
Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 3159-0040

Vol. 2 Issue 11, November - 2015

www.jmest.org
JMESTN42351222 3314

Implementation Of Traffic Violations In Los
Angeles Using Swarm And Genetic Algorithm

With Technical Aspects And Application

Ali Tariq Bhatti
1

1
Department of Electrical & Computer engineering

North Carolina A&T State University
Greensboro, NC, USA

1
atbhatti@aggies.ncat.edu,ali_tariq302@hotmail.com

alitariq.researcher.engineer@gmail.com,

Dr. Naser El-Bathy
2

2
Department of Computer Systems Technology

North Carolina A&T State University
Greensboro, NC, USA

Abstract—Now-a-days, traffic violations are very
common in one of the busy cities called as Los
Angeles in a state of California resided in United
States of America. It’s a traffic violation, so it’s
better to have seat belt used for safety, have a
valid tag licensed plate, no hit nor run the car and
or drive within a speed limit. In this paper, Swarm
Algorithm is one of the Optimization techniques to
generate a population of particles (cars, buses,
trucks, etc.) with their traffic violations in Los
Angeles that adjusts its position and velocity in
the search space, according to a set of
mathematical formulas to locate the best solution
(Traffic violations such as drive within a speed
limit to avoid rash driving) in comparison to
Genetic Algorithm. Genetic Algorithm and Swarm
Algorithm are the two intelligent optimization
techniques currently using as a heuristic method
for solving complex problem. However, they
worked with different structures in different
environments. Consequently, these two
algorithms do not guarantee that it will always
give optimal solution in order to enhance the
capability of solving problems and improve their
performance. In fact, their applications are still in
exploration, but some of their well-known
applications are network management, robotics,
neural networks, machine learning, traffic control,
etc. Consequently, particle Swarm Optimization
(PSO) is one of the areas of evolutionary
Computation. So in order to compare its
performance, another popular optimization
method Genetic Algorithm (GA) was chosen.
These two methods are also employee different
strategies and computation efforts based on our
evolutionary computational results. In the field of
Health IT and Engineering perspective, the
purpose of the Swarm algorithm is to develop a
computerized prediction system that is better than
genetic algorithm in terms of speed and accuracy.
Because of this, it will track and predict future
Traffic violations. It can save money, time, and
save lives too as it has roots for artificial life and
evolutionary computation. In this paper, we come
to compare GA with PSO performance, however;
GA with its own simple operators is stable in its

performance under different search space sizes.
Moreover, PSO performs well in small search
space size, but decreases its capabilities with
more complicated problems, i.e., when it has large
search space size.

Keywords—Optimization, Swarm Algorithm,
Genetic Algorithm, Local bests, Global bests,
Velocity.

1. SWARM ALGORITHM

1.1 INTRODUCTION

Swarm Algorithm is one of the Optimization
techniques to generate a population of particles (cars,
buses, trucks, etc.) that adjusts its particle position
and velocity in the search space, according to a set of
mathematical formulas, so as to locate the best
solution. The word “Swarm” came from disorganized
population of moving particles that tend to cluster
together, while each individual seems to be moving in
a random direction of a regional search space. In
general, Particle Swarm Optimization (PSO) appears
to be a simpler algorithm than GA. Its foundation is
based on the principle that each solution can be
represented as a particle (agent) in a swarm. Each
agent has a position and velocity vector. Each position
coordinate represents a parameter value. Thus for an
‘n’ dimensional optimization, each agent will have a
position in n-dimensional space that represents a
solution [2].

1.2 SOLUTION GUARANTEE FOR SWARM ALGORITHM OR

NOT

It does not guarantee for the solution of the target
to be found in the regional search space. Swarm
Algorithm is very easy to implement, simple in
concept, computationally efficient, and has roots for
artificial life and evolutionary computation, and also
does not require any operators like mutation,
crossover, etc. like Genetic Algorithm do.

1.3 ITERATIVE MANNER:

This algorithm operates in iterative manner. At
each iteration, every particle would get one chance to
move. The particle can be move by the magnitude of

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 3159-0040

Vol. 2 Issue 11, November - 2015

www.jmest.org
JMESTN42351222 3315

their velocity. If the velocity is very high, the particle
will take bigger steps, and if the velocity is very small,
the particle will take smaller steps how far it is closer
to the target in the search space.

1.4 EXAMPLE:

The example of Swarm Algorithm can be flocking
of birds searching for food in an area. There is only
one piece of food in that area and all the birds are
searching for food which individual get the targeting
one. In each iteration, the birds are only aware of how
far the food is. So, the best approach to get the food is
to follow the bird which is nearest to it.

1.5 TASK:

The main task of Particle Swarm Optimization is
how we can modify the velocity, so that all
particles(populations of cars, buses, trucks, etc.) walk
toward the global minima. We have some idea about
all the various velocity joined by particles as know
their fitness values but don’t know where global
minima lies. So, we have to do the 2 predictions such
as local maxima(personal or local best(pbest)) for the
best in the individual particle and global
maxima(global best) for the best in the population.
So, then local maxima looks for best global
maxima(global best) walks for best fitness value of the
particles of calculating velocity vector for the global
minima of target in regional search space. Then, we
can also have best fitness value for calculating
position vector for the global minima of target(any
traffic violations) in regional search space. Again, the
main task is that particles are keep moving to find
global minima in each iteration in our target regional
search space.
Swarm algorithm keeps track of three global variables:

 Target(traffic violation) value of 40 or any value or
stop until it reaches the final iteration

 Global best (gBest) value indicating which particle's
data is currently closest to the Target

 Stopping value indicating when the algorithm should
stop if the Target isn't found.

In this paper, “the population of events occurring
in Los Angeles means like any events occur such as
some car moving faster, buses moving slowly, trucks
moving within speed limit, any car not having license
tag plate, not wearing seat belt, hit and run the car,
etc. are updating their position and velocity based on
the algorithm with which route to reach to the specific
target.

