iii) The heat flux on    , 

   (     )   (     )              (5) 

(iv) a.    (    ) as       

 b.    (    ) as     (6) 

In addition, the functions  (      ) and  (     ) are 

assumed to be of exponential order as | | turns to  .  

 

Figure 1: Geometry of the problem  

III WIENER-HOPF EQUATION  

The Laplace transform in the time variable   and its 

inverse transform in   are defined by:  

 * ( )+  ∫  ( )        ̅( )
 

 
, (7) 

and  

    * ̅( )+  
 

   
∫  ̅( )     
    

     
  ( ) (8) 

In the same way, we define the Fourier transform 
in   and its corresponding inverse Fourier transform in 
  by:  

 * ( )+  ∫  ( )      
 

  
   ( ),(9) 

and  

    *  ( )+  
 

  
∫   ( )       
 

  
  ( ),(10) 

with       .  

Moreover, we also introduce the half range Fourier 
transforms as  

∫  ( )      
 

 
   

 ( ),(11) 

and  

∫  ( )      
 

  
   

 ( ).(12) 

So that,  

  ( )     
 ( )     

 ( ) (13) 

Thus, equation (13) defines the Fourier transform 

as   ( )  ∫  ( )      
 

  
, where  ( )   (    ) as 

    and  ( )   (    ) as     . Hence,   
 ( ) is 

an analytic function of   in the upper half-plane     , 
while   

 ( ) is an analytic function of   in the lower 
half-plane      respectively. Thus,   ( ) defined an 

analytic function in the common strip         

with     ( ).  

We now take the Laplace transform in   and 

Fourier transform in   of equation (2) to get  

 ̅  
  

 

 
 ̅ 

  .   
 

 
/  ̅   .(14) 

Therefore, the solution of the transformed equation 
(14) is given by  

 ̅ (     )   ( )  (  )   ( )  (  ).(15) 

Where   (  ) and   (  ) are modified Bessel 
functions of first and second kinds of order zero 

respectively, and  ( )  √       . Furthermore, for 

the boundedness of the solution, equation (15) takes 
the form  

 ̅ (     )   ( )  (  ) for      . (16) 

Now, on applying the transformed boundary 
conditions to equation (16) we get 

 ̅ 
 (     )     ̅

 (     )   ( )  (  ),(17) 

and 

 ̅ 
  (     )    ̅ 

 (     )   ( )
  (  )

 
  (18) 

Thus, from equations (17) and (18), we obtain  

 ̅ 
  (     )    ̅ 

 (     )   

   (  )

   (  )
 { ̅ 

 (     )     ̅
 (     )}  

(19) 

Thus, equation (19) is the Wiener-Hopf equation 
holding in the strip of analyticity        , and 
where    is the derivative of   with respect to  .  

IV SOLUTION OF THE WIENER-HOPF 
EQUATION 

In equation (19), the mixed term 
   (  )

   (  )
 is 

named  ( ).  
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We then factorize  ( ) as  

 ( )  
   (  )

   (  )
   ( )  ( ),(20) 

(See Mittra and Lee [9] and Noble [10]). Where 
  ( )       ( ) are analytic functions in the upper 
and lower half planes respectively. The expressions 
for   ( )       ( ) are given in appendices    and 
   respectively. Thus, equation (19) becomes  

 ̅ 
  (     )

  ( )
 

 ̅ 
 (     )

  ( )
   

  ( ) ̅ 
 (     )     ( )  ̅

 (     )  

 (21) 

Again, decomposing the mixed terms in equation 
(21) using decomposition theorem (see Noble [10]) we 
get as follows  

 ( )  
 ̅ 

 (     )

  ( )
   ( )  ̅

 (     ) 

   ( )    ( ),(22) 

where   ( )       ( ) are given to be  

  ( )  
 

   
∫ 2
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 (     )
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   ( )  ̅

 (     )3
 

   
  

    

     
(23) 

and 
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∫ 2

 ̅ 
 (     )
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   ( )  ̅

 (     )3
 

   
  

    

     
(24) 

respectively, where   and   are in the analytic 

region. That is,            . Finally, equation 
(21) becomes 

 ̅ 
  (     )

  ( )
   ( )    ( ) ̅ 

 (     )    ( ).(25) 

Equation (25) defines an entire function in the 
whole         by analytic continuation. In which the 

left hand side is analytic in the lower half-plane     , 
while the right hand side is analytic in the upper half 
plane      respectively. In addition, both sides can 
be shown to be zero by the extended form of 
Liouville’s theorem as     .  

