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Abstract—Time series is a subject that 
includes two key factors - observations and time. 
It is obvious that observations are time-
dependent. Another interest field is motif 
discovery, composed solely by time series 
subsequences. During this time, loads of 
similarity measures have been presented. In their 
article, Dhamo et al [5] concluded that the best 
performance according to the quality in motif 
discovery was achieved by Chouakria’s index with 
CID (Chouakria’s index, proposed by Chouakria et 
al [4] and CID  is proposed by Batista et al [2]).  
The following step is to use this distance and 
other time series features to make predictions. 
Various tests are made over time series with high 
level of complexity. The results achieved by this 
approach are compared to ARIMA models. All the 
tests are made in R.   

Keywords—motif discovery;ARIMA;time series; 
forecasting; Chouakria with CID; R 

I.  INTRODUCTION  

Motif discovery has been widely exploited in 
Biological sciences, to detect anomalies in heart 
beatings, pressure, etc. The effort was to deal with a 
large amount of data (known as big data). The first 
approach was made by reducing data dimensions’ 
[1][3]. Some methods were Discrete Fourier 
Transformation[1], Discrete Wavelet Transformation[3], 
Piecewise Linear Approximation [12], etc. The first 
scientists to formally use motif discovery in time series, 
were Agrawal et al [3], Lin et al [6], Mueen[7][8][9][10], 
etc. Since then, several tactics have been proposed. 
The studies have always followed the similarity search 
throughout the time series, regarding to the problem. 
The most recent method is ε-queries, proposed as a 
probability approach to motif discovery. An expansion 
of motif discovery is to compare time series measures 
to each-other, based in four criterions - algorithm 
complexity, number of discovered motifs, accuracy and 
quality. In their article, Dhamo et al. [4] concluded that 
Chouakria index with CID gave better results than CID 
alone. Taking in consideration that Chouakria index 
with CID is a well-performing similarity measure, we 
move on in the following step- applying motif discovery 
in forecasting. There are used several well-known time 
series, for each of which is created a model, and then 
compared to the model given by ARIMA (to construct 
the model was used a predefined package of R, 
”forecast”). According to the results, by using as norm 

error in forecasting, we can deduce that our model 
provides better performance.     

II. TIME SERIES 

A. Basic Concepts  

A time series A time series may be defined as a 
collection of data, where time is a relevant component. 

Definition 1 A time series T is an ordered collection 
of data, observed in n - regular intervals of time 
[𝑇1, 𝑇2, … , 𝑇𝑛]. 

 Definition 2 A motif M of length m in a time series T 

of length n is a subsequence of 𝑇 which repeats itself 
in T. 

 Definition 3 In ε-query search for similarity between 

two time series’ subsequences 𝑃 = [𝑃1, 𝑃2 , … , 𝑃𝑚] and 
𝑄 = [𝑄1, 𝑄2, … , 𝑄𝑚] of length m, in a time series T of 
length n, P and Q are considered similar if the distance 
between P and Q is laid in an interval with absolute 
error equal to ε .An illustration of a motif is given in Fig. 
1., with dataset unemp. 

  

 

 

 

Fig.1. Algorithm for motif discovery  

B. Distances Used For Time Series  

While comparing two notions, it is indispensable to 
use a criterion for comparison, in order to claim 
whether these notions mean or not the same. In time 
series, this criterion is undoubtedly the similarity 
measure, which is based in the concept of the 
distance. 

 Definition 4 A distance is a function that complies 
with the following properties: 

 Identity: ∀𝑥, 𝑦 ∈ 𝑅, 𝑑(𝑥, 𝑦) = 0 ↔ 𝑥 = 𝑦 

 Symmetry: ∀𝑥, 𝑦 ∈ 𝑅, 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) 

 Non-negativity: ∀𝑥, 𝑦 ∈ 𝑅, 𝑑(𝑥, 𝑦) ≥ 0 

 Transitive:  ∀𝑥, 𝑦 ∈ 𝑅, ∃𝑧 ∈ 𝑅|𝑑(𝑥, 𝑦) ≤
𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) 

Definition 5 A similarity measure is a function that 
disobeys at least one of the conditions to be distance. 
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In other words, a similarity measure is able to 
measure the similarity between two time series’ 
subsequences. Reported as a key factor in the quality 
and quantity in motif discovery, there are several 
similarity measures. In contrary to its’ wide usage, 
Euclid distance provides dissatisfactory results if it is 
used as a similarity measure. 