2. SWARM ALGORITHM STEPS

1. Initialize the swarm from the solution space
2. Evaluate the fitness of each particle
3. Update local
4. Update global bests
5. Update velocity and position of each particle
6. Go to step2, and repeat until termination
condition

2.1 Flowchart

The flowchart is explained in several points as:
(1) First step is to initialize the population of a particle
(cars, trucks, buses, etc. moving in Los Angles). The
population of Los Angeles can be based on cars,
jeeps, motorcycles, trucks, etc. Therefore, initializing
the randomly generating between minimum and
maximum range values in a search space for the
population of events occurring(Cars, trucks, buses,
etc. moving with their traffic violations) in Los Angeles.
Therefore, population of events occurring is initialized
by assigning random positions and velocity.
Consequently, initialing the number of inputs it goes
for each population of events to occur in Los Angeles
in each iteration have constant c1 and c2 which is
equals to 2 used for learning factors. Specifying the
iteration value how long it stops to end the swarm
algorithm to get the target (Traffic violation) value or if
no solution found for the fitness value of global
minima, also initialize the maximum velocity.
(2) Each population of event occurring in a Los
Angeles has a fitness value. The main aim is to
optimize this fitness value as evaluated by the fitness
function.
(3) Each event occurring in a population of Los
Angeles has its own position and velocity calculated
by the position and velocity function equation
respectively.
(4) Initially, the PSO is initialized with events occurring
in a population of Los Angeles, whose parameters are
altered during each iteration.
(5) In each iteration, every event occurring in Los
Angeles updates its fitness value and its pbest
(personal best value).
(6) Meanwhile, in every iteration, the Swarm algorithm
reviews the gbest (i.e. the best pbest value obtained
by any of the particle to that point.).
(7) At the last step, if it has achieved to find global
minima for the best fitness value of global best and
local best, so then calculate best velocity and position
event’s occurring in a Los Angles for the traffic
violation achieved in that iteration as shown in
equation. Otherwise, it will keep on looking for best
fitness value for the event occurring in Los Angeles
until the final iteration ends or if the final iteration
ends, no traffic violation achieved, so, then there will
be no solution found. The flowchart is shown as below
in figure 1.

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 3159-0040

Vol. 2 Issue 11, November - 2015

www.jmest.org
JMESTN42351222 3316

START

 Initialize Swarm population particles

 # of inputs each particle take

 Minimum range value

 Maximum range value

 Number of iterations

 Initialize particle position with initial particle velocity

 Velocity assigned

 Target to achieve in regional search space

 Other parameters such as constants (c1,c2, etc.)

Calculate fitness value for each particle

Note: user can give any number of inputs such as 1,2,3,etc.

FitnessValue=random number of input

particles(minimum,maximum)

Look for Pbest values in each particle

 Pbest
t+1

= {Pbest,I
t , if fi

 t+1 > Pbest,I
t

 xi
t+1 , if fi

 t+1 ≤ Pbest,I
t }

Fitness Value better than the pBest value

otherwise it takes previous pBest value

pBest value=current Fitness value

gBest value=particle with best value

Calculate Swarm particle Velocity and Particle

Position with their equations

STOP

Figure 1: Flowchart

2.2 Pseudocode

In this pseudocode, particles called as cars,
buses, trucks, etc. where the events to occur in a Los
Angeles based on one specific targeting event (traffic
violation such as speeding ticket) in a regional search
space.

P = Particle_Initialization();

For i=1 to it_max

 For each particle p in P do

 fp = f(p);

 If fp is better than f(pBest)

 pBest = p;

 End

 end
 gBest = best p in P;

 For each particle p in P do

 v = v + c1*rand*(pBest – p) + c2*rand*(gBest –
p);

 p = p + v;
 end
end

3. Genetic Algorithms

Genetic algorithms (GA) are also one of the
artificial intelligence optimization techniques. GA is an
evolutionary optimizer (EO) that takes a sample of
possible solutions (individuals) and attempts to find

optimum solutions by mimicking the evolutionary
processes of nature over a large number of
generations [1]. These algorithms also belong to the
family of evolutionary algorithms[9][10] inspired by
evolution natural behavior like selection, inheritance,
crossover, mutation at the level of cells. Genetic
Algorithm was developed by Goldberg aiming to find
the best solution in solving optimization problems by
mimicking such natural behavior. This algorithm works
by creating set (population) of candidate solutions
which are also called individuals, at the initial stage.
Every candidate solution has its own set of properties
(chromosomes) and these properties alterable and
mutated. Generally binary strings i.e., 0s and 1s are
used to represent these solutions but are not limited to
this; other way of encodings can also be done. The
evolution starts from a set of individuals that are
randomly generated. This process is iterative (epoch)
and each iteration is called a generation. Every
individual has a fitness which is the objective
function’s value at each generation and this fitness is
to be evaluated. Based on the fitness, individuals are
selected from the current set and a new generation is
formed by modifying (mutated) the individuals
properties. Now, in the next iteration the new
generated individual is used. The algorithm is
terminated after it reaches the highest number of
generations or after reaching a fitness satisfaction
level.

4. GA Algorithm Steps
• Start with randomly generating population of n
Chromosomes
• Until the satisfied condition is reached.
• For each chromosome i find the fitness f(i)
• Follow the below steps to generate a new
population. Repeat it until a new and fully complete
population is created.

a) Get the evaluated fitness value of chromosomes and
according to it select the best two parent
chromosomes(chromosomes with better fitness gets
the higher chance of being selected).

b) Create new offspring(children) by using crossover
probability crossing over the parents.

c) Mutate new offspring using mutation probability, at
each position.

d) New population gets new offspring.
• Run the algorithm further using the newly generated
 chromosome population
• To check, If the satisfied condition is reached,
 stop and return the best chromosome that is in the
 current population.
• Repeat the iteration until get the Optimal solution
• [Optimal Solution] Best Chromosomes for target
 achieved.

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 3159-0040

Vol. 2 Issue 11, November - 2015

www.jmest.org
JMESTN42351222 3317

4.1 Basic Pseudo-code

Begin;

Generate population of n chromosomes randomly;

For each individual: calculate fitness f(i);

For i = 1 to total number of generations;

Select an operation randomly (crossover or
mutation);

If crossover;

Select two parents at random ia and ib;

Generate on offspring ic= crossover (ia and ib);

Else If mutation;

Select one chromosome i at random;

Generate an offspring ic = mutate (i);

End if;

Calculate the fitness of the offspring ic;

If ic is better than the worst chromosome then

replace the worst chromosome by ic;

Next i;

Check if termination = true;

End;

5. DIVERSE APPLICATIONS OF GA AND PSO

Genetic algorithms have been shown to be
successful on a wide variety of problems including
ultra wideband antenna design [5], frequency
selective surface design [6, 7], and optimization of the
performance of many antenna geometries such as
patch and corrugated horn antennas [8]. They are
commonly implemented within commercial full-wave
simulation programs in such a general way as to be
applicable to virtually any design that might be
undertaken in such an environment. Many
representative examples have been documented in
[1]. More recently, PSO has been used to successfully
design reconfigurable arrays [9], non-uniform
Luneburg lenses, and reflector antennas [3].

