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Abstract—Author’s earlier work is based on the 
presumption that the recently proposed extended 
Poisson theory (EPT) appears to be the best 
suitable theory to overcome lacuna in the 
classical theories of primary plate problems. 
Corrections to the solutions at each stage of the 
adapted iterative procedure are determined 
without disturbing solutions in the preceding 
stages of iterations. Disadvantage in the 
application of EPT is in the development of 
software for generation of fk(z) functions of 
thickness coordinate z necessary for analysis of 
plates with thickness ratio varying up to unit 
value. In the present work, new theories of plates 
are proposed to rectify errors in the initial set of 
solutions from EPT by incorporating them into 
uncoupled 2-D theories from Fourier series in 
terms of proper sinusoidal functions.      
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I. INTRODUCTION  

 
Analysis of plates within small deformation 

theory of elasticity is generally based on making 
suitable assumptions about thickness-wise 
distributions of displacements and/or stresses (or 
strains) to derive two-dimensional plate equations. In 
the energy methods based on stationary property of 
relevant total potential, equations governing 2D 
variables correspond to plate element equilibrium 
equations (PEEES). Prescribed or reactive static 
conditions along an edge of the plate are in terms of 
stress resultants which have no unique thickness-
wise distributions. With assumed in-plane 
displacements, transverse stresses are obtained 
through post-processing of thickness-wise integration 
of equilibrium equations.  

Displacements independent of z- coordinate 
are used as domain variables in most of the theories 
reported in the literature. Out of these three variables 
denoted by [u, v, w]0, in-plane displacements [u, v]0 
are basic variables in extension problems. Solutions 
for these displacements satisfy both static and 
integrated equilibrium equations. Basic variable w0(x, 
y) in the bending problems is governed by a fourth 
order equation in Kirchhoff’s theory [1] corresponding 
to plate element equilibrium equation. In higher order 
theories based on calculus of variations, it is implied 
that thickness-wise integrated equilibrium equations 

are satisfied with assumed displacements, in 
particular, if they are in terms of power series or 
various forms of polynomials. 
 

PEEES are eliminated through the adapted 
iterative procedure in the recently proposed 
Extended Poisson Theory (EPT) of plates [2[. In 
expressing thickness-wise distribution of 
displacements, a complete set of fk(z) functions [3] is 
generated from recurrence relations with f0 = 1, f2k+1,z 
= f2k, f2k+2,z = − f2k+1 such that f2k+2(±1) = 0. The 
functions f2k+1(z) are replaced by f*2k+1 = (f2k+1 – β2k-1 
f2k-1) so as to satisfy both static and integrated 
equations. Corrections to the solutions at each stage 
of the adapted iterative procedure are determined 
without disturbing solutions in the preceding stages 
of iterations. This facility is not available with 
solutions from PEEES.  Only disadvantage in the 
application of the procedure is in the development of 
software for generation of fk(z) functions and 
evaluation of β2k+1 necessary for application of the 
theory with thickness ratio varying up to unit value. In 
EPT, however, one cannot avoid initial solutions of 
displacements with one and two term representation 
of displacements in bending (or associated torsion) 
and extension problems, respectfully. In view of 
prescribed or reactive asymmetric transverse shear 
stresses in primary extension problems, there is no 
need to apply EPT for finding [u, v]0 but with w(x, y, z) 
as face variable, EPT requires two term 
representation of displacements. In view of 
inconvenience of generating and using fk(z) in higher 
order theories, we consider the sequence of 
uncoupled 2-D problems [4] governing displacement 
variables other than the basic variables in the initial 
set of EPT. The present work deals with development 
of new theories to rectify errors in the initial set of 
solutions in EPT by incorporating them into 
uncoupled 2-D theories.   
 

II. PRELIMINARIES   
 

For simplicity in presentation, a square plate 
bounded within 0 ≤ X, Y ≤ a, −h ≤ Z ≤  h with 
reference to Cartesian coordinate system (X, Y, Z) is 
considered. Material of the plate is homogeneous 
and isotropic with elastic constants E (Young's 
modulus), ν (Poisson's ratio) and G (Shear modulus) 
that are related to one other by E = 2(1+ν) G. For 
convenience, coordinates X, Y, Z and displacements 
(U, V, W) in non-dimensional form x= X/a, y=Y/a, 
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z=Z/h, (u, v, w) = (U, V, W)/h and half- thickness ratio 
α = (h/a) are used.  
 