Definition 6 Euclid distance between two 
subsequences with length m, 𝑃 = [𝑃1 , 𝑃2, … , 𝑃𝑚] and 
𝑄 = [𝑄1, 𝑄2, … , 𝑄𝑚], is the index, measured as below:  

𝑑𝐸𝑢𝑐(𝑃, 𝑄) = ∑ (𝑃𝑖 − 𝑄𝑖)
2𝑚

𝑖=1                                    (1) 

As we mentioned above, the most performing 
similarity measure is Chouakria’s index with CID. In 
this case, it is therefore necessary to explain what is 
CID, and then to give the definition of Chouakria’s 
index. 

Definition 7 CID distance between two sub-
sequences with length m, 𝑃 = [𝑃1, 𝑃2 , … , 𝑃𝑚] and 
𝑄 = [𝑄1, 𝑄2, … , 𝑄𝑚], is the index, measured as below:  

𝑑𝐶𝐼𝐷(𝑃, 𝑄) = 𝑑𝐸𝑢𝑐𝑙(𝑃, 𝑄)
max {𝐶𝐸(𝑃),𝐶𝐸(𝑄)}

min {𝐶𝐸(𝑃),𝐶𝐸(𝑄)}
                 (2) 

, where: 

𝐶𝐸(𝑃) = ∑ (𝑃𝑖 − 𝑃𝑖+1)2𝑚−1
𝑖=1                                      (3) 

This similarity measure is used for nonlinear time 
series subsequences. One main feature of CID is that, 
in case of two nonlinear subsequences P, Q of length 
m: 

𝑑𝐶𝐼𝐷(𝑃, 𝑄) > 𝑑𝐸𝑢𝑐𝑙(𝑃, 𝑄)                                        (4) 

Moreover, the closer to 1 is the fraction 
max {𝐶𝐸(𝑃),𝐶𝐸(𝑄)}

min {𝐶𝐸(𝑃),𝐶𝐸(𝑄)}
, the more similar is the behavior of the 

two subsequences. 

Another similarity measures is Chouakria’s index. 
This measure is composed by two factors, one of 
which is responsible for behavior and the other for 
proximity of values[]. Chouakria’s index is measured, 
as below: 

Definition 8  Chouakria’s index between two sub-
sequences with length m, 𝑃 = [𝑃1, 𝑃2 , … , 𝑃𝑚] and 
𝑄 = [𝑄1, 𝑄2, … , 𝑄𝑚], is the index, measured as below:  

𝑑𝐶𝐼𝐷(𝑃, 𝑄) =
2

1+𝑒𝑘∗𝛿(𝑃,𝑄) ∗ 𝐶𝑂𝑅𝑡(𝑃, 𝑄)                 (5) 

, where:  

𝐶𝑂𝑅𝑡(𝑃, 𝑄) =
∑ (𝑃𝑖−𝑃𝑖+1)(𝑄𝑖−𝑄𝑖+1)𝑚−1

𝑖=1

√∑ (𝑃𝑖−𝑃𝑖+1)2𝑚−1
𝑖=1 √∑ (𝑄𝑖−𝑄𝑖+1)2𝑚−1

𝑖=1

           (6) 

and 𝑘 ∈ 𝑅+; and 𝛿(𝑃, 𝑄) may be Euclid, etc. In their 
article, Dhamo et al. [] proposed CID as distance 
𝛿(𝑃, 𝑄) and 𝑘 = 2. 