6. COMPARISON BETWEEN GENETIC AND PARTICLE

SWARM

• GA was designed basically for discrete optimization
problem where bit of 0’s and 1’s are used to encode
discrete design variables, whereas PSO was
designed for continuous problems and can choose
any value to encode design variables. In PSO, the
previous and the next position of a particle at each
point are defined uniquely and clear.
• Unlike GA, PSO has no any calculation method that
can be considered systematical, and there is no any
mathematical foundation that is definite.

7. Similarities between Genetic and Particle
Swarm
1. Both initialize a population in random manner.
2. They both use evaluation function to determine how
fit (good) a potential solution is.
3. Both depends on fitness value as they are
reproduction of the population
4. Both repeat the same set of processes for a
predetermined amount of time.

5. They both stopped when requirements are met.

8. Java Code output for Particle Swarm
Optimization
Example1:
epoch number (iterations): 18
10 + 9 + 17 = 36
-20 + 26 + 31 = 37
7 + 16 + 26 = 49
2 + 3 + 31 = 36
-13 + 17 + 26 = 30
34 + 16 + 4 = 54
-6 + 26 + 26 = 46
11 + 20 + 19 = 50
epoch number: 19
Particle 7 has achieved target of 50 (traffic violations
for Particle 7(passenger in that car) does not wear
the seat belt who was targeted as 50 in one of the
areas of Los Angeles on 19

th
 iteration).

11 + 20 + 19 = 50

Example2:
TARGET(Traffic violation such as rash driving) = 50;
 MAX_INPUTS = 3;
 MAX_PARTICLES = 3;
 V_MAX = 10; // Maximum velocity change
allowed.
 MAX_EPOCHS = 200;
 // The particles will be initialized with data randomly
chosen within the range
 // of these starting min and max values:
 START_RANGE_MIN = 140;
 START_RANGE_MAX = 190;
epoch number: 43
3 + 65 + 2 = 70
6 + 55 + -9 = 52
33 + 16 + 2 = 51
epoch number: 44
-7 + 55 + 2 = 50
10 + 59 + -5 = 64
33 + 16 + 2 = 51
epoch number: 45
Particle 0 has achieved target. (traffic violations for
Particle 0(passenger in that car) has have a rash
driving who was targeted as 50 in one of the areas
of Los Angeles on 45

th
 iteration).

-7 + 55 + 2 = 50

Example 3 (No solution found)
 TARGET = 50;
 MAX_INPUTS = 10;
 MAX_PARTICLES = 5;
 V_MAX = 10; // Maximum velocity change
allowed.
 MAX_EPOCHS = 200;(Iterations)
// The particles will be initialized with data randomly
chosen within the range
 // of these starting min and max values:
 START_RANGE_MIN = 140;
 START_RANGE_MAX = 190;
epoch number: 197
46 + -13 + -24 + 31 + 11 + 21 + 10 + -8 + -16 + 4 = 62

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 3159-0040

Vol. 2 Issue 11, November - 2015

www.jmest.org
JMESTN42351222 3318

-10 + 12 + -24 + 83 + -23 + 5 + 15 + -8 + -16 + 4 = 38
36 + -14 + -17 + 68 + -22 + -10 + -29 + -8 + -12 + -9 =
-17
-10 + 9 + -10 + -17 + 39 + 12 + 7 + -17 + 7 + 3 = 23
-37 + -26 + -7 + 83 + 37 + -21 + -25 + -8 + -14 + -13 =
-31
epoch number: 198
36 + -23 + -24 + 21 + 1 + 11 + 0 + -8 + -16 + 4 = 2
-10 + 12 + -24 + 83 + -23 + 5 + 15 + -8 + -16 + 4 = 38
46 + -4 + -7 + 78 + -12 + 0 + -19 + -8 + -2 + 1 = 73
-10 + 13 + -6 + -13 + 43 + 16 + 11 + -13 + 11 + 7 = 59
-27 + -16 + 3 + 83 + 47 + -11 + -15 + -8 + -4 + -3 = 49
epoch number: 199
Solution not found (There is no traffic violations for
in one of the areas of Los Angeles).

9. Data Preparation and Mathematical way for

Swarm algorithm in Health IT and Engineering
Figure 2 explain the mathematical way for 8

events such as cars, truck, buses, etc. in a Los
Angeles to search for one targeting event(Traffic
violation such as Speeding Ticket) with swarm input of
3 with in regional search space of -140-150 for 100
iterations in regards of swarm algorithm in Health IT
and Engineering. In each iteration, events occur in
population of Los Angeles get the fitness value, have
pBest and gBest and then update its position and
velocity.

Figure 2: Mathematical example for PSO

Step1: Initialization of Particle Swarm
Optimization
Population of Particles(P1,P2,P3,…,P8)=8
Particle positions=x1,x2,x3,….x8 with coordinates
Particle velocity initialized=v1,v2,v3,….v8=(-2,2) for
Iteration t=0
Each particle has 3 inputs
of Iteration=100(starting from t=0-99)

Minimum=-140, Maximum=150, c1=c2=1, r1=r2=0.5,
w=0.7

Step2: Iteration1 t=0:
Fitness value(FV) function of each particle
f(x)=random# for input1(minimum,maximum) +
random# for input2(minimum,maximum) + random#
for input3(minimum,maximum)
Particle positions 1(4,-6): x1 has 3 randomly input
values between minimum and maximum=20,19,27;
f(x1)=20+19+27=66
Particle positions 2(3,1): x2 has 3 randomly input
values between minimum and maximum=-10,36,41;
f(x2)=-10+36+41=67
Particle positions 3(2,3): x3 has 3 randomly input
values between minimum and maximum=17,16,36;
f(x3)=17+16+36=69
Particle positions4(6,8): x4 has 3 randomly input
values between minimum and maximum=12,13,41;
f(x4)=12+13+41=66
Particle positions 5(5,2): x5 has 3 randomly input
values between minimum and maximum=-3,27,36;
f(x5)=-3+27+36=60
Particle positions 6(3,4): x6 has 3 randomly input
values between minimum and maximum=34,16,4;
f(x6)=34+16+4=54
Particle positions7(2,6): x7 has 3 randomly input
values between minimum and maximum=4,36,36;
f(x7)=4+36+36=76
Particle positions8(2,1): x8 has 3 randomly input
values between minimum and maximum=21,30,29;
f(x8)=21+30+29=80

Step3: Pbest Value
The Pbest can be calculated by the following formula.
If current fitness value is better then Pbest value,
assign the current fitness as the new Pbest value
otherwise keep the previous Pbest value.
Note: We will use this formula below in the next
iteration or until the iteration, whether we have to use
current fitness value for Pbest or the previous Pbest
value.