With the above notation, equilibrium 
equations in stress components are:  
 

α (σx,x+ τxy,y) + τxz,z = 0          (1a) 
α (σy,y+ τxy,x) + τyz,z = 0        (1b) 
α (τxz, x+ τyz, y) + σz,z = 0          (2) 

 
in which suffix after ',' denotes partial derivative 
operator. Classical theory of extension problems 
deals with the two in-plane equilibrium equations of 
infinitesimal element where as Kirchhoff theory deals 
mainly with the equation of transverse stresses 
through PEEES.   
 

In displacement based models, stress 
components are expressed in terms of 
displacements, via, six stress-strain constitutive 
relations and six strain-displacement relations. These 
relations within the classical small deformation theory 
of elasticity are:   
Strain-stress and semi-inverted stress-strain 
relations:  
 

E εx= σx− ν (σy+ σz)        (3a) 
E εy = σy− ν (σx+ σz)         (3b) 
Eεz= σz− ν (σx+ σy)         (3c) 

 G [γxy, γxz, γyz] = [τxy, τxz, τyz]         (4) 
σx = E'(εx +  ν εy) + μ σz        (5a)  
σy = E'(εy +  ν εx) + μ σz                     (5b) 
εz = – μ e + (1− 2 ν μ) σz/E          (6) 

 
in which e = (εx + εy), E' = E/(1− ν

2
) and μ = ν/(1− ν). 

 
Strain-displacement relations:  
 

[εx, εy, εz] = [αu,x, αv,y , w,z]        (7a) 
γxy, = αu,y+ αv,x          (7b)  
[γxz, γyz] = [u,z+ αw,x, v,z+ αw,y]         (8) 

 
In-plane equilibrium equations in terms of 
displacements are  
 

E' [α
2
∆u− ½(1+ ν) α

2
(v,x – u,y),y] +  

+μ ασz,x + τxz,z = 0   (9a)        
E' [α

2
∆v + ½(1+ ν) α

2
(v,x – u,y),x] +  

   +μ ασz,y + τyz,z = 0  (9b) 
 

Prescribed upper and bottom face conditions 
along with edge conditions can be modified such that 
even functions f2n(z) and odd functions f2n+1(z) in the 
z-distribution of in-plane displacements are for 
analysis of extension and bending problems, 
respectively. Correspondingly, vertical displacement 
w(x, y, z) is odd and even in the extension and 
bending problems, respectively, due to transverse 
shear strain-displacement relations. In displacement 
based models, classical theories of plates deal with 
determination of basic variables [u, v, w]0. In the 
present work, role of linear thickness-wise distribution 

of each one of three displacements, six strains and 
six stress components is examined with reference to 
development of new theories. As such, we use 
suffixes 0 and 1 for the first and second terms, 
suffixes e and b for 2-D variables in extension and 
bending problems. In extension problems, 
displacements are [u0, v0, w1], in-plane strains are [εx, 
εy, γxy]0 and transverse strains are [γxz1, γyz1, εz0]. 
Corresponding variables in bending problems are 
complementary to those in extension problems, i.e., 
they are [u1, v1, w0], [εx, εy, γxy]1 and [γxz0, γyz0, εz1].      

III. INITIAL SETS OF SOLUTIONS IN 
PRIMARY PLATE PROBLEMS FROM EPT 
  

In EPT of primary plate problems, in-plane 
displacements [u, v] require two term representation 
in extension problems and one term representation in 
bending (or associated torsion) problems.   
Prescribed conditions at each of x = constant edge 
(with analogous conditions along y = constant edge) 
in the primary problems are 
 

u =  ̃n(y) or σxn(y) = Txn(y)       (10a) 
  v =  ̃n(y) or τxyn(y) = Txyn(y)     (10b) 
 
in which n is 0 and 1 in extension and bending 
problems, respectfully. Similarly, prescribed 
transverse stresses along z = ± 1 faces of the plate 
are [Txz(x, y), Tyz(x, y), Tz(x, y)]n. Due to odd and 
even z-distribution, however, [Txz1, Tyz1, Tz0] 
correspond to extension problems and vice versa in 
bending problems.    
  

