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Abstract—Now-a-days, traffic violations are very 
common in one of the busy cities called as Los 
Angeles in a state of California resided in United 
States of America. It’s a traffic violation, so it’s 
better to have seat belt used for safety, have a 
valid tag licensed plate, no hit nor run the car and 
or drive within a speed limit. In this paper, Swarm 
Algorithm is one of the Optimization techniques to 
generate a population of particles (cars, buses, 
trucks, etc.) with their traffic violations in Los 
Angeles that adjusts its position and velocity in 
the search space, according to a set of 
mathematical formulas to locate the best solution 
(Traffic violations such as drive within a speed 
limit to avoid rash driving) in comparison to 
Genetic Algorithm. Genetic Algorithm and Swarm 
Algorithm are the two intelligent optimization 
techniques currently using as a heuristic method 
for solving complex problem. However, they 
worked with different structures in different 
environments. Consequently, these two 
algorithms do not guarantee that it will always 
give optimal solution in order to enhance the 
capability of solving problems and improve their 
performance. In fact, their applications are still in 
exploration, but some of their well-known 
applications are network management, robotics, 
neural networks, machine learning, traffic control, 
etc. Consequently, particle Swarm Optimization 
(PSO) is one of the areas of evolutionary 
Computation. So in order to compare its 
performance, another popular optimization 
method Genetic Algorithm (GA) was chosen. 
These two methods are also employee different 
strategies and computation efforts based on our 
evolutionary computational results. In the field of 
Health IT and Engineering perspective, the 
purpose of the Swarm algorithm is to develop a 
computerized prediction system that is better than 
genetic algorithm in terms of speed and accuracy. 
Because of this, it will track and predict future 
Traffic violations. It can save money, time, and 
save lives too as it has roots for artificial life and 
evolutionary computation. In this paper, we come 
to compare GA with PSO performance, however; 
GA with its own simple operators is stable in its 

performance under different search space sizes. 
Moreover, PSO performs well in small search 
space size, but decreases its capabilities with 
more complicated problems, i.e., when it has large 
search space size. 

Keywords—Optimization, Swarm Algorithm, 
Genetic Algorithm, Local bests, Global bests, 
Velocity. 

1. SWARM ALGORITHM 

1.1 INTRODUCTION 

Swarm Algorithm is one of the Optimization 
techniques to generate a population of particles (cars, 
buses, trucks, etc.) that adjusts its particle position 
and velocity in the search space, according to a set of 
mathematical formulas, so as to locate the best 
solution. The word “Swarm” came from disorganized 
population of moving particles that tend to cluster 
together, while each individual seems to be moving in 
a random direction of a regional search space. In 
general, Particle Swarm Optimization (PSO) appears 
to be a simpler algorithm than GA. Its foundation is 
based on the principle that each solution can be 
represented as a particle (agent) in a swarm. Each 
agent has a position and velocity vector. Each position 
coordinate represents a parameter value. Thus for an 
‘n’ dimensional optimization, each agent will have a 
position in n-dimensional space that represents a 
solution [2].  

1.2 SOLUTION GUARANTEE FOR SWARM ALGORITHM OR 

NOT 

It does not guarantee for the solution of the target 
to be found in the regional search space. Swarm 
Algorithm is very easy to implement, simple in 
concept, computationally efficient, and has roots for 
artificial life and evolutionary computation, and also 
does not require any operators like mutation, 
crossover, etc. like Genetic Algorithm do. 

1.3 ITERATIVE MANNER: 

This algorithm operates in iterative manner. At 
each iteration, every particle would get one chance to 
move. The particle can be move by the magnitude of 

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 3159-0040 

Vol. 2 Issue 11, November - 2015 

www.jmest.org 
JMESTN42351222 3315 

their velocity. If the velocity is very high, the particle 
will take bigger steps, and if the velocity is very small, 
the particle will take smaller steps how far it is closer 
to the target in the search space.  

 
1.4 EXAMPLE: 

The example of Swarm Algorithm can be flocking 
of birds searching for food in an area. There is only 
one piece of food in that area and all the birds are 
searching for food which individual get the targeting 
one.  In each iteration, the birds are only aware of how 
far the food is. So, the best approach to get the food is 
to follow the bird which is nearest to it. 

1.5 TASK: 

The main task of Particle Swarm Optimization is 
how we can modify the velocity, so that all 
particles(populations of cars, buses, trucks, etc.) walk 
toward the global minima. We have some idea about 
all the various velocity joined by particles as know 
their fitness values but don’t know where global 
minima lies. So, we have to do the 2 predictions such 
as local maxima(personal or local best(pbest)) for the 
best in the individual particle and global 
maxima(global best) for the best in the population.  
So, then local maxima looks for best global 
maxima(global best) walks for best fitness value of the 
particles of calculating velocity vector for the global 
minima of target in regional search space. Then, we 
can also have best fitness value for calculating 
position vector for the global minima of target(any 
traffic violations) in regional search space. Again, the 
main task is that particles are keep moving to find 
global minima in each iteration in our target regional 
search space. 
Swarm algorithm keeps track of three global variables: 

 Target(traffic violation) value of 40 or any value  or 
stop until it reaches the final iteration 

  Global best (gBest) value indicating which particle's 
data is currently closest to the Target 

   Stopping value indicating when the algorithm should 
stop if the Target isn't found. 

In this paper, “the population of events occurring 
in Los Angeles means like any events occur such as 
some car moving faster, buses moving slowly, trucks 
moving within speed limit, any car not having license 
tag plate, not wearing seat belt, hit and run the car, 
etc. are updating their position and velocity based on 
the algorithm with which route to reach to the specific 
target.  