In this case, we are starting from 1

st
 iteration starting

from 0, so all our current fitness values becomes the
Pbest values.
Pbest for x1 (4,-6)=66
Pbest for x2 (3,1)=67
Pbest for x3 (2,3)=69
Pbest for x4 (6,8)=66
Pbest for x5 (5,2)=60
Pbest for x6 (3,4)=54
Pbest for x7 (2,6)=76
Pbest for x8 (2,1)=80

Step4: Gbest Value

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 3159-0040

Vol. 2 Issue 11, November - 2015

www.jmest.org
JMESTN42351222 3319

To choose the best Gbest value from the
neighbourhood of one of the Pbest values
closest=Gbest for P5=60(5,2) as it is closest to
Target 50

Step5: Calculate the Velocity and Update particle
position for each particle
(a)ParticleNewVelocitty(t+1)=w*InitialVelocity(t)+c1*r1
*[Pbest(t)-P1(t)]+c2*r2*[Gbest(t)-P1(t)];
Where t=0 for iteration=0; w is the weight=0.7;
c1=c2=1; r1=r2=0.5; Pbest(t) is the best particle value
for t=0; Gbest(t) is the best neighborhood particle
value in the Pbest for t=0; P1 is the particle position
value for t=0.
P1NewVelocity(0+1)=0.7*(-2,2)+(1)*(0.5)*[(4,-6)-(4,-
6)]+(1)*(0.5)*[(5,2)-(4,-6)];
P1NewVelocity(1)=(-0.9,5.4)
P2NewVelocity(0+1)=0.7*(-2,2)+(1)*(0.5)*[(3,1)-
(3,1)]+(1)*(0.5)*[(5,2)-(3,1)];
P2NewVelocity(1)=(-0.4,1.9)
P3NewVelocity(0+1)=0.7*(-2,2)+(1)*(0.5)*[(2,3)-
(2,3)]+(1)*(0.5)*[(5,2)-(2,3)];
P3NewVelocity(1)=(0.1,0.9)
P4NewVelocity(0+1)=0.7*(-2,2)+(1)*(0.5)*[(6,8)-
(6,8)]+(1)*(0.5)*[(5,2)-(6,8)];
P4NewVelocity(1)=(-1.9,-1.6)

P5NewVelocity(0+1)=0.7*(-2,2)+(1)*(0.5)*[(5,2)-
(5,2)]+(1)*(0.5)*[(5,2)-(5,2)];
P5NewVelocity(1)=(-1.4,1.4)
P6NewVelocity(0+1)=0.7*(-2,2)+(1)*(0.5)*[(3,4)-
(3,4)]+(1)*(0.5)*[(5,2)-(3,4)];
P6NewVelocity(1)=(-0.4,0.4)
P7NewVelocity(0+1)=0.7*(-2,2)+(1)*(0.5)*[(2,6)-
(2,6)]+(1)*(0.5)*[(5,2)-(2,6)];
P7NewVelocity(1)=(0.1,-0.6)
P8NewVelocity(0+1)=0.7*(-2,2)+(1)*(0.5)*[(2,1)-
(2,1)]+(1)*(0.5)*[(5,2)-(2,1)];
P8NewVelocity(1)=(0.1,1.9)

(b)ParticleNewPosition(t+1)=ParticlePositions(t)+P
articleNewVelocitty(t+1)
P1NewPosition(0+1)=P1NewPosition(1)=(4,-6)+(-
0.9,5.4)=(3.1,-0.6)
P2NewPosition(0+1)=P2NewPosition(1) =(3,1)+(-
0.4,1.9)=(2.6,2.9)
P3NewPosition(0+1)=P3NewPosition(1)
=(2,3)+(0.1,0.9)=(2.1,3.9)
P4NewPosition(0+1)=P4NewPosition(1) =(6,8)+(-1.9,-
1.6)=(4.1,6.4)
P5NewPosition(0+1)=P5NewPosition(1) =(5,2)+(-
1.4,1.4)=(3.6,3.4)
P6NewPosition(0+1)=P6NewPosition(1)= (3,4)+(-
0.4,0.4)=(2.6,4.4)
P7NewPosition(0+1)=P7NewPosition(1) =(2,6)+(-
0.9,5.4)=(2.1,5.4)
P8NewPosition(0+1)=P8NewPosition(1)
=(2,1)+(0.1,1.9)=(2.1,2.9)
It will be calculating and updating Particle Velocity and
Particle Position until it finds the target or it will stop
until the last iterations whether we achieve our
target(speeding ticket) or not.

Figure 3: Mathematical example of PSO, updating

velocity and position

For iteration2, particle positions from last iteration to
be t=1
Particle positions P1: x1(t=1) (3.1,-0.6)=10,9,17 ;
f(x1)=36
Particle positions P2: x2(t=1) (2.6,2.9)=-20,26,31;
f(x2)=37
Particle positions P3: x3(t=1) (2.1,3.9) =7,16,26;
f(x3)=49
Particle positions P4: x4(t=1) (4.1,6.4)=2,3,31;
f(x4)=36
Particle positions P5: x5(t=1) (3.6,3.4)=-13,17,26
f(x5)=30
Particle positions P6: x6(t=1) (2.6,4.4)=34,16,4
f(x6)=54
Particle positions P7: x7(t=1) (2.1,5.4)=-6,26,26
f(x7)=46
Particle positions P8: x8(t=1) (2.1,2.9)=11,20,22
f(x8)=50
Particles velocity from previous iterations to be
t=1
V1(t=1)=(-0.9,5.4)
V2(t=1)=(-0.4,1.9)
V3(t=1)=(0.1,0.9)
V4(t=1)=(-1.9,-1.6)
V5(t=1)=(-1.4,1.4)
V6(t=1)=(-0.4,0.4)
V7(t=1)=(0.1,-0.6)
V8(t=1)=(0.1,1.9)