III. MODELLING TIME SERIES 

Time series is a novel concept, which enrolls two 
main concepts - determinism and randomness. A time 
series is composed by many parts, such as trend, 
seasonality, cycles, etc. After the detection of these 

components in a time series, the remains are 
considered a random part. In other words, a time 
series T of length n, can be decomposed, as below: 

𝑇𝑛 = 𝑡𝑛 + 𝑐𝑛 + 𝑠𝑛 + 𝜀𝑛                                           (7) 

, where 𝑡𝑛  is trend, 𝑐𝑛  is cycle, 𝑠𝑛  is seasonal 
variation and 𝜀𝑛 is noise. Usually a time series can be 
decomposed according to these features. The only 
characteristic to be modeled is the noise, which is a 
random variable. 

A. ARIMA Models 

As cited above, a time series is a regular collection 
of data. An ARIMA model is composed by 
implementing other forecasting models, such as AR, 
MA and the operator ∆ . Let us first define the key 
concepts of a stochastic process. 

Definition 9 Let {𝜀𝑡 , 𝑡 ∈ 𝑇} be a stochastic process. 

𝜀𝑡~𝑊𝑁(0, 𝜎2) is considered to be a white noise, if it 
obeys the following rules: 

{
𝐸(𝜀𝑡) = 0

𝐸(𝜀𝑡𝜀𝑠)  = {
𝜎2, 𝑠 = 𝑡
0, 𝑠 ≠ 𝑡

                                            (8) 

Definition 10 Let {𝑌𝑡 , 𝑡 ∈ 𝑇} be a stochastic process 

and 𝜀𝑡~𝑊𝑁(0, 𝜎2). An AR(p) model is constructed, as 
below:  

𝜀𝑡 = ∑ 𝜑𝑖
𝑝
𝑖=0 𝑌𝑡−𝑖                                                     (9) 

, where 𝜑𝑖 , 𝑖 = 1, 𝑝̅̅ ̅̅̅ are coefficients defined dynami-
cally.  

Definition 10 Let {𝑌𝑡 , 𝑡 ∈ 𝑇} be a stochastic process. 

Let 𝜔𝑖~𝑊𝑁(0, 𝜎2), 𝑖 = 0,1,2, … . A MA(q) model is 
constructed, as below:  

𝑌𝑡 = ∑ 𝜓𝑖
𝑞
𝑖=0 𝜔𝑡−𝑖                                                 (10) 

, where 𝜓𝑖 , 𝑖 = 1, 𝑝̅̅ ̅̅̅ are coefficients defined dynami-
cally.  

Logically, a ARMA(p,q) model, is constructed, as 
below: 

Definition 12 A stochastic process {𝑌𝑡 , 𝑡 ∈ 𝑇} is said 
to be ARMA(p,q) model (autoregressive moving 
average of order (p,q)) if it can be expressed as:  

𝑌𝑡 = 𝜇𝑡 + ∑ 𝜑𝑖
𝑝
𝑖=0 𝑌𝑡−𝑖 + ∑ 𝜓𝑖

𝑞
𝑖=0 𝜔𝑡−𝑖                    (11) 

, where 𝜇𝑡 , 𝜑𝑖 , 𝑖 = 0, 𝑝̅̅ ̅̅̅ and 𝜓𝑖 , 𝑖 = 0, 𝑝̅̅ ̅̅̅ are constants 
and 𝜔𝑡  is white noise.  

An important parameter in ARIMA(p,d,q) is also the 
difference operator  (∆), defined as below: 

Definition 13 Let {𝑌𝑡 , 𝑡 ∈ 𝑇} be a stochastic process. 

The ∆𝑑  operator is though defined, as:  

∆𝑑= 𝑌𝑡 − 𝑌𝑡−𝑑                                                     (12) 

, where 𝑑 = 1,2, …  

Having all the necessary concepts, we can 
introduce ARIMA concept. 

http://www.jmest.org/
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Definition 14 The stochastic process  {𝑌𝑡 , 𝑡 ∈ 𝑇} is 
considered to be an ARIMA(p,d,q) process only if the 
process  

𝑋𝑡 = ∆𝑑𝑌𝑡                                                             (13) 

is an ARMA(p,q) process. 

Of course that there are several ways to determine 
the most efficient values of p,q and d. But this will be 
discussed in the following sections. 