Thus, our unknown functions are found to be:  

 ̅ 
 (     )  

  ( )

  ( )
,(26) 

and 

 ̅ 
  (     )     ( )  ( ).(27) 

We note that   ( ) and   ( ) are given in the 
appendices    and    while   ( ) and   ( ) are 
given by equations (23) and (24) in terms of known 
functions respectively. Equations (26) and (27) can 
then be used together with equations (17) and (18) to 
determine the overall temperature distribution in the 
transformed domain. The inverse Laplace transform 
and the inversion Fourier transform can then be used 
to obtain the overall temperature distribution  (     ) 

and the corresponding heat flux   (     ) respectively. 
Hence, on taking these inversions we got the overall 
temperature distribution of the body under 
consideration as follows:  

 (     )

 
 

    
∫

∫ {
 ̅ 

 (     )    ̅
 (     )

  (  )
  (  )}   

    

     

              

 

  

 

(28) 

However, due to complexity of the double integral 
in equation (28), we present below some special 
cases in which this has been evaluated.  

V EVALUATION OF THE TEMPERATURE 
DISTRIBUTIONS IN SOME SPECIAL CASES  

In trying to determine the explicit analytical solution 
of the problem solved, we consider some meaningful 
boundary conditions. Further, we consider a special 
case of transient heat conduction, that is, of the form  

 (     )   (   )     ,(29) 

where   is the angular frequency. We note that 
this assumption, together with the Fourier transform in 
   gives us equation (14) without having to use the 
initial condition (3) with the Laplace transform 
parameter   changed to   . This also has been 
observed by Noble [10] as comparison between 
transient and steady state problem. In the following, 
the change      has been used and no Laplace 

transform in   is taken.  

Case 1  

 (     )      
         where    is constant, 

and   (     )        all at    . 

So, by changing         we get from equations (23) 
and (24) we get  

  ( )  
  

   

√ 

 √ 
∫

  ( )

 (   )  ( )
  

    

     
 (30) 

with simple poles at    ,     and        

   where     √.
    

 
/
 

 
  

 
 for         are simple 

zeros of   ( ). Thus, evaluating equation (30) we get  

  ( )  
  √ 

 √ 
0∑

  

    

 
    

  ( )

   ( )
 

  ( )

   ( )
1,(31) 

where    
   (  )

    
 (  )

 and   ( ) and   ( ) are in 

appendices (  ) and (  ).  

Similarly,  

  ( )   
  

   

√ 

 √ 
∫

  ( )

 (   )  ( )
  

    

     
, (32) 

with simple poles at             and      and 

      are the poles laying above the line of integration 

      to      given that                

Thus, 
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  ( )  
  √ 

 √ 
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     (33) 

where    
  (  )

    
 (  )

 and *   + stands for derivative. 

Now, to evaluate the temperature distribution, from 
equations (26) and (31) we get  

  (   )  
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   ( )  ( )
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with simple poles at    ,        
      and           .  

Where     √.
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         and 

    √.
    

 
/
 

 
  

 
.  

For      we close the contour in the lower half-

plane and for    ; we close the contour in the upper 

half-plane in such a way that     would be in the 
upper half-plane. Thus, we get the overall temperature 
distribution after the evaluation of the complex integral 
in equation (34) using residue theorem [12] and also 
through the use of equation (29) as  
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(35) 

where,    
   (  )

    
 (  )

.  

In a similar manner, to evaluate the heat flux from 
equations (27) and (33); we have that  
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with simple poles at               and   
           In the same way as in above for     and 

for     we finally get the overall heat flux as  
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where    
  (  )

    
 (  )

 .  

Case 2 

 (     )     
                     (     )  

      all at      

So, using the same method as in above, and from 
equations (26), (29) and (31) we get the temperature 
distribution as  

  (     )
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where    
   (  )

(     )  
 (  )

.  

Similarly, from equations (27), (29) and (33) we get 
the heat flux as  
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where    
  (  )

(     )  
 (  )

.  

Case 3  

 (     )     
 (   )           and   (     )  

      all at      

So, we determine the temperature distribution from 
equations (26), (29) and (31) as  
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 (40) where,    
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.  

The corresponding heat flux also can be found 
from equations (27), (29) and (33) as  
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(41) 

where,    
  (  )

    
 (  )

.  

VI Conclusion  

In this study, a mixed boundary value problem 
arising from temperature distribution in an infinite 
homogeneous cylinder has been considered using the 
Wiener-Hopf technique. The infinite boundary of the 
cylinder has been subjected to two different boundary 
conditions. One part of the boundary is held at a 
prescribed temperature while the other part is 
insulated. The solution is obtained in a closed from. 
The temperature and the flux at the surface of the 
cylinder have been found in some special cases.  
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Appendix  

Let  

 ( )    ( )  ( ) (  ) 

where  ( ) is given below using infinite product 
theorem [9] and [13] 
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with   is the Euler’s Constant given by           

In the same way,  
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where  ( )  √   
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From appendices ( ) and ( ) above; we obtain  
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