Step3:
New Pbest=current fitness values because current
fitness values less than or equal to Previous Pbest
Values, if we look the formula i.e.
36<66, Pbest(P1) for x1= (3.1,-0.6)=36
37<67, Pbest(P2)for x2= (2.6,2.9)=37
49<69, Pbest(P3) for x3= (2.1,3.9) =49
36<66, Pbest(P4) for x4= (4.1,6.4)=36
30<60, Pbest(P5) for x5= (3.6,3.4)=30
54<=54, Pbest(P6) for x6= (2.6,4.4)=54

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 3159-0040

Vol. 2 Issue 11, November - 2015

www.jmest.org
JMESTN42351222 3320

46<76, Pbest(P7) for x7= (2.1,5.4)=46
50<80, Pbest(P8) for x8= (2.1,2.9)=50
Our target is to achieve 50, but we don’t know which
coordination location it is, so particles are searching
for food in the searching space.
So, particle 8 has achieved the target of 50, but we
need to know the coordination location where target
50 is located

Step4:
To choose the best Gbest value from the
neighbourhood of one of the Pbest values
closest=Gbest for P3=49(2.1,3.9) as it is closest to
Target 50

Step5: Calculate the Velocity and Update particle
position for each particle
(a)ParticleNewVelocitty(t+1)=w*InitialVelocity(t=1)
+c1*r1*[Pbest(t=1)-P1(t=1)]+c2*r2*[Gbest(t=1)-
P1(t=1)];
Where t=1 for iteration2; w is the weight=0.7;
c1=c2=1; r1=r2=0.5; Pbest(t=1) is the best particle
value for t=1; Gbest(t=1) is the best neighbourhood
particle value in the Pbest for t=1; P1 is the particle
position value for t=1.
P1NewVelocity(1+1)=0.7*(-0.9,5.4)+(1)*(0.5)*[(3.1,-
0.6)-(3.1,-0.6)]+(1)*(0.5)*[(2.1,3.9)-(3.1,-0.6)];
P1NewVelocity(2)=(-1.13,5.43)
P2NewVelocity(1+1)=0.7*(-
0.4,1.9)+(1)*(0.5)*[(2.6,2.9)-
(2.6,2.9)]+(1)*(0.5)*[(2.1,3.9)-(2.6,2.9)];
P2NewVelocity(2)=(-0.53,1.83)
P3NewVelocity(1+1)=0.7*(0.1,0.9)+(1)*(0.5)*[(2.1,3.9)
-(2.1,3.9)]+(1)*(0.5)*[(2.1,3.9)-(2.1,3.9)];
P3NewVelocity(2)=(0.07,0.63)
P4NewVelocity(1+1)=0.7*(-1.9,-
1.6)+(1)*(0.5)*[(4.1,6.4)-(4.1,6.4)]+(1)*(0.5)*[(2.1,3.9)-
(4.1,6.4)];
P4NewVelocity(2)=(-2.33,-2.37)

P5NewVelocity(1+1)=0.7*(-
1.4,1.4)+(1)*(0.5)*[(3.6,3.4)-
(3.6,3.4)]+(1)*(0.5)*[(2.1,3.9)-(3.6,3.4)];
P5NewVelocity(2)=(-1.73,1.23)
P6NewVelocity(1+1)=0.7*(-
0.4,0.4)+(1)*(0.5)*[(2.6,4.4)-
(2.6,4.4)]+(1)*(0.5)*[(2.1,3.9)-(2.6,4.4)];
P6NewVelocity(2)=(-0.53,0.03)
P7NewVelocity(1+1)=0.7*(0.1,-
0.6)+(1)*(0.5)*[(2.1,5.4)-(2.1,5.4)]+(1)*(0.5)*[(2.1,3.9)-
(2.1,5.4)];
P7NewVelocity(2)=(0.07,-1.17)
P8NewVelocity(1+1)=0.7*(0.1,1.9)+(1)*(0.5)*[(2.1,2.9)
-(2.1,2.9)]+(1)*(0.5)*[(2.1,3.9)-(2.1,2.9)];
P8NewVelocity(2)=(0.07,1.83)
(b)ParticleNewPosition(t+1)=ParticlePositions(t=1)
+ ParticleNewVelocitty(t+1);
P1NewPosition(1+1)=P1NewPosition(2)=(3.1,-0.6)+(-
1.13,5.43)=(1.97,4.83)
P2NewPosition(1+1)=P2NewPosition(2) =(2.6,2.9)+(-
0.53,1.83)=(2.07,4.73)

P3NewPosition(1+1)=P3NewPosition(2)
=(2.1,3.9)+(0.07,0.63)=(2.17,4.53)
P4NewPosition(1+1)=P4NewPosition(2) =(4.1,6.4)+(-
2.33,-2.37)=(1.77,4.03)
P5NewPosition(1+1)=P5NewPosition(2) =(3.6,3.4)+(-
1.73,1.23)=(1.87,4.63)
P6NewPosition(1+1)=P6NewPosition(2)= (2.6,4.4)+(-
0.53,0.03)=(2.07,4.43)
P7NewPosition(1+1)=P7NewPosition(2)
=(2.1,5.4)+(0.07,-1.17)=(2.17,4.23)
P8NewPosition(1+1)=P8NewPosition(2)
=(2.1,2.9)+(0.07,1.83)=(2.17,4.73) (Particle 8 has
achieved target of 50 and it is located at
coordinate location of (2.17, 4.83) with the particle
velocity of (0.07, 1.83). So Iteration 2 stop(when
t=1)

Figure 4: Mathematical example of PSO, achieved

target (speeding ticket) of 50

10. Genetic Algorithm example using Java:

Genetic Algorithm has some constraints while using
example:
1. The population remains the same size from
one generation to the next; the chromosomes that
aren't selected for reproduction are overwritten by the
offspring of those that are selected. Only enough
offspring are created to make the population a
specified size, so even though several chromosomes
are selected for reproduction, not all get to reproduce.
2. Selection is accomplished using a general
random method are simply evaluated from left to right.
3. Mutation is implemented this time. Simply set
the mRate to the desired proportion. 0.01 = one
mutation randomly chosen among 100 offspring,
0.001 = one among a thousand.
You can adjust:

 Target - the target number the algorithm
should try to achieve. For example Target=50

 MaxInputs - the number of chromosomes in
the population.

 MaxEpochs - number of generations to
attempt before giving up.