 

2. SWARM ALGORITHM STEPS 

1. Initialize the swarm from the solution space 
2. Evaluate the fitness of each particle 
3. Update local  
4. Update global bests 
5. Update velocity and position of each particle 
6. Go to step2, and repeat until termination 
condition 
 
2.1 Flowchart 

The flowchart is explained in several points as:  
(1) First step is to initialize the population of a particle 
(cars, trucks, buses, etc. moving in Los Angles). The 
population of Los Angeles can be based on cars, 
jeeps, motorcycles, trucks, etc. Therefore, initializing 
the randomly generating between minimum and 
maximum range values in a search space for the 
population of events occurring(Cars, trucks, buses, 
etc. moving with their traffic violations) in Los Angeles.  
Therefore, population of events occurring is initialized 
by assigning random positions and velocity. 
Consequently, initialing the number of inputs it goes 
for each  population of events to occur in Los Angeles 
in each iteration have constant c1 and c2 which is 
equals to 2 used for learning factors. Specifying the 
iteration value how long it stops to end the swarm 
algorithm to get the target (Traffic violation) value or if 
no solution found for the fitness value of global 
minima, also initialize the maximum velocity.  
(2) Each population of event occurring in a Los 
Angeles has a fitness value. The main aim is to 
optimize this fitness value as evaluated by the fitness 
function. 
(3) Each event occurring in a population of Los 
Angeles has its own position and velocity calculated 
by the position and velocity function equation 
respectively. 
(4) Initially, the PSO is initialized with events occurring 
in a population of Los Angeles, whose parameters are 
altered during each iteration. 
(5) In each iteration, every event occurring in Los 
Angeles updates its fitness value and its pbest 
(personal best value). 
(6) Meanwhile, in every iteration, the Swarm algorithm 
reviews the gbest (i.e. the best pbest value obtained 
by any of the particle to that point.).  
(7) At the last step, if it has achieved to find global 
minima for the best fitness value of global best and 
local best, so then calculate best velocity and position 
event’s occurring in a Los Angles for the traffic 
violation achieved in that iteration as shown in 
equation. Otherwise, it will keep on looking for best 
fitness value for the event occurring in Los Angeles 
until the final iteration ends or if the final iteration 
ends, no traffic violation achieved, so, then there will 
be no solution found. The flowchart is shown as below 
in figure 1. 
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START

 Initialize Swarm population particles

 # of inputs each particle take 

 Minimum range value

 Maximum range value

 Number of iterations

 Initialize particle position with initial particle velocity

 Velocity assigned

 Target to achieve in regional search space

 Other parameters such as constants (c1,c2, etc.)

Calculate fitness value for each particle

Note: user can give any number of inputs such as 1,2,3,etc.

FitnessValue=random number of input 

particles(minimum,maximum)

Look for Pbest values in each particle

    Pbest
t+1

= {Pbest,I
t  ,   if fi

 t+1 > Pbest,I
t               

                          xi
t+1  ,   if fi

 t+1  ≤ Pbest,I
t    }      

Fitness Value better than the pBest value 

otherwise it takes previous pBest value

pBest value=current Fitness value

gBest value=particle with best value

Calculate Swarm particle Velocity and Particle 

Position with their equations

STOP

 
Figure 1: Flowchart 

 
2.2 Pseudocode 

In this pseudocode, particles called as cars, 
buses, trucks, etc. where the events to occur in a Los 
Angeles based on one specific targeting event (traffic 
violation such as speeding ticket) in a regional search 
space. 
 

P = Particle_Initialization(); 

For i=1 to it_max 

   For each particle p in P do 

      fp = f(p);  

      If fp is better than f(pBest)  

            pBest = p; 

      End 

   end 
   gBest = best p in P; 

   For each particle p in P do 

        v = v + c1*rand*(pBest – p) + c2*rand*(gBest – 
p); 

        p = p + v;  
   end 
end 

 
3. Genetic Algorithms 

Genetic algorithms (GA) are also one of the 
artificial intelligence optimization techniques.  GA is an 
evolutionary optimizer (EO) that takes a sample of 
possible solutions (individuals) and attempts to find 

optimum solutions by mimicking the evolutionary 
processes of nature over a large number of 
generations [1]. These algorithms also belong to the 
family of evolutionary algorithms[9][10] inspired by 
evolution natural behavior like selection, inheritance, 
crossover, mutation at the level of cells. Genetic 
Algorithm was developed by Goldberg aiming to find 
the best solution in solving optimization problems by 
mimicking such natural behavior. This algorithm works 
by creating set (population) of candidate solutions 
which are also called individuals, at the initial stage. 
Every candidate solution has its own set of properties 
(chromosomes) and these properties alterable and 
mutated. Generally binary strings i.e., 0s and 1s are 
used to represent these solutions but are not limited to 
this; other way of encodings can also be done. The 
evolution starts from a set of individuals that are 
randomly generated. This process is iterative (epoch) 
and each iteration is called a generation. Every 
individual has a fitness which is the objective 
function’s value at each generation and this fitness is 
to be evaluated. Based on the fitness, individuals are 
selected from the current set and a new generation is 
formed by modifying (mutated) the individuals 
properties. Now, in the next iteration the new 
generated individual is used. The algorithm is 
terminated after it reaches the highest number of 
generations or after reaching a fitness satisfaction 
level. 
 
4. GA Algorithm Steps 
• Start with randomly generating population of n 
Chromosomes 
• Until the satisfied condition is reached. 
• For each chromosome i find the fitness f(i) 
• Follow the below steps to generate a new 
population. Repeat it until a new and fully complete 
population is created. 

a)  Get the evaluated fitness value of chromosomes and 
according to it select the best two parent 
chromosomes(chromosomes with better fitness gets 
the higher chance of being selected). 

b) Create new offspring(children) by using crossover 
probability crossing over the parents. 

c)  Mutate new offspring using mutation probability, at 
each position. 

d) New population gets new offspring. 
•  Run the algorithm further using the newly generated    
    chromosome population 
•  To check, If the satisfied condition is reached,   
   stop and return the best chromosome that is in the    
   current population. 
• Repeat the iteration until get the Optimal solution 
• [Optimal Solution] Best Chromosomes for target   
   achieved. 
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4.1 Basic Pseudo-code 

Begin; 

Generate population of n chromosomes randomly; 

For each individual: calculate fitness f(i); 

For i = 1 to total number of generations; 

Select an operation randomly (crossover or 
mutation); 