In auxiliary problems in EPT, transverse 
stresses in bending and extension problems are 
expressed as 
 

[τxz, τyz]0b  = − α [ψ0,x, ψ0,y]       (11a)  
[τxz, τyz]1e  =  α [ψ1,x, ψ1,y]       (11b) 

 
In bending problem with σz = zσz1, one gets from 
static equation (2) α

2
∆ψ0 = σz1 (σz1 = q1/2) and the 

transverse shear stresses are independent of elastic 
deformations. In extension problem with σz = f2 σz2 

with f2(z) = (1 – z
2
)/2, one gets α

2
∆ψ1 = σz2 with σz2  

dependent on elastic deformations due to  in-plane 
displacements f2[u, v]2. 
  

In EPT, one should note that the error in the 
analysis with reference to the exact solution of 3-D 
problem is due to participation of w0(x, y) in the 
bending problem and w1(x, y) from w = z w1(x, y) in 
extension problem in the transverse strain-
displacement relations (w0 and w1 are from z-
integration of εz from constitutive relations). One 
should also note here that the determination of 2-D 
variables of [u, v] are independent of w0 and w1. 
Moreover, σz1 in bending problem is independent of 
elastic deformations where as σz2 is dependent on 
elastic deformations in the extension problems. 
Analysis from EPT of primary extension problem in 
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the presence of transverse stresses is presented 
later. 
 

A.   Initial solutions of primary bending 
problem 
                                                                                                                                                                                                                                                                                                                             

In EPT, w0 is a face variable given by   
 

w0f(x, y) = ∫[τxz0 dx + τyzody] –  

            −∫ [u,z dx + v,z dy]z=1   (12) 
 

Initial set of in-plane displacements and 
transverse stresses with f2(z) = (1 – z

2
)/2 and f3(z) = 

z(1–z
2
/3)/2 are  

 
[u, v] = z [u, v]1  
[τxz, τyz] = f2(z) [τxz2, τyz2)]      (13a) 
σz = f3(z)σz3              (13b) 

 
Note that f2 and f3 are due to mandatory requirement 
of z-integration of equilibrium equations for 
determination of [u, v]1.  
 

Since f3(1) ≠ 0, σz3 becomes a free variable 
by replacing f3(z) with f*3(z). Normal stress σz along 
with (z q1/2) in the extended Poisson’s theory takes 
the form 
 

σz = z [½ q1 − ⅓ σz3] + f3 σz3        (14) 
 

In order to determine [u1, v1] satisfying static 
and integrated equilibrium equations due to elastic 
deformations, they are modified as 
 

u1* = u1 + γxz0 − α w0,x         (15a) 
  

v1* = v1 + γyz0 −α w0,y      (15b) 
 
(Inclusion of w0 term in the above equation is based 
on the fact that determination of w0 is not from 
transverse shear strain-displacement relations as in 
Kirchhoff’s theory and not correct from these 
relations in FSDT. Note, however, that [γxz0, γyz0] = 
[(u1 + α w0,x), (v1 + α w0,y)] after finding [u1, v1]). 
Transverse shear stresses along with those in the 
auxiliary problem are [τxz, τyz] = [τxz0, τyz0] + f2(z) [τxz2, 
τyz2] in which [τxz2, τyz2] = G [u1, v1] + [τxz0, τyz0]. Here, 
[τxz0, τyz0] are included due to participation of σz1 in 
the equilibrium equations (1). From equations (1, 14), 
one obtains 
 

G α (u1,x + v1,y) = β1 σz3         (16) 
   

 
(Note that one cannot prescribe zero τxz2 along x 
constant edges since τxz0 is independent of u1. 
Similarly, one cannot prescribe zero τyz2 along y 
constant edges since τyz0 is independent of v1) 

 
For the use of [u1*, v1*] in the integration of 

equilibrium equations (1), it is convenient to express 
displacements [u1, v1] in the form [u1, v1] = − α [ψ1,x + 