B.    The Proposed Approach 

When trying to detect a motif in a time series, it is 
agreed that there is a pattern that repeats itself in time 
series, independently from observation. An example is 
given in Fig. 2.  

 

 

 

 

 

 

 Fig.2. The relation between time series’ sub-
sequences (time series co2) 

It is obvious the relationship that exists between 
the subsequences of length 12. The relation is made 
visible by the normalization of these subsequences, 
where is impossible to distinguish subsequences from 
each-other.  

Definition 15 Normalization of the time series 𝑇 with 
length 𝑛, is the time series 𝑇’, defined as:  

𝑇′ =
𝑇−𝑚𝑒𝑎𝑛(𝑇)

𝑠𝑑(𝑇)
                                                      (14) 

If there is a such strong relation between two 
subsequences 𝑃 = [𝑇𝑖 , 𝑇𝑖+1, … , 𝑇𝑖+𝑚−1]  and 𝑄 =
[𝑇𝑗 , 𝑇𝑗+1, … , 𝑇𝑗+𝑚−1] with length m, from the time series 

T, it is presumable that the relation would be of the 
same strength even if the length of the subsequence is 
greater. The situation is shown in Fig. 3.  

 

 

 

 

 

 

Fig. 3. Widening the motif’s length  

 It is clear from Fig. 3. that, even the length of the 
subsequences has been enlarged, from 12 to 15, the 
difference is still small.  

C.    Reasoning to Reach to Forecasting 

 When we say that there is a motif in a time series, 
we assume that there is a large similarity between 

different subsequences of the same time series. 
Moreover, these subsequences are generally spread 
throughout all the time series. Given a fixed length m 
as motif’s length, we are able to find, according to 
Brute-Force algorithm, all patterns in the time series.  

 

 

 

 

 

 

In contrary to this algorithm, in order to predict, there 
are some changes being made. Those changes are 
reflected not only in  code, but even in structure: 

 Suppose that we require to use a subsequence of 
length m in our time series T of length n. Moreover, is 
found out that the most approximate subsequence is 
stated in position j. In this case, the dependency factor 
would be calculated, as below: 

𝑑𝑒𝑝𝑓𝑎𝑐𝑡 =
𝑇[𝑗+𝑚]

𝑇[𝑗+𝑚−1]
                                            (15) 

Our prediction is 𝑇[𝑛 + 1], which is calculated as: 

        𝑇[𝑛 + 1] = 𝑑𝑒𝑝𝑓𝑎𝑐𝑡 ∗ 𝑇[𝑛]                                 (16) 

We define 𝑎 = 𝑇[(n − m + 1) : (n + 1)] . We can create a 
95% confidence interval for our prediction, as below: 

𝐶𝐼(𝑇[𝑛 + 1]) =]𝐸(𝑎) − 1.96
𝑠𝑑(𝑎)

√𝑚+1
, 𝐸(𝑎) + 1.96

𝑠𝑑(𝑎)

√𝑚+1
         (17) 

An example of our algorithm in R, in time series 
AirPassengers, is given in Fig. 4. 

 

 

 

 

 

 

 

 

 

Fig.4. Snapshot of the proposed approach 
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Brute -force algorithm 
Brute_force=function(T,m,epsilon) 

1.#n=length(T) 

2.threshold=min{d(Ai,Bj)}, Ai=T[i : (i+m-1)],i=1: (n-m+2) and 

j=(i+1): (n-m+2) 

3.motif_index=argmax{d(Ai,Bj)<threshold+epsilon} 

4.motif=T[motif_index: (motif_index+m-1)] 

5. similar_seq=T[where(d(motif,Bj)<threshold+epsilon)], Bj=T[j : 

(j+m-1)] and j>motif_index 

end function 

 

 

Short-term algorithm 
Short_term=function(T,m) 

1.Keep the last subsequence of length m constant (also considered as 

motif, 𝑇[(n − m + 1) : n].).  
2.Choose one suitable distance for time series (Chouakria’s index) 

3. Normalize time series’ subsequences, by using (8). 

4.Detect the strongest relationship between our motif and other 

subsequences of our time series. Keep track of the initial index 

where the strongest relationship is proven. 