If crossover; 

Select two parents at random ia and ib; 

Generate on offspring ic= crossover (ia and ib); 

Else If mutation; 

Select one chromosome i at random; 

Generate an offspring ic = mutate (i); 

End if; 

Calculate the fitness of the offspring ic; 

If ic is better than the worst chromosome then 

replace the worst chromosome by ic; 

Next i; 

Check if termination = true; 

End; 

 
5. DIVERSE APPLICATIONS OF GA AND PSO 

Genetic algorithms have been shown to be 
successful on a wide variety of problems including 
ultra wideband antenna design [5], frequency 
selective surface design [6, 7], and optimization of the 
performance of many antenna geometries such as 
patch and corrugated horn antennas [8]. They are 
commonly implemented within commercial full-wave 
simulation programs in such a general way as to be 
applicable to virtually any design that might be 
undertaken in such an environment. Many 
representative examples have been documented in 
[1]. More recently, PSO has been used to successfully 
design reconfigurable arrays [9], non-uniform 
Luneburg lenses, and reflector antennas [3]. 

6. COMPARISON BETWEEN GENETIC AND PARTICLE 

SWARM 

• GA was designed basically for discrete optimization 
problem where bit of 0’s and 1’s are used to encode 
discrete design variables, whereas PSO was 
designed for continuous problems and can choose 
any value to encode design variables. In PSO, the 
previous and the next position of a particle at each 
point are defined uniquely and clear. 
• Unlike GA, PSO has no any calculation method that 
can be considered systematical, and there is no any 
mathematical foundation that is definite. 
 
7. Similarities between Genetic and Particle 
Swarm  
1. Both initialize a population in random manner. 
2. They both use evaluation function to determine how 
fit (good) a potential solution is. 
3. Both depends on fitness value as they are 
reproduction of the population 
4. Both repeat the same set of processes for a 
predetermined amount of time. 

5. They both stopped when requirements are met. 
 
8.   Java Code output for Particle Swarm 
Optimization 
Example1: 
epoch number (iterations): 18 
10 + 9 + 17 = 36 
-20 + 26 + 31 = 37 
7 + 16 + 26 = 49 
2 + 3 + 31 = 36 
-13 + 17 + 26 = 30 
34 + 16 + 4 = 54 
-6 + 26 + 26 = 46 
11 + 20 + 19 = 50 
epoch number: 19 
Particle 7 has achieved target of 50 (traffic violations 
for Particle 7(passenger in that car) does not wear 
the seat belt who was targeted as 50 in one of the 
areas of Los Angeles on 19

th
 iteration). 

11 + 20 + 19 = 50  
 
Example2: 
TARGET(Traffic violation such as rash driving) = 50; 
 MAX_INPUTS = 3; 
 MAX_PARTICLES = 3; 
 V_MAX = 10;             // Maximum velocity change 
allowed. 
 MAX_EPOCHS = 200; 
    // The particles will be initialized with data randomly 
chosen within the range 
    // of these starting min and max values:  
 START_RANGE_MIN = 140; 
 START_RANGE_MAX = 190; 
epoch number: 43 
3 + 65 + 2 = 70 
6 + 55 + -9 = 52 
33 + 16 + 2 = 51 
epoch number: 44 
-7 + 55 + 2 = 50 
10 + 59 + -5 = 64 
33 + 16 + 2 = 51 
epoch number: 45 
Particle 0 has achieved target. (traffic violations for 
Particle 0(passenger in that car) has have a rash 
driving who was targeted as 50 in one of the areas 
of Los Angeles on 45

th
 iteration). 

-7 + 55 + 2 = 50 
 
Example 3 (No solution found) 
    TARGET = 50; 
    MAX_INPUTS = 10; 
    MAX_PARTICLES = 5; 
    V_MAX = 10;             // Maximum velocity change 
allowed. 
    MAX_EPOCHS = 200;(Iterations)     
// The particles will be initialized with data randomly 
chosen within the range 
    // of these starting min and max values:  
    START_RANGE_MIN = 140; 
    START_RANGE_MAX = 190; 
epoch number: 197 
46 + -13 + -24 + 31 + 11 + 21 + 10 + -8 + -16 + 4 = 62 
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-10 + 12 + -24 + 83 + -23 + 5 + 15 + -8 + -16 + 4 = 38 
36 + -14 + -17 + 68 + -22 + -10 + -29 + -8 + -12 + -9 = 
-17 
-10 + 9 + -10 + -17 + 39 + 12 + 7 + -17 + 7 + 3 = 23 
-37 + -26 + -7 + 83 + 37 + -21 + -25 + -8 + -14 + -13 = 
-31 
epoch number: 198 
36 + -23 + -24 + 21 + 1 + 11 + 0 + -8 + -16 + 4 = 2 
-10 + 12 + -24 + 83 + -23 + 5 + 15 + -8 + -16 + 4 = 38 
46 + -4 + -7 + 78 + -12 + 0 + -19 + -8 + -2 + 1 = 73 
-10 + 13 + -6 + -13 + 43 + 16 + 11 + -13 + 11 + 7 = 59 
-27 + -16 + 3 + 83 + 47 + -11 + -15 + -8 + -4 + -3 = 49 
epoch number: 199 
Solution not found (There is no traffic violations for 
in one of the areas of Los Angeles). 
 
9. Data Preparation and Mathematical way for 

Swarm algorithm in Health IT and Engineering 
Figure 2 explain the mathematical way for 8 

events such as cars, truck, buses, etc. in a Los 
Angeles to search for one targeting event(Traffic 
violation such as Speeding Ticket) with swarm input of 
3 with in regional search space of -140-150 for 100 
iterations in regards of swarm algorithm in Health IT 
and Engineering. In each iteration, events occur in 
population of Los Angeles get the fitness value, have 
pBest and gBest and then update its position and 
velocity. 