υ1,y, ψ1,y – υ1,x]. Contributions of ψ1 and w0 in [u1, v1]* 
are one and the same in giving corrections to w(x, y, 
z) and transverse stresses (in fact, contribution of w0 
is through strain-displacement relations in static 
equilibrium equations and through constitutive 
relations in the z-integration of equilibrium equations. 
Since w0 does not participate in the in-plane static 
equations, its contribution is through [u1, v1] in the 
integrated in-plane equilibrium equations. Hence, w0 
in [u1, v1]* is replaced by ψ1 (so as to be independent 
of w0 used in strain-displacement relations) so that 
[u1, v1, εx1, εy1, γxy1]* are 
 

u1*= −α (2ψ1,x+υ1,y) + γxz0     (17a) 
v1*= −α (2ψ1,y−υ1,x) + γyz0     (17b) 
εx1* =  x̅1 + α γxz0,x       (18a) 

εy1* =  y̅1 + αγxz0,y       (18b) 
γxy1* =  ̅xy1 + α (γxz0,y + γyz0,x)     (18c) 

 
In the above equations, [ x̅1,  ̅y1] = −α

2 
[(2ψ1,xx+υ1,xy), 

(2ψ1,yy−υ1,xy)],  ̅xy1 = − α
2 
[(4ψ1,xy+υ1,yy−υ1,xx)]. 

 
From integration of equilibrium equations 

using the above strains along with v1,x = u1,y in the 
equations (9), one gets reactive transverse stresses  
 

τxz2* = α (E'e1* + μ σz1),x       (19a)  
τyz2* = α (E'e1* + μ σz1),y      (19b) 
σz3 = α (τxz2,x + τyz2,y)*       (19c)  

 
One equation governing in-plane 

displacements (u1, v1), noting that σz3 from eq. (16) is 
negative of the one from eq. (19c) due to (f3,zz + f1) = 
0, is given by 
 

α β1 (τxz2,x + τyz2,y)* = G e1        (20) 
 

From equations (18, 19c, 20), one gets  
 

E' β1 α
4
 ∆∆ (2 ψ1 + ψ0/G) –  
−Gα

2
∆ψ1−μ β1 α

2
 ∆σz1 = 0    (21) 

 
Above fourth order equation in ψ1 along with ∆υ1 = 0 
constitute a sixth order system to be solved with the 
following three conditions along x = constant edges 
(with analogue conditions along y = constant edges)                
 

ψ1 = 0 or τ*xz2 = 0        (22a) 
u1 = 0 or σx1 = Tx1(y)       (22b)  
v1 = 0 or τxy1 = Txy1(y)       (22c) 

 
Note that 2-D variables [ψ1, υ1], thereby, [u1, v1] are 
determined from satisfying both static and integrated 
equilibrium equations of 3-D infinitesimal element. 
 
 With reference to solution of 3-D problem, 
above analysis in the determination of [w0, u1, v1] is in 
error in the transverse shear strain-displacement 
relations due to [τxz, τyz] = f2(z) [τxz2, τyz2)], and in the 
constitutive relations due to f3(z)σz3.  
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B.   Initial solutions of primary extension 
problem 

 
 In a primary extension problem, the plate is 
subjected to symmetric normal stress σzo = q0(x, y)/2, 
asymmetric shear stresses [τxz1, τyz1] = ± [Txz1(x, y), 
Tyz1(x, y)] along top and bottom faces of the plate. 
Here, σzo = q0/2 satisfying face condition does not 
participate in equilibrium equation of transverse 
stresses and the corresponding applied face shears 
[Txz1, Tyz1] are gradients of a given harmonic function 

 ̃1 so that [Txz, Tyz]= − α [ ̃1,x,  ̃1,y]. Transverse shear 
stresses and normal stress satisfying face conditions 

are [τxz, τyz] = − αz [ ̃1,x,  ̃1,y] and σz0 = q0(x, y)/2. 
 