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 3159-0040

Vol. 2 Issue 11, November - 2015

www.jmest.org
JMESTN42351222 3321

 mRate - mutation rate.
For instance, we choose any five random numbers
between 0 and 9, then we choose four math operators
from { +, -, *, / }. For example: the goal is to create an
expression that evaluates to a target value like 50.
Evaluation goes from left to right. Something like this:
4 + 7 + 6 * 3 - 1 = 50. There are numerous
combinations that can evaluate to 50, and these
algorithms just need to come up with one best optimal
solution for the target value of 50.

Example1:

Population of events to be traffic violation(speeding
ticket due to rash driving) of 100 in Los Angles, and
increased the mutation rate to 0.1 (i.e.; 1 in 10
randomly chosen to mutate). The results are chaotic,
but the target was randomly achieved after only 10
generations.
011110110100111001011110000111010100 = 51
 49.4845360824742%
011110110001111001011110000111010011 = 37
 35.0515463917526%
011110110001111001011110000111010101 = 35
 32.9896907216495%
100010110100111010001111000111010100 = 92
 91.7525773195876%
100010110010101010011110001010110110 = 44
 42.2680412371134%
100010110100111001011110001010110111 = 127
 72.1649484536082%
011111000001111010011110001010110100 = 112
 87.6288659793814%
100010110100111010001111000111010100 = 92
 91.7525773195876%
100010110100111010001111000111010101 = 91
 90.7216494845361%
100010110010101010011110001010110101 = 43
 41.2371134020619%
100010110100111010001111000110110100 = 100
 100%
Done.
100010110100111010001111000110110100
8 + 4 * 8 / 1 + 4 = 100 (traffic violations for Particle
has a rash driving who was targeted as 100 in one
of the areas of Los Angeles on 10

th
 iteration).

Completed 10 epochs.
Encountered 17 mutations in 174 offspring.

Example 2: No solution found

Sometimes the algorithm completes all
epochs up to MaxEpochs, and achieves nothing.
There are a couple possibilites why this might happen.
One reason is that the mutation rate might be too high
or the mutation function is too extensive can cause
the overall solution to become too erratic to ever
acheive its target. Another possibility is when the
algorithm gets stuck in local minima.

011011100110101100001101001111100011 = 99
 100.0%

011011100110101100001101001111100011 = 99
 0.0%
Epoch: 101
Done.
Completed 101 epochs.
Encountered 0 mutations in 649 offspring.
Notice that no solution appears. (Particle does not
have any traffic violations in one of the areas of
Los Angeles).

11. Comparison results between Swarm
Algorithm and Genetic Algorithm:

In this section, we are comparing different
results on various events moving in one of areas of
Los Angeles to target their traffic violations using
Swarm and Genetic algorithm to see which algorithm
is better and faster in a search space in terms of
iteration and execution time.

Results 1:

This Result 1 for Table 1 explains 8 events
that can be cars, buses, trucks, etc. in Los Angeles
with different targeting traffic violations values of not
wearing seat belt is 10, expire license tag plate is 20,
hit and run the vehicle is 30, not stopping at red signal
of 40, and speeding ticket of 50 in their state law of
iterations set to 100 for Swarm and Genetic algorithm
with respect to its execution time(ms) and iterations
with in minimum(-140) and maximum range
values(150) in a search space. Swarm inputs which
are three basically used to add three random values
to get the minimum or maximum fitness value. If our
swarm inputs are three or four times lesser than the
swarm population particle for achieving bigger traffic
violations, then it takes more time to compute as we
can see Swarm iteration values going lower otherwise
higher. It means that swarm inputs depending on the
swarm population of Los Angeles. In this case, swarm
iterations becoming higher and higher because swarm
input is not too much lesser than swarm population of
Los Angeles.

Results1: Table 1

Results 2:
This Result 2 for Table 2 explains 10 events

occurring in a population of Los Angeles with different
targeting traffic violations values of not wearing seat
belt is 10, expire license tag plate is 20, hit and run
the vehicle is 30, not stopping at red signal of 40, and
speeding ticket of 50 in their state laws of iterations
set to 100 for Swarm and Genetic algorithm with
respect to its execution time(ms) and iterations with in

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 3159-0040

Vol. 2 Issue 11, November - 2015

www.jmest.org
JMESTN42351222 3322

minimum(-140) and maximum range values(150) in a
search space. Swarm inputs are basically used to add
three random values to get the minimum or maximum
fitness value. Swarm inputs which are twenty basically
used to add twenty different random values to get the
minimum or maximum fitness value. Swarm iterations
becoming higher and higher because swarm input
higher than the swarm population particle.

Results2: Table 2

Results 3:
This Result 3 for Table 3 explains 500 events

occurring in population size of Los Angeles with
different traffic violations of not wearing seat belt is
600, expire license tag plate is 700, hit and run the
vehicle is 800, not stopping at red signal of 900, and
speeding ticket of 1000 of iterations set to 100 for
Swarm and Genetic algorithm with respect to its
execution time(ms) and iterations with in minimum(-
140) and maximum range values(150) in a search
space. Swarm inputs which are twenty basically used
to add twenty random values to get the minimum or
maximum fitness value. Swarm iterations becoming
lower and lower because swarm input are more than
three or four times lesser than swarm population
particle.

Results3: Table3

The bar graph, we analyzed from our swarm and
genetic data for 500 events occurring for population of
Los Angles of Swarm and Genetic algorithm with
respect to it execution time shows relation to it
iteration in terms of different traffic violations values of
not wearing seat belt is 600, expire license tag plate is
700, hit and run the vehicle is 800, not stopping at red
signal of 900, and speeding ticket of 1000 in their
state laws as shown in figure 5.

Figure 5: Result 3 Bar Graph combine results of

SA, GA and its iterations

Results 4 using java source code

With the implementation of Java source code
for Results 4, Swarm algorithm using population of
Los Angeles of 500 events for targeting Speeding
ticket traffic violations value of 1000 in a search space
between -140 and 150 as shown in figure 6.
We observe that Swarm algorithm is achieving target
event speeding ticket traffic violations of 1000 in 11
iteration per execution time of 3732ms.

Figure 6: Java output result for Swarm Algorithm
using 500 particles

With the implementation of Java source code for
Results 3 for Table3, Genetic algorithm using
population of Los Angeles of 500 events for targeting
Speeding ticket traffic violations value of 1000 in a
search space between -140 and 150 as shown in
figure7. We observe that Genetic algorithm is
achieving speeding ticket of 1000 in 16 iteration per
execution time of 466 ms.

