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Abstract—Importance of transverse normal 
stress neglected in the classical theories is 
discussed for finding its proper thickness-wise 
distribution which is essential in the analysis of 
laminated plates. In the presence of vertical load 
along faces of the plate, it is initially shown that 
the use of complete set of mutually orthogonal 
functions like sine and cosine functions, 
Legendre polynomials, etc., in the thickness-wise 
distribution of displacements gives only the 
neglected transverse normal stress. The present 
work is based on the presumption that the 
author’s recently proposed extended Poisson’s 
theory is the only suitable theory along with 
solution of a supplementary problem to 
overcome lacuna in the classical theories of 
primary plate problems. Based on this theory, an 
alternate form of classical laminate plate theory 
(CLPT) is proposed for analysis of unsymmetrical 
laminated plates. 
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I.  INTRODUCTION 
 

The present work is a somewhat modest 
contribution to add something new based on 
experience gained through recent proposal of 
extended Poisson’s theory in the analysis of bending 
of plates [1, 2]. In the energy methods based on 
stationary property of relevant total potential, 
equations governing 2D variables correspond to plate 
element equilibrium equations (PEEES). With 
assumed in-plane displacements and/or stresses, it 
becomes mandatory to use integration of equilibrium 
equations for obtaining converging solutions to 
displacements and, in particular, to transverse 
stresses. In Poisson’s theory and its extension, 
solutions to displacements satisfy both static and 
integrated equilibrium equations.  
 

In extension (stretching) problems, basic 
variables are u0 and v0 and the classical theory in 
which transverse stresses are zero is without any 
major defect as a first approximation to the 3D 
problem. This is mainly due to the fact that static and 
z-integrated equations governing [u0, v0] remain 
unaltered. Exception is in the error in the transverse 

shear stress-strain relations due to εz from 
constitutive relation. Extension of this theory in the 
presence of transverse stresses is discussed later. 
 

Kirchhoff’s theory [3] of plates in bending is a 
single variable w0(x, y) model based on plate element 
equilibrium equations (PEEES). Recent proposals of 
Poisson’s theory and extended Poisson’s theory [1, 
2] are with one term representation of each 
displacement component. They are basically different 
from Kirchhoff’s theory. In-plane displacements are 
determined from satisfaction of both static and z-
integrated equations of the 3D infinitesimal element. 
Basic variable w0 is treated as face variable in 
bending problem and as domain variable in the 
associated torsion problem. In all these theories, 2D 
variables in the in-plane displacements are 
coefficients of z. The term z is the first term of 
necessary odd functions of polynomials in z in a 
complete set of coordinate functions to express z-
distributions of in-plane displacements.  
 

In the context of present work, one should 
note that Touratier [4] used trigonometric function 
without replacing z and retained w0(x, y) as domain 
variable in PEEES. In view of extended Poisson’s 
theory in which w0 is a face variable and a theory 
based on one term representation of displacements, 
implication of replacing z with sin (z) function is 
discussed even with reference to homogeneous 
isotropic plates. It is primarily intended to show the 
necessity of retaining neglected σz in the constitutive 
relations.  
 

II. PRELIMINARIES  
 

The present work is initially confined to 
establish the relevance of extended Poisson’s theory 
for the analysis of bending, extension and associated 
torsion problems. For this purpose and for simplicity 
in presentation [1, 5], a square plate bounded within 
0 ≤ X, Y ≤ a, −h ≤ Z ≤  h with reference to Cartesian 
coordinate system (X, Y, Z) is considered. Material of 
the plate is homogeneous and isotropic with elastic 
constants E (Young's modulus), ν (Poisson's ratio) 
and G (Shear modulus) that are related to one other 
by E = 2(1+ν) G. For convenience, coordinates X, Y, 
Z and displacements (U, V, W) in non-dimensional 
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form x= X/a, y=Y/a, z=Z/h, (u, v, w) = (U, V, W)/h and 
half- thickness ratio α = (h/a) are used.  
 

With the above notation, equilibrium 
equations in stress components are:  
 

α (σx,x+ τxy,y) + τxz,z = 0    (1a) 
α (σy,y+ τxy,x) + τyz,z = 0   (1b) 
α (τxz, x+ τyz, y) + σz,z = 0    (2) 

 
in which suffix after ',' denotes partial derivative 
operator. Classical theory of extension problems 
deals with the two in-plane equilibrium equations of 
infinitesimal element where as Kirchhoff theory deals 
mainly with the equation of transverse stresses 
through PEEES.   
 

In displacement based models, stress 
components are expressed in terms of 
displacements, via, six stress-strain constitutive 
relations and six strain-displacement relations. These 
relations within the classical small deformation theory 
of elasticity are:   
 
Strain-stress and semi-inverted stress-strain 
relations:  
 

E εx= σx− ν (σy+ σz)    (3a) 
E εy = σy− ν (σx+ σz)   (3b) 
Eεz= σz− ν (σx+ σy)   (3c)  
G [γxy, γxz, γyz] = [τxy, τxz, τyz]  (4) 
σx = E'(εx +  ν εy) + μ σz   (5a) 
σy = E'(εy +  ν εx) + μ σz    (5b) 
εz = – μ e + (1− 2 ν μ) σz/E   (6) 

 
in which e = (εx + εy), E' = E/(1− ν

2