 

 
Figure 2: Mathematical example for PSO 

 
Step1: Initialization of Particle Swarm 
Optimization 
Population of Particles(P1,P2,P3,…,P8)=8 
Particle positions=x1,x2,x3,….x8 with coordinates 
Particle velocity initialized=v1,v2,v3,….v8=(-2,2) for 
Iteration t=0 
Each particle has 3 inputs 
# of Iteration=100(starting from t=0-99) 

Minimum=-140, Maximum=150, c1=c2=1, r1=r2=0.5, 
w=0.7 
 
Step2: Iteration1 t=0: 
Fitness value(FV) function of each particle 
f(x)=random# for input1(minimum,maximum) + 
random# for input2(minimum,maximum) + random# 
for input3(minimum,maximum) 
Particle positions 1(4,-6): x1 has 3 randomly input 
values between minimum and maximum=20,19,27;          
f(x1)=20+19+27=66 
Particle positions 2(3,1): x2 has 3 randomly input 
values between minimum and maximum=-10,36,41;          
f(x2)=-10+36+41=67 
Particle positions 3(2,3): x3 has 3 randomly input 
values between minimum and maximum=17,16,36;           
f(x3)=17+16+36=69 
Particle positions4(6,8): x4 has 3 randomly input 
values between minimum and maximum=12,13,41;            
f(x4)=12+13+41=66 
Particle positions 5(5,2): x5 has 3 randomly input 
values between minimum and maximum=-3,27,36;           
f(x5)=-3+27+36=60 
Particle positions 6(3,4): x6 has 3 randomly input 
values between minimum and maximum=34,16,4;            
f(x6)=34+16+4=54 
Particle positions7(2,6): x7 has 3 randomly input 
values between minimum and maximum=4,36,36;             
f(x7)=4+36+36=76 
Particle positions8(2,1): x8 has 3 randomly input 
values between minimum and maximum=21,30,29;           
f(x8)=21+30+29=80 
 
Step3: Pbest Value 
The Pbest can be calculated by the following formula. 
If current fitness value is better then Pbest value, 
assign the current fitness as the new Pbest value 
otherwise keep the previous Pbest value.  
Note: We will use this formula below in the next 
iteration or until the iteration, whether we have to use 
current fitness value for Pbest or the previous Pbest 
value. 
 

 
In this case, we are starting from 1

st
 iteration starting 

from 0, so all our current fitness values becomes the 
Pbest values.  
Pbest for x1 (4,-6)=66 
Pbest for x2 (3,1)=67 
Pbest for x3 (2,3)=69 
Pbest for x4 (6,8)=66 
Pbest for x5 (5,2)=60 
Pbest for x6 (3,4)=54 
Pbest for x7 (2,6)=76 
Pbest for x8 (2,1)=80 
 
Step4: Gbest Value 
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To choose the best Gbest value from the 
neighbourhood of one of the Pbest values 
closest=Gbest for P5=60(5,2) as it is closest to 
Target 50 
 
Step5: Calculate the Velocity and Update particle 
position for each particle 
(a)ParticleNewVelocitty(t+1)=w*InitialVelocity(t)+c1*r1
*[Pbest(t)-P1(t)]+c2*r2*[Gbest(t)-P1(t)]; 
Where t=0 for iteration=0; w is the weight=0.7; 
c1=c2=1; r1=r2=0.5; Pbest(t) is the best particle value 
for t=0; Gbest(t) is the best neighborhood particle 
value in the Pbest for t=0; P1 is the particle position 
value for t=0. 
P1NewVelocity(0+1)=0.7*(-2,2)+(1)*(0.5)*[(4,-6)-(4,-
6)]+(1)*(0.5)*[(5,2)-(4,-6)]; 
P1NewVelocity(1)=(-0.9,5.4) 
P2NewVelocity(0+1)=0.7*(-2,2)+(1)*(0.5)*[(3,1)-
(3,1)]+(1)*(0.5)*[(5,2)-(3,1)]; 
P2NewVelocity(1)=(-0.4,1.9) 
P3NewVelocity(0+1)=0.7*(-2,2)+(1)*(0.5)*[(2,3)-
(2,3)]+(1)*(0.5)*[(5,2)-(2,3)]; 
P3NewVelocity(1)=(0.1,0.9) 
P4NewVelocity(0+1)=0.7*(-2,2)+(1)*(0.5)*[(6,8)-
(6,8)]+(1)*(0.5)*[(5,2)-(6,8)]; 
P4NewVelocity(1)=(-1.9,-1.6) 
 
P5NewVelocity(0+1)=0.7*(-2,2)+(1)*(0.5)*[(5,2)-
(5,2)]+(1)*(0.5)*[(5,2)-(5,2)]; 
P5NewVelocity(1)=(-1.4,1.4) 
P6NewVelocity(0+1)=0.7*(-2,2)+(1)*(0.5)*[(3,4)-
(3,4)]+(1)*(0.5)*[(5,2)-(3,4)]; 
P6NewVelocity(1)=(-0.4,0.4) 
P7NewVelocity(0+1)=0.7*(-2,2)+(1)*(0.5)*[(2,6)-
(2,6)]+(1)*(0.5)*[(5,2)-(2,6)]; 
P7NewVelocity(1)=(0.1,-0.6) 
P8NewVelocity(0+1)=0.7*(-2,2)+(1)*(0.5)*[(2,1)-
(2,1)]+(1)*(0.5)*[(5,2)-(2,1)]; 
P8NewVelocity(1)=(0.1,1.9) 
 
(b)ParticleNewPosition(t+1)=ParticlePositions(t)+P
articleNewVelocitty(t+1) 
P1NewPosition(0+1)=P1NewPosition(1)=(4,-6)+(-
0.9,5.4)=(3.1,-0.6) 
P2NewPosition(0+1)=P2NewPosition(1) =(3,1)+(-
0.4,1.9)=(2.6,2.9) 
P3NewPosition(0+1)=P3NewPosition(1) 
=(2,3)+(0.1,0.9)=(2.1,3.9) 
P4NewPosition(0+1)=P4NewPosition(1) =(6,8)+(-1.9,-
1.6)=(4.1,6.4) 
P5NewPosition(0+1)=P5NewPosition(1) =(5,2)+(-
1.4,1.4)=(3.6,3.4) 
P6NewPosition(0+1)=P6NewPosition(1)= (3,4)+(-
0.4,0.4)=(2.6,4.4) 
P7NewPosition(0+1)=P7NewPosition(1) =(2,6)+(-
0.9,5.4)=(2.1,5.4) 
P8NewPosition(0+1)=P8NewPosition(1) 
=(2,1)+(0.1,1.9)=(2.1,2.9) 
It will be calculating and updating Particle Velocity and 
Particle Position until it finds the target or it will stop 
until the last iterations whether we achieve our 
target(speeding ticket) or not.  