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 3159-0040

Vol. 2 Issue 11, November - 2015

www.jmest.org
JMESTN42351222 3323

Figure 7: Java output result for Genetic Algorithm
using 500 particles

From results3, Swarm algorithm is computational
efficient in global search for 500 events occurring in
population of Los Angeles for the targeting speeding
ticket value of 1000 to achieve in 11th iteration per
execution time of 3732ms, whereas Genetic
algorithms achieve in 16th iteration per execution time
of 466ms which was slower. So, Swarm Algorithm is
better than Genetic Algorithm as it achieve the
speeding ticket of 100 in less iteration.

Results 5: 50 population particles for target of 40

With the implementation of Java source code,
Swarm algorithm using population of Los Angeles of
50 events for targeting Speeding ticket value of 40 in
a search space between -140 and 150. We analyze
from our computation that Swarm algorithm is
achieving target event speeding ticket value of 40 in
10 iteration per execution time of 3265 ms as shown
in figure 8.

Figure 8: Java output result for Swarm Algorithm

using 50 particles

With the implementation of Java source code, Genetic
algorithm using population of Los Angeles of 50
events for targeting Speeding ticket value of 40 in a
search space between -140 and 150. We analyze
from our computation that Genetic algorithm is
achieving target event speeding ticket of 40 in 11
iteration per execution time of 1866 ms as shown in
figure 9.

Figure 9: Java output result for Genetic Algorithm
using 50 particles

Results 6: using the minimum range to 140 and
maximum range to 500 instead of -140 for
minimum and 150 for maximum

In this case, we are using large search space
for 500 population of events in Los Angeles to achieve
the target Speeding ticket value of 100. While
computing both algorithm using java source code, we
analyze that Swarm Algorithm takes more time for
computation than the Genetic Algorithm in a large
space. Therefore, Swarm Algorithm takes 82 iteration
to complete in 4286ms whereas Genetic Algorithm
takes 12 iteration to complete in 467ms as shown in
figure 10.

Figure 10: Java Output result using large search

space

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 3159-0040

Vol. 2 Issue 11, November - 2015

www.jmest.org
JMESTN42351222 3324

Results 7: 100 population particles for target of
100

With the implementation of Java source code,
Swarm algorithm using population of Los Angeles of
100 events for targeting Speeding ticket value of 100
in a search space between -140 and 150. We
analyze from our computation that Swarm algorithm is
achieving target event speeding ticket value of 100 in
1st iteration per execution time of 2332 ms as shown
in figure 11.

Figure 11: Java output result for Swarm Algorithm

using 100 particles

With the implementation of Java source code, Genetic
algorithm using population of Los Angeles of 100
events for targeting Speeding ticket value of 100 in a
search space between -140 and 150. We analyze
from our computation that Genetic algorithm is
achieving target event speeding ticket value of 100 in
10

th
 iteration per execution time of 467 ms as shown

in figure 12.

Figure 12: Java output result for Genetic

Algorithm using 100 particles

Which algorithm is better?
(1)From Result1 and Result2, we have analyzed that
Genetic algorithm is achieving the targeting traffic
violation in lesser iterations as compare to Swarm
Algorithm because (1)we see swarm taking more time
for computation as swarm inputs are not three or four
times lesser than the swarm population of Los

Angeles. So, that’s why, Swarm algorithm is taking
more iterations to achieve a speeding ticket in a
search regional space.
(2)From Results5, we have analyzed that having the
large search space, such as we take 1400 as
minimum range and 5500 as maximum range in our
results to slow down the computation rate of Swarm
algorithm.
(3)However, from Results 3 and Results 6, we have
analyzed that Swarm algorithm is faster and better
than Genetic Algorithm as it takes (a)less iteration
target value of 100 in 1st iteration per execution time
of 2332 as compare to Genetic in 10th iteration per
execution time of 467ms (b) less computation time
(c)swarm inputs are three or four times lesser than
swarm population of Los Angeles to keep algorithm
run faster (d)more computationally efficient than
Genetic algorithm as it is easy to compute without
using any mutation and cross-over operations and it is
highly efficient when using global search using global
best values which is nearest to the speeding ticket
(4)However, 500 events occurring for population of
Los Angeles gives less accurate clustering to achieve
the targeting value in less iteration.
(5)Genetic algorithm was unable to find solution
sometimes when the population size was 20 for
achieving the targeting traffic violation value of 1000,
whereas Swarm algorithm was very successful in
finding the solution.
(6) Based on our results, Swarm algorithm performs
well in small search space as it is easy to compute,
but difficult to compute in complicated problems.

12. Health IT and Engineering perspective

In terms of Health IT and engineering perspective:
(a) By generating our population of Los Angeles using
Java program, Swarm algorithm approach basically
used for the clustering of the events occurring on
population in Los Angeles. It is given by a user based
on traffic violations which means that is proved to be
successful at finding tweets relevant to the program
was looking via their personal best and local best
values to locate the best solution.
(b)Swarm-based algorithm is fast and accurate for the
clustering of Los Angeles to track and forecast traffic
violations, where the prediction are proven to be
effective and established science
(d)Swarm-based algorithm is very good in global
searching space and plays a novel way in a broad
sense and specifically new to public health informatics
that is applied to real speeding ticket emergence or
other violations.

13. CONCLUSION

One advantage of the PSO over the GA is its
algorithmic simplicity. The GAs has the following
elements and operators: Encoding, selection
according to fitness, crossover to produce new
offspring, and inversion [10]. There are several
options of implementation for each of these operators.
For example, one may choose tournament, or
proportionate selection. In the PSO, however, there is