 Since σz0 does not participate in equilibrium 

equation of transverse stresses,  ̃1 remains as 
harmonic function in the integrated equilibrium 
equation of transverse stresses so that equilibrium 
equation of transverse stresses is ignored. With the 

inclusion of the above gradients of the known  ̃1 in 
the normal stresses, in-plane equilibrium equations 
(1) are 
 

(E'/3) [α
2
∆u0 + μ ασz0,x – 

    − ½(1+ ν) α
2
(v0,x – u0,y),y] = 0      (23a) 

(E'/3) [α
2
∆v0 + μ ασz0,y +  

     + ½(1+ ν) α
2
(v0,x – u0,y),x] = 0      (23b) 

  
Above static equilibrium equations (23) along with 
two conditions (10) at x = constant edges (with 
analogue conditions along y = constant edges) have 
to be solved for u0 and v0. They remain same in the 
integrated equations. 
 

The solutions of the above equations with 
reference to 3-D problem are in error in transverse 
shear strain-displacement relations due to w = z εz0 

from constitutive relation. To rectify this error, one 
considers higher order in-plane displacement terms 
f2(z)[u2, v2] which, in turn, induce [τxz1, τyz1] and zw1. 
Displacements from strain-displacement relations 
consistent with the above [τxz1, τyz1] and σz from 
equilibrium equation of transverse stresses take the 
form with εz0 = – μ e0 + (1− 2 ν μ) σz0/E in Eq. (6) 
 

w = z (εz0 + w1)  
u = u0 + f2 u2, v = v0 + f2 v2,  
σz = f2 σz2            (24) 

(Note that σz2 is not priory known unlike σz1 = q/2 in 
bending problem) 

 
Since w = z (εz0 + w1) as face variable should 

not participate in static equilibrium equations (1), 
displacements [u2, v2] are modified in the form 
 

u2* = u2 − α(εz0 + w1),x             (25a) 
v2* = v2 − α(εz0 + w1),y                  (25b) 
[τxz1, τyz1] = − G[u2, v2]      (26a) 
σz2 = G α (u2,x + v2,y)       (26b) 

 

In order to keep [τxz3, τyz3] as free variables in the 
integrated equilibrium equations, f3(z) is modified with 
β1 = 1/3 as f*3(z) = f3(z) − β1 z so that 
 

τxz = z (τxz1− β1 τxz3) + f3 τxz3      (27a) 
τyz = z (τyz1− β1 τyz3) + f3 τyz3      (27b) 

 
From equilibrium equation of transverse stresses and 
[τxz1, τyz1] from eq. (26) along with first term in 
equations (27), one gets 
 

Gα (u2,x + v2,y) = β1σz4         (28) 
 

Strain-displacement relations give 
 

εx2* = εx2 – α
2 
(εz0 + w1),xx      (29a) 

εy2* = εy2 – α
2 
(εz0 + w1),yy     (29b) 

γ*xy2 = γxy2– 2α
2
(εz0 + w1),xy      (29c) 

 
For the use of [u2, v2]* in the integration of 

equilibrium equations (1), displacements [u2, v2] are 
expressed in the form [u2, v2] = − α [ψ2,x + υ2,y, ψ2,y – 
υ2,x]. Induced w1 in [u*, v*]2, like in EPT of bending 
problem,  is replaced by ψ2 so that [u, v, εx, εy, γxy]*2 
are 
 

u*2 = u2 – α (ψ2 + εz0),x       (30a) 
v*2 = v2 – α (ψ2 + εz0),y       (30b) 
ε*x2= εx2 – α

2
 (ψ2 + εz0),xx       (31a) 

ε*y2= εy2 – α
2
 (ψ2 + εz0),yy      (31b) 

γ*xy2 = γxy2 – 2 α
2
(ψ2 + εz0),xy      (31c) 

 
Note that role of w1 is in its contribution in the 

integrated equilibrium equations where as it is a 
virtual quantity in transverse strain-displacement 
relations since it should not alter εzo from constitutive 
relation. 
       