 

 
Figure 3: Mathematical example of PSO, updating 

velocity and position 
 
For iteration2, particle positions from last iteration to 
be  t=1 
Particle positions P1: x1(t=1) (3.1,-0.6)=10,9,17 ;               
f(x1)=36 
Particle positions P2: x2(t=1) (2.6,2.9)=-20,26,31;              
f(x2)=37 
Particle positions P3: x3(t=1) (2.1,3.9) =7,16,26;                 
f(x3)=49 
Particle positions P4: x4(t=1) (4.1,6.4)=2,3,31;                    
f(x4)=36 
Particle positions P5: x5(t=1) (3.6,3.4)=-13,17,26                
f(x5)=30 
Particle positions P6: x6(t=1) (2.6,4.4)=34,16,4                   
f(x6)=54 
Particle positions P7: x7(t=1) (2.1,5.4)=-6,26,26                  
f(x7)=46 
Particle positions P8: x8(t=1) (2.1,2.9)=11,20,22                  
f(x8)=50 
Particles velocity from previous iterations to be 
t=1 
V1(t=1)=(-0.9,5.4) 
V2(t=1)=(-0.4,1.9) 
V3(t=1)=(0.1,0.9) 
V4(t=1)=(-1.9,-1.6) 
V5(t=1)=(-1.4,1.4) 
V6(t=1)=(-0.4,0.4) 
V7(t=1)=(0.1,-0.6) 
V8(t=1)=(0.1,1.9) 
 
Step3: 
New Pbest=current fitness values because current 
fitness values less than or equal to Previous Pbest 
Values, if we look the formula i.e. 
36<66,  Pbest(P1) for x1= (3.1,-0.6)=36 
37<67, Pbest(P2)for x2= (2.6,2.9 )=37 
49<69, Pbest(P3) for x3= (2.1,3.9) =49 
36<66, Pbest(P4) for x4= (4.1,6.4)=36 
30<60, Pbest(P5) for x5= (3.6,3.4)=30 
54<=54, Pbest(P6) for x6= (2.6,4.4)=54  
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46<76, Pbest(P7) for x7= (2.1,5.4)=46 
50<80, Pbest(P8) for x8= (2.1,2.9)=50 
Our target is to achieve 50, but we don’t know which 
coordination location it is, so particles are searching 
for food in the searching space. 
So, particle 8 has achieved the target of 50, but we 
need to know the coordination location where target 
50 is located 
 
Step4: 
To choose the best Gbest value from the 
neighbourhood of one of the Pbest values 
closest=Gbest for P3=49(2.1,3.9) as it is closest to 
Target 50 
 
Step5: Calculate the Velocity and Update particle 
position for each particle 
(a)ParticleNewVelocitty(t+1)=w*InitialVelocity(t=1)
+c1*r1*[Pbest(t=1)-P1(t=1)]+c2*r2*[Gbest(t=1)-
P1(t=1)]; 
Where t=1 for iteration2; w is the weight=0.7; 
c1=c2=1; r1=r2=0.5; Pbest(t=1) is the best particle 
value for t=1; Gbest(t=1) is the best neighbourhood 
particle value in the Pbest for t=1; P1 is the particle 
position value for t=1. 
P1NewVelocity(1+1)=0.7*(-0.9,5.4)+(1)*(0.5)*[(3.1,-
0.6)-(3.1,-0.6)]+(1)*(0.5)*[(2.1,3.9)-(3.1,-0.6)]; 
P1NewVelocity(2)=(-1.13,5.43) 
P2NewVelocity(1+1)=0.7*(-
0.4,1.9)+(1)*(0.5)*[(2.6,2.9)-
(2.6,2.9)]+(1)*(0.5)*[(2.1,3.9)-(2.6,2.9)]; 
P2NewVelocity(2)=(-0.53,1.83) 
P3NewVelocity(1+1)=0.7*(0.1,0.9)+(1)*(0.5)*[(2.1,3.9)
-(2.1,3.9)]+(1)*(0.5)*[(2.1,3.9)-(2.1,3.9)]; 
P3NewVelocity(2)=(0.07,0.63) 
P4NewVelocity(1+1)=0.7*(-1.9,-
1.6)+(1)*(0.5)*[(4.1,6.4)-(4.1,6.4)]+(1)*(0.5)*[(2.1,3.9)-
(4.1,6.4)]; 
P4NewVelocity(2)=(-2.33,-2.37) 
 
P5NewVelocity(1+1)=0.7*(-
1.4,1.4)+(1)*(0.5)*[(3.6,3.4)-
(3.6,3.4)]+(1)*(0.5)*[(2.1,3.9)-(3.6,3.4)]; 
P5NewVelocity(2)=(-1.73,1.23) 
P6NewVelocity(1+1)=0.7*(-
0.4,0.4)+(1)*(0.5)*[(2.6,4.4)-
(2.6,4.4)]+(1)*(0.5)*[(2.1,3.9)-(2.6,4.4)]; 
P6NewVelocity(2)=(-0.53,0.03) 
P7NewVelocity(1+1)=0.7*(0.1,-
0.6)+(1)*(0.5)*[(2.1,5.4)-(2.1,5.4)]+(1)*(0.5)*[(2.1,3.9)-
(2.1,5.4)]; 
P7NewVelocity(2)=(0.07,-1.17) 
P8NewVelocity(1+1)=0.7*(0.1,1.9)+(1)*(0.5)*[(2.1,2.9)
-(2.1,2.9)]+(1)*(0.5)*[(2.1,3.9)-(2.1,2.9)]; 
P8NewVelocity(2)=(0.07,1.83) 
(b)ParticleNewPosition(t+1)=ParticlePositions(t=1)
+ ParticleNewVelocitty(t+1); 
P1NewPosition(1+1)=P1NewPosition(2)=(3.1,-0.6)+(-
1.13,5.43)=(1.97,4.83) 
P2NewPosition(1+1)=P2NewPosition(2) =(2.6,2.9)+(-
0.53,1.83)=(2.07,4.73) 