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 3159-0040

Vol. 2 Issue 11, November - 2015

www.jmest.org
JMESTN42351222 3325

one simple operator: velocity calculation. The
advantage of dealing with fewer operators is the
reduction of computation and elimination of the
process to select the best operator for a given
optimization. Both GA and PSO have various
numerical parameters which need to be carefully
selected. In terms of GA population size, as well as
crossover and mutation rates need to be selected. For
PSO, population size, inertial weight, as well as c1
and c2 parameters need to be decided upon. In
general, manipulating these parameters is easier than
changing various operators. There exist many
comprehensive studies on the effects of these
parameters that make their selection even easier.
Another difference between the GA and PSO is the
ability to control convergence. Crossover and
mutation rates can subtly affect the convergence of
the GA, but nothing can compare to the level of
control achieved through manipulating of the inertial
weight. It has been shown that the decrease of inertial
weight dramatically increases the swarm’s
convergence. This type of control allows the user to
determine the rate of convergence, and the level of
“stagnation” ultimately achieved. Stagnation occurs in
both the GA and PSO when one terminates the
evolutionary process prematurely to reduce the
typically long computational time.
As comparing to our results 4, Swarm algorithm is
computational efficient in global search for 500 events
occurring in population of Los Angeles for the
targeting event (traffic violations such as Speeding
ticket) of 1000 to achieve in 11th iteration per
execution time of 3732ms, whereas Genetic
algorithms achieve the speeding ticket in 16th iteration
per execution time of 466ms which was slower.
In results 7, we analyze for population of 100 event
(cars, trucks, buses, etc. with their speed) moving in
Los Angeles from our computation. Genetic algorithm
is achieving target speeding ticket value of 100 in 10

th

iteration per execution time of 467ms, whereas
Swarm algorithm achieving the targeting event
speeding ticket value of 100 in 1

st
 iteration per

execution time of 2332ms.
As looking at the bar graph, Swarm algorithm show
better results than genetic algorithm.
Therefore PSO, performs well in small search space
size but decreases its capabilities with more
complicated problems, i.e., when it has large search
space size.
 In this paper, we assume 500 populations of
events occurring (cars, trucks, buses, etc.) in Los
Angeles. In figure 5 that event occur as “The car
speed is higher than the speed limit” in Los Angeles
where to investigate the targeting event “Speeding
Ticket”. So, the solution is found.
The main aim in this paper is that various events such
as population of any one of the cars, trucks and buses
moving above the speed limit or any traffic violation in
Los Angeles to look for one specific targeting
event(Speeding ticket or other violations) using
Swarm algorithm than compare it with Genetic
algorithm.

Future Work:
 Genetic Algorithm works only in stable
environment with discrete variables. In future, we will
be able to work in dynamic environment with
continuous variable and it should guarantee
convergence.
Further research in Swarm Algorithm can be done in
order to bring it in perfection. To our analysis, its
application areas should be explored further.

REFERENCES
[1] Y. Rahmat-Samii and E. Michielssen, eds.,
Electromagnetic Optimization by Genetic Algorithms.
New York: Wiley, 1999.
[2] J. Kennedy and R. Eberhart. “Particle Swarm
Optimization,” Proc. the 1995 IEEE Int. Conf. Neural
Networks (Perth, Australia), 1995, vol. IV, pp. 1942-
1948.
[3] Y. Rahmat-Samii, D. Geis and J. Robinson,
“Particle Swarm Optimization (PSO): A Novel
Paradigm for Antenna Designs.” The Radio Science
Bulletin, no. 305, pp. 14-22, 2003.
[4] D. S. Weile and E. Michielssen, “Genetic Algorithm
Optimization Applied to Electromagnetics: A Review,”
IEEE Trans. Antennas Prop., vol. 45, no. 3, pp. 343-
354, 1997.
[5] Z. Altman, R. Mittra, and A. Boag, “New designs of
ultra wide-band communication antennas using a
genetic algorithm,” IEEE Trans. Antennas Prop., vol.
45, no. 10, pp. 1494-1501, 1997.
[6] S. Chakravarty, R. Mittra, N.R. Williams, “On The
Application Of The Microgenetic Algorithm To The
Design Of Broad-Band Microwave Absorbers
Comprising Frequency-Selective Surfaces Embedded
In Multilayered Dielectric Media,” IEEE Trans.
Micro.Theory Tech. Vol. 49, no. 6, 2001.
[7] S. Chakravarty, R. Mittra, “Design Of A Frequency
Selective Surface (FSS) With Very Low Cross-
Polarization Discrimination Via The Parallel Micro-
Genetic Algorithm (PMGA),” IEEE Trans Antennas
Prop., vol. 51, no. 7, pp. 1664-1668, 2003.
[8] J. Robinson, S. Sinton, and Y. Rahmat-Samii.
“Particle Swarm, Genetic Algorithm, and their Hybrids:
Optimization of a Profiled Corrugated Horn Antenna,”
IEEE International Symposium on Antennas &
Propagation. San Antonio, Texas. June, 2002.
[9] D. Gies and Y. Rahmat-Samii, “Particle Swarm
Optimization for Reconfigurable Phase-Differentiated
Array Design,” Microwave and Optical Technology
Letters, August, 2003.
[10] D. E. Goldberg, Genetic Algorithms in
search, optimization, and Machine Learning, Addison-
Wesley Publishing company, INC., 1989.
[11] Y. Shi, “Particle Swarm Optimization”, Electronic
Data Systems, Inc. Kokomo, IN 46902, USA Feature
Article, IEEE Neural Networks Society, February
2004.

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 3159-0040

Vol. 2 Issue 11, November - 2015

www.jmest.org
JMESTN42351222 3326

BIOGRAPHIES
Ali Tariq Bhatti received
his Associate degree in
Information System
Security (Highest Honors)
from Rockingham
Community College, NC
USA, B.Sc. in Software
engineering (Honors)
from UET Taxila,
Pakistan, M.Sc in
Electrical engineering
(Honors) from North
Carolina A&T State
University, NC USA, and
currently pursuing PhD in

Electrical engineering from North Carolina A&T State
University. Working as a researcher in campus and
working off-campus too. His area of interests and
current research includes Coding Algorithm,
Networking Security, Mobile Telecommunication,
Biosensors, Genetic Algorithm, Swarm Algorithm,
Health, Bioinformatics, Systems Biology, Control
system, Power, Software development, Software
Quality Assurance, Communication, and Signal
Processing. For more information, contact Ali Tariq
Bhatti at alitariq.researcher.engineer@gmail.com.

Dr. Naser El-Bathy graduated from Lawrence
Technological University in Michigan with a Doctorate
degree in Management of Information Technology.
For about 30 years, he has designed, developed, and
consulted in leading edge information system
technologies. He has about 20 publications including
two books related to intelligent information retrieval,
Service-Oriented Architecture (SOA), health
informatics, web mining, data warehousing, and data
management. He recently participated along with
North Carolina A&T State University and Lawrence
Technological University in Michigan State in a
research study to investigate the limitations of existing
tools and possible solutions that may increase
placement of graduates in STEM related careers via
open source software engineering theory.

http://www.jmest.org/