5.Create a dependency factor that is being used during the 

prediction. 

end function 

http://www.jmest.org/
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D.    Forecasting in a Long-term Period 

In the previous paragraph, we constructed an 
algorithm to predict the next observation, based on 
previous ones. What is more, there is a possibility to 
find a confidence interval for the provided prediction. 
But, in practice, there is a long-term necessity for 
prediction. In order to get to a long-term forecasting, 
we construct the following algorithm, as below: 

 

 

 

 

 

 

According to this algorithm, we can keep track of 
the original time series and the forecasts provided. An 
example is provided below, in Fig. 5. 

 

 

 

 

 

 

Fig.5. Forecasting in long-term period 

In Fig.5. is obviously seen the proximity in values 
and even in shape. This means that the model that is 
built is strong. 

IV. ARIMA VS PROPOSED METHOD 

In many forecasting models, such as AR, MA, 
ARIMA, etc, the basis of fitting the best parameters is 
low error in curve fitting. The lower the error it is, the 
better are the parameters.  

Definition 16 Given T a time series of length n, and 
T’ the ARIMA fitted model. The error in curve fitting is 
called the vector, as below:  

𝜀 = 𝑇 − 𝑇′                                                            (18) 

In practice, most commonly used is the Sum 
Square Error (𝜀′𝜀). There are also other measures that 
supply with information about the quality of the 
constructed model, such as AIC (Akaike Information 
Criterion) or BIC (Bayes Information Criterion). 

Definition 11 Given T a time series of length n, and 
T’ the ARIMA fitted model. AIC is measured, as below:   

𝐴𝐼𝐶 =  ln (
1

𝑛
∑ 𝑒𝑖

2𝑛
𝑖=1 ) +

2(𝑘+1)

𝑛
                                   (19) 

, where 𝑒𝑖
2 = (𝑇𝑖 − 𝑇𝑖′)

2  and k is the degree of 
freedom of T. 

Definition 12 Given T a time series of length n, and 
T’ the ARIMA fitted model. BIC is measured, as below:   

𝐵𝐼𝐶 =  ln (
1

𝑛
∑ 𝑒𝑖

2𝑛
𝑖=1 ) +

(𝑘+1)∗ln (𝑛)

𝑛
                             (20) 

, where 𝑒𝑖
2 = (𝑇𝑖 − 𝑇𝑖′)

2  and k is the degree of 
freedom of T. 

Generally, between AIC and BIC criterions, the 
most useful is BIC, which is considered to be more 
accurate.  

A. Detecting Error in Forecast in the Proposed 
Model 

In the proposed algorithm, we mentioned that the 
method does not create a single model - it does not 
create parameters. Our model is a dynamic model, 
which, in a long-term period, changes constantly. This 
means that AIC or BIC criterion is inapplicable.  

In order to be able to proof which model is better, 
and why, we use the concept of error in forecasting. 
This means that we keep a certain percentage of 
values unused (the last observations), in order to 
detect which algorithm provides a smaller Sum Square 
Error in Predictions. The number of predictions is kept 
constant, 10, in any case that we studied. This is done 
in order to prevent reducing the amount of information 
in disposal. 

In Table 1, there are some examples of errors 
made during the forecast, for several time series.   

TABLE I.  COMPARISON OF TWO METHODS 

Time 
series 

Error in forecasting 

ARIMA 
Prop. 

approach 

star 4184.963 4245.082 

prodn 16.14206 18.56693 

rosewine Inf 768.4422 

unemp 15006.22 4095.185 

penguin 596901.4 321.071 

Al_births Inf 3489920 

hsales 671.1774 274.1702 

AirPassen
gers 

281852.9 167063.2 

ARIMA vs Proposed approach 

In Table 1, is obvious the advantage of our 
approach in relation to ARIMA. In 2 cases, ARIMA 
could not give an appropriate model – AIC criterion 
could not be approximated. In our trials, resulted that 
in 66.7% of the cases, our approach provided better 
performance than ARIMA’s model. In this percentage, 
is also included the 12.5% when ARIMA failed to 
provide a suitable model.   