P3NewPosition(1+1)=P3NewPosition(2) 
=(2.1,3.9)+(0.07,0.63)=(2.17,4.53) 
P4NewPosition(1+1)=P4NewPosition(2) =(4.1,6.4)+(-
2.33,-2.37)=(1.77,4.03) 
P5NewPosition(1+1)=P5NewPosition(2) =(3.6,3.4)+(-
1.73,1.23)=(1.87,4.63) 
P6NewPosition(1+1)=P6NewPosition(2)= (2.6,4.4)+(-
0.53,0.03)=(2.07,4.43) 
P7NewPosition(1+1)=P7NewPosition(2) 
=(2.1,5.4)+(0.07,-1.17)=(2.17,4.23) 
P8NewPosition(1+1)=P8NewPosition(2) 
=(2.1,2.9)+(0.07,1.83)=(2.17,4.73) (Particle 8 has 
achieved target of  50 and it is located at 
coordinate location of  (2.17, 4.83) with the particle 
velocity of (0.07, 1.83). So Iteration 2 stop(when 
t=1) 
 
 

 
Figure 4: Mathematical example of PSO, achieved 

target (speeding ticket) of 50 
 
10. Genetic Algorithm example using Java: 
 
Genetic Algorithm has some constraints while using 
example: 
1. The population remains the same size from 
one generation to the next; the chromosomes that 
aren't selected for reproduction are overwritten by the 
offspring of those that are selected.  Only enough 
offspring are created to make the population a 
specified size, so even though several chromosomes 
are selected for reproduction, not all get to reproduce. 
2. Selection is accomplished using a general 
random method are simply evaluated from left to right. 
3. Mutation is implemented this time.  Simply set 
the mRate to the desired proportion.  0.01 = one 
mutation randomly chosen among 100 offspring, 
0.001 = one among a thousand. 
You can adjust: 

 Target - the target number the algorithm 
should try to achieve. For example Target=50 

 MaxInputs - the number of chromosomes in 
the population. 

 MaxEpochs - number of generations to 
attempt before giving up. 
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 mRate - mutation rate. 
For instance, we choose any five random numbers 
between 0 and 9, then we choose four math operators 
from { +, -, *, / }. For example: the goal is to create an 
expression that evaluates to a target value like 50. 
Evaluation goes from left to right. Something like this: 
4 + 7 + 6 * 3 - 1 = 50. There are numerous 
combinations that can evaluate to 50, and these 
algorithms just need to come up with one best optimal 
solution for the target value of 50. 
 

Example1: 

Population of events to be traffic violation(speeding 
ticket due to rash driving) of 100 in Los Angles, and 
increased the mutation rate to 0.1 (i.e.; 1 in 10 
randomly chosen to mutate).  The results are chaotic, 
but the target was randomly achieved after only 10 
generations. 
011110110100111001011110000111010100 = 51
 49.4845360824742% 
011110110001111001011110000111010011 = 37
 35.0515463917526% 
011110110001111001011110000111010101 = 35
 32.9896907216495% 
100010110100111010001111000111010100 = 92
 91.7525773195876% 
100010110010101010011110001010110110 = 44
 42.2680412371134% 
100010110100111001011110001010110111 = 127
 72.1649484536082% 
011111000001111010011110001010110100 = 112
 87.6288659793814% 
100010110100111010001111000111010100 = 92
 91.7525773195876% 
100010110100111010001111000111010101 = 91
 90.7216494845361% 
100010110010101010011110001010110101 = 43
 41.2371134020619% 
100010110100111010001111000110110100 = 100
 100% 
Done. 
100010110100111010001111000110110100 
8 + 4 * 8 / 1 + 4 = 100 (traffic violations for Particle 
has a rash driving who was targeted as 100 in one 
of the areas of Los Angeles on 10

th
 iteration). 

Completed 10 epochs. 
Encountered 17 mutations in 174 offspring. 
 

Example 2: No solution found 

Sometimes the algorithm completes all 
epochs up to MaxEpochs, and achieves nothing. 
There are a couple possibilites why this might happen. 
One reason is that the mutation rate might be too high 
or the mutation function is too extensive can cause 
the overall solution to become too erratic to ever 
acheive its target. Another possibility is when the 
algorithm gets stuck in local minima. 

011011100110101100001101001111100011 = 99
 100.0% 

011011100110101100001101001111100011 = 99
 0.0% 
Epoch: 101 
Done. 
Completed 101 epochs. 
Encountered 0 mutations in 649 offspring. 
Notice that no solution appears. (Particle does not 
have any traffic violations in one of the areas of 
Los Angeles). 
 
11. Comparison results between Swarm 
Algorithm and Genetic Algorithm: 

In this section, we are comparing different 
results on various events moving in one of areas of 
Los Angeles to target their traffic violations using 
Swarm and Genetic algorithm to see which algorithm 
is better and faster in a search space in terms of 
iteration and execution time. 
 
Results 1: 

This Result 1 for Table 1 explains 8 events 
that can be cars, buses, trucks, etc. in Los Angeles 
with different targeting traffic violations values of not 
wearing seat belt is 10, expire license tag plate is 20, 
hit and run the vehicle is 30, not stopping at red signal 
of 40, and speeding ticket of 50 in their state law of 
iterations set to 100 for Swarm and Genetic algorithm 
with respect to its execution time(ms) and iterations 
with in minimum(-140) and maximum range 
values(150) in a search space. Swarm inputs which 
are three basically used to add three random values 
to get the minimum or maximum fitness value. If our 
swarm inputs are three or four times lesser than the 
swarm population particle for achieving bigger traffic 
violations, then it takes more time to compute as we 
can see Swarm iteration values going lower otherwise 
higher. It means that swarm inputs depending on the 
swarm population of Los Angeles. In this case, swarm 
iterations becoming higher and higher because swarm 
input is not too much lesser than swarm population of 
Los Angeles. 
 