From integration of equilibrium equations, 
reactive transverse stresses are  
 

τ*xz3 = α [σ*x,x + τ*xy,y]2       (32a)   
τ*yz3 = α [σ*y,y + τ*xy,x]2       (32b) 
σz4 = − α (τxz,x + τyz,y)*3         (33) 

                                                                                                                      
One equation governing in-plane 

displacements (u, v)2, noting that σz4 from eq. (28) is 
negative of the one from eq.(33) due to (f3,zz + f1) = 0, 
is given by  
 
         α β1(τxz,x + τyz,y)*3 = Gα (u2,x + v2,y)        (34) 

 
With the second equation v2,x = u2,y, the 

above equation becomes a fourth order equation in 
ψ2 to be solved along with harmonic function υ2 with 
three conditions u*2 = 0 or σ*x2 = 0 ,  v*2 = 0 or τ*xy2 = 
0 and ψ2 = 0 or τ*xz3 = 0 along x = constant edges 
(with analogue conditions along y = constant edges)  
 

With reference to solution of 3-D problem, 
above analysis in the determination of [u2, v2, εz2] is in 
error in the transverse shear strain-displacement 
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relations due to [τxz, τyz] = f3(z) [τxz3, τyz3)], and in the 
constitutive relations due to f4(z)σz4. 
 

IV.  RECTIFICATION OF ERRORS IN 
EPT 
 

Disadvantage in the application of EPT is in 
the development of software for generation of fk(z) 
functions and β2k+1, necessary for thickness ratio 
varying up to unit value. Errors in the analysis are 
due to statically equivalent transverse stresses 
associated with f2(z) and f3(z) in bending problems, 
and f3(z) and f4(z) in extension problems. In order to 
rectify these errors, it is more convenient to consider 
successive z-integrations of f1 = z in the suitable 
Fourier series expansion. For this purpose, we 
consider Fourier series of f1(z) in the form with λn = 
2/[(2n-1)π]  

 
f1(z) = ∑ n sin (z/λn )  (sum on n)     (35)  

 
in which  
 

An = ∫   
 

 
sin (z/λn) dz = - (-1)

n
 λn

2
       (36) 

 
Relevant [f2, f3, f4] functions are expressed, for 
convenience, in the form  
 

f2(z) = ∑ n λn  cos (z/λn)         (37a)  
f3(z) = ∑ n λn

2
  sin (z/λn)          (37b) 

f4(z) = ∑ n λn
3
  cos (z/λn)      (37c) 

(Term by term differentiation in each of the above 
series is valid) 
 

In the bending problem, in-plane 

displacements [u, v] due to 𝛔z3 in constitutive 
relations are expressed as 
 

[u, v] = ∑ n λn
2
 [u, v]3  sin (z/λn)       (38) 

 
Correspondingly, transverse shear stresses are 
expressed as 
 

τxz = ∑ n λn cos(z/λn) τx2       (39a) τyz = 
∑ n λn cos(z/λn)τy2        (39b) 

 
Equations governing [u, v]3 from equilibrium 

equations (9) with v,x = u,y are 
 

     λn
2 

[E' α
2
∆u3 + μ ασz3,x] = τxz2       (40a)        

λn
2 
[E' α

2
∆v3 + μ ασz3,y] = τyz2       (40b)       

 
Above Poisson equations have to be solved with 
relevant homogeneous edge conditions. 
 

In the extension problem, in-plane 

displacements [u, v] due to 𝛔z4 in constitutive 
relations are expressed as 
 

[u, v] = ∑ n λn
3
 cos (z/λn) [u, v]4        (41) 

 

Correspondingly, transverse shear stresses are 
expressed as 
 

τxz = ∑ n λn
2
  sin (z/λn) τxz3       (42a) 

τyz = ∑ n λn
2
  sin (z/λn) τyz3       (42b)  

 
Equations governing [u, v]4 from equilibrium 

equations (9) with v,x = u,y are 
 

λn
2 

[E' α
2
∆u4 + μ ασz4,x] + τxz3 = 0    (43a)        

λn
2 
[E' α

2
∆v4 + μ ασz4,y] + τyz3 = 0     (43b)       

 
Above Poisson equations have to be solved with 
relevant homogeneous edge conditions. 
 

V.  CONCLUDING REMARKS  
 
 Two term representation of displacements is 
mandatory for initial analysis of primary extension 
problems. The need for the use of higher order fk(z) 
polynomials for obtaining exact solutions of 3-D 
primary extension and bending problems is eliminated 
by the use of proper Fourier series expansion of 
displacements other than the basic variables in EPT of 
plates.  
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