An example of how much differ the real results 
from the ones provided by ARIMA, is given in Fig.6. 

Long-Term Algorithm 

Long_Term=function(T,m,k) 

1.#n=length(T); k is the number of lags we want to forecast 

2.for (i in seq(1,k)){ 

3.prediction=Short_Term(T,m) 

4.T=c(T,prediction) 

5. } 

end function 
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The time series taken in consideration is penguin, 
while the length of the motif is 7.  

 

 

 

 

 

 

 

 

Fig.6. ARIMA, the prop. method and real values  

It is clearly visible that the shape and the values 
gained by the proposed method are more compatible 
with the real ones. Whereas ARIMA’s curve of 
prediction is far more unrealistic. In many cases, 
ARIMA provided central values, very close to a linear 
curve. Whereas the proposed method provides 
different shapes, a nonlinear vector of forecasts. 

B. Detecting factors that influence results 

In order to define where this result comes from, so, 
whether it is because of the complexity of the time 
series, we use a complexity measure for time series’ 
complexity-fluctuations[9]. 

Definition 17 Given T a time series of length n, 
fluctuations are measured, as below:   

𝑓𝑙𝑢𝑐𝑡(𝑇) =  
1

𝑛−1
∑ (𝑇𝑖 − 𝑇𝑖+1)2𝑛−1

𝑖=1                               (21) 

In Fig.7. is shown the fluctuation of some  time 
series.  

 

 

 

 

 

 

 

 

 

Fig.7. Fluctuation of some time series 

According to the traditional definition to the 
correlation between two factors, as below: 

Definition 18  The correlation between two random 
variables X and Y with length n is the index, measured 
as below:  

𝐶𝑂𝑅(𝑃, 𝑄) =
∑ (𝑃𝑖−�̅�)∗(𝑄𝑖−�̅�)𝑛

𝑖=1

√∑ (𝑃𝑖−�̅�)2𝑛
𝑖=1 √∑ (𝑄𝑖−�̅�)2𝑛

𝑖=1

                    (22) 

it results that, in both cases, the relation between 
fluctuation and error in forecasting is strong (in each 

case, greater than 99%). This means that there is a 
strong dependency between these two factors.  

Another important factor that influences the 
forecast, might be the quantity of the data. It is naively 
deduced that the longer the time series is, the smaller 
will be the error. There have been made various tests, 
by increasing the amount of data. It has been chosen a 
high-complexity  time series, such as hsales. In Fig.8. 
we see what happens with the error in forecasting 
when this time series is enlarged, with fixed length of 
the time series m=12 and m=9.  

 

 

 

 

 

 

 

 Fig.8. Error in forecasting for different lengths  

In 50% of the cases, ARIMA (the proposed 
method with m=12) were better than the other. In a low 
percentage, the proposed method with m=9 is more 
performant than the others. What is more, we notice 
that there is no defined trend of the error in 
forecasting. This means that, if we increase the 
amount of data, we cannot presume whether the error 
will decrease or not.   

An important parameter during our method would 
be the length of the motif, m. The time series selected 
for this evaluation is again hsales, due to its’ 
complexity.  We keep a fixed length of the time series- 
n=170. An example of this algorithm is shown in Fig.9. 

 

 

 

 

 

 

 

Fig.9. a) hsales b) Detecting the best value of m 

We can see that the lower error in prediction is 
made for m=9, equal to the periodicity of the time 
series. But this contradicts the upper results, where the 
proposed approach with m=12 was better than the 
proposed approach with m=9. This means that, in 
order to get better results, the length of the motif 
should be defined according to a careful study of 
periodicity, variations, etc.   
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All time series that are used in this article, can be 
found in the next websites: 

http://new.censusatschool.org.nz/resource/time-series-

data-sets-2013/ 

www.instat.gov.al

 

https://datamarket.com/data/list/?q=provider%3Atsdl  

http://www.cs.ucr.edu/~eamonn/discords/ 

http://vincentarelbundock.github.io/Rdatasets/datasets.ht

ml 

http://cran.r-project.org/web/packages/astsa/index.htm 
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