Results1: Table 1 

 
 

Results 2: 
This Result 2 for Table 2 explains 10 events 

occurring in a population of Los Angeles with different 
targeting traffic violations values of not wearing seat 
belt is 10, expire license tag plate is 20, hit and run 
the vehicle is 30, not stopping at red signal of 40, and 
speeding ticket of 50 in their state laws  of iterations 
set to 100 for Swarm and Genetic algorithm with 
respect to its execution time(ms) and iterations with in 
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minimum(-140) and maximum range values(150) in a 
search space. Swarm inputs are basically used to add 
three random values to get the minimum or maximum 
fitness value. Swarm inputs which are twenty basically 
used to add twenty different random values to get the 
minimum or maximum fitness value. Swarm iterations 
becoming higher and higher because swarm input 
higher than the swarm population particle. 
 

Results2: Table 2 

 
 

Results 3: 
This Result 3 for Table 3 explains 500 events 

occurring in population size of Los Angeles with 
different traffic violations of not wearing seat belt is 
600, expire license tag plate is 700, hit and run the 
vehicle is 800, not stopping at red signal of 900, and 
speeding ticket of 1000  of iterations set to 100 for 
Swarm and Genetic algorithm with respect to its 
execution time(ms) and iterations with in minimum(-
140) and maximum range values(150) in a search 
space. Swarm inputs which are twenty basically used 
to add twenty random values to get the minimum or 
maximum fitness value. Swarm iterations becoming 
lower and lower because swarm input are more than 
three or four times lesser than swarm population 
particle. 

 
Results3: Table3 

  
The bar graph, we analyzed from our swarm and 
genetic data for 500 events occurring for population of 
Los Angles of Swarm and Genetic algorithm with 
respect to it execution time shows relation to it 
iteration in terms of different traffic violations values of 
not wearing seat belt is 600, expire license tag plate is 
700, hit and run the vehicle is 800, not stopping at red 
signal of 900, and speeding ticket of 1000 in their 
state laws as shown in figure 5. 
 

 
Figure 5: Result 3 Bar Graph combine results of 

SA, GA and its iterations 
 
Results 4 using java source code 

With the implementation of Java source code 
for Results 4, Swarm algorithm using population of 
Los Angeles of 500 events for targeting Speeding 
ticket traffic violations value of 1000 in a search space 
between -140 and 150 as shown in figure 6. 
We observe that Swarm algorithm is achieving target 
event speeding ticket traffic violations of 1000 in 11 
iteration per execution time of 3732ms. 
 

Figure 6: Java output result for Swarm Algorithm 
using 500 particles 

 
With the implementation of Java source code for 
Results 3 for Table3, Genetic algorithm using 
population of Los Angeles of 500 events for targeting 
Speeding ticket traffic violations value of 1000 in a 
search space between -140 and 150 as shown in 
figure7. We observe that Genetic algorithm is 
achieving speeding ticket of 1000 in 16 iteration per 
execution time of 466 ms. 
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Figure 7: Java output result for Genetic Algorithm 
using 500 particles 

 
From results3, Swarm algorithm is computational 
efficient in global search for 500 events occurring in  
population of Los Angeles for the targeting speeding 
ticket  value of 1000 to achieve in 11th iteration per 
execution time of 3732ms, whereas Genetic 
algorithms achieve in 16th iteration per execution time 
of 466ms which was slower. So, Swarm Algorithm is 
better than Genetic Algorithm as it achieve the 
speeding ticket of 100 in less iteration. 
 
Results 5: 50 population particles for target of 40 

With the implementation of Java source code, 
Swarm algorithm using population of Los Angeles of 
50 events for targeting Speeding ticket  value of 40 in 
a search space between -140 and 150. We analyze 
from our computation that Swarm algorithm is 
achieving target event speeding ticket value of 40 in 
10 iteration per execution time of 3265 ms as shown 
in figure 8. 

 
Figure 8: Java output result for Swarm Algorithm 

using 50 particles 

With the implementation of Java source code, Genetic 
algorithm using population of Los Angeles of 50 
events for targeting Speeding ticket  value of 40 in a 
search space between -140 and 150. We analyze 
from our computation that Genetic algorithm is 
achieving target event speeding ticket  of 40 in 11 
iteration per execution time of 1866 ms as shown in 
figure 9. 
 

Figure 9: Java output result for Genetic Algorithm 
using 50 particles 

 
Results 6: using the minimum range to 140 and 
maximum range to 500 instead of -140 for 
minimum and 150 for maximum 

In this case, we are using large search space 
for 500 population of events in Los Angeles to achieve 
the target Speeding ticket value of 100. While 
computing both algorithm using java source code, we 
analyze that Swarm Algorithm takes more time for 
computation than the Genetic Algorithm in a large 
space. Therefore, Swarm Algorithm takes 82 iteration 
to complete in 4286ms whereas Genetic Algorithm 
takes 12 iteration to complete in 467ms as shown in 
figure 10. 
 

 
Figure 10: Java Output result using large search 

space 
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Results 7: 100 population particles for target of 
100 

With the implementation of Java source code, 
Swarm algorithm using population of Los Angeles of 
100 events for targeting Speeding ticket value of 100 
in a  search space between -140 and 150. We 
analyze from our computation that Swarm algorithm is 
achieving target event speeding ticket value of 100 in 
1st iteration per execution time of 2332 ms as shown 
in figure 11. 
 

 
Figure 11: Java output result for Swarm Algorithm 

using 100 particles 
 
With the implementation of Java source code, Genetic 
algorithm using population of Los Angeles of 100 
events for targeting Speeding ticket value of 100 in a 
search space between -140 and 150. We analyze 
from our computation that Genetic algorithm is 
achieving target event speeding ticket  value of 100 in 
10

th
 iteration per execution time of 467 ms as shown 

in figure 12. 
 

 
Figure 12: Java output result for Genetic 

Algorithm using 100 particles 
 
Which algorithm is better? 
(1)From Result1 and Result2, we have analyzed that 
Genetic algorithm is achieving the targeting traffic 
violation  in lesser iterations as compare to Swarm 
Algorithm because (1)we see swarm taking more time 
for computation as swarm inputs are not three or four 
times lesser than the swarm population of Los 

Angeles. So, that’s why, Swarm algorithm is taking 
more iterations to achieve a speeding ticket in a 
search regional space. 
(2)From Results5, we have analyzed that having the 
large search space, such as we take 1400 as 
minimum range and 5500 as maximum range in our 
results to slow down the computation rate of Swarm 
algorithm.  
(3)However, from Results 3 and Results 6, we have 
analyzed that Swarm algorithm is faster and better 
than Genetic Algorithm as it takes (a)less iteration 
target  value of 100 in 1st iteration per execution time 
of 2332 as compare to Genetic in 10th iteration per 
execution time of 467ms (b) less computation time 
(c)swarm inputs are three or four times lesser than 
swarm population of Los Angeles to keep algorithm 
run faster (d)more computationally efficient than 
Genetic algorithm as it is easy to compute without 
using any mutation and cross-over operations and it is 
highly efficient when using global search using global 
best values which is nearest to the speeding ticket  
(4)However, 500 events occurring for population of 
Los Angeles gives less accurate clustering to achieve 
the targeting value in less iteration. 
(5)Genetic algorithm was unable to find solution 
sometimes when the population size was 20 for 
achieving the targeting traffic violation value of 1000, 
whereas Swarm algorithm was very successful in 
finding the solution. 
(6) Based on our results, Swarm algorithm performs 
well in small search space as it is easy to compute, 
but difficult to compute in complicated problems. 
 
12. Health IT and Engineering perspective 

In terms of Health IT and engineering perspective: 
(a) By generating our population of Los Angeles using 
Java program, Swarm algorithm approach basically 
used for the clustering of the events occurring on 
population in Los Angeles. It is given by a user based 
on traffic violations which means that is proved to be 
successful at finding tweets relevant to the program 
was looking via their personal best and local best 
values to locate the best solution. 
(b)Swarm-based algorithm is fast and accurate for the 
clustering of Los Angeles to track and forecast traffic 
violations, where the prediction are proven to be 
effective and established science 
(d)Swarm-based algorithm is very good in global 
searching space and plays a novel way in a broad 
sense and specifically new to public health informatics 
that is applied to real speeding ticket emergence or 
other violations. 
 
13. CONCLUSION 

One advantage of the PSO over the GA is its 
algorithmic simplicity. The GAs has the following 
elements and operators: Encoding, selection 
according to fitness, crossover to produce new 
offspring, and inversion [10].       There are several 
options of implementation for each of these operators. 
For example, one may choose tournament, or 
proportionate selection. In the PSO, however, there is 
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one simple operator: velocity calculation. The 
advantage of dealing with fewer operators is the 
reduction of computation and elimination of the 
process to select the best operator for a given 
optimization. Both GA and PSO have various 
numerical parameters which need to be carefully 
selected. In terms of GA population size, as well as 
crossover and mutation rates need to be selected. For 
PSO, population size, inertial weight, as well as c1 
and c2 parameters need to be decided upon. In 
general, manipulating these parameters is easier than 
changing various operators. There exist many 
comprehensive studies on the effects of these 
parameters that make their selection even easier. 
Another difference between the GA and PSO is the 
ability to control convergence. Crossover and 
mutation rates can subtly affect the convergence of 
the GA, but nothing can compare to the level of 
control achieved through manipulating of the inertial 
weight. It has been shown that the decrease of inertial 
weight dramatically increases the swarm’s 
convergence. This type of control allows the user to 
determine the rate of convergence, and the level of 
“stagnation” ultimately achieved. Stagnation occurs in 
both the GA and PSO when one terminates the 
evolutionary process prematurely to reduce the 
typically long computational time. 
As comparing to our results 4, Swarm algorithm is 
computational efficient in global search for 500 events 
occurring in population of Los Angeles for the 
targeting event (traffic violations such as Speeding 
ticket) of 1000 to achieve in 11th iteration per 
execution time of 3732ms, whereas Genetic 
algorithms achieve the speeding ticket in 16th iteration 
per execution time of 466ms which was slower.  
In results 7, we analyze for population of 100 event 
(cars, trucks, buses, etc. with their speed) moving in 
Los Angeles from our computation. Genetic algorithm 
is achieving target speeding ticket value of 100 in 10

th
 

iteration per execution time of 467ms, whereas 
Swarm algorithm achieving the targeting event 
speeding ticket  value of 100 in 1

st
 iteration per 

execution time of 2332ms. 
As looking at the bar graph, Swarm algorithm show 
better results than genetic algorithm. 
Therefore PSO, performs well in small search space 
size but decreases its capabilities with more 
complicated problems, i.e., when it has large search 
space size. 
  In this paper, we assume 500 populations of 
events occurring (cars, trucks, buses, etc.) in Los 
Angeles. In figure 5 that event occur as “The car 
speed is higher than the speed limit” in Los Angeles 
where to investigate the targeting event “Speeding 
Ticket”. So, the solution is found. 
The main aim in this paper is that various events such 
as population of any one of the cars, trucks and buses 
moving above the speed limit or any traffic violation in 
Los Angeles to look for one specific targeting 
event(Speeding ticket or other violations) using 
Swarm algorithm than compare it with Genetic 
algorithm.  

 
Future Work: 
  Genetic Algorithm works only in stable 
environment with discrete variables. In future, we will 
be able to work in dynamic environment with 
continuous variable and it should guarantee 
convergence. 
Further research in Swarm Algorithm can be done in 
order to bring it in perfection. To our analysis, its 
application areas should be explored further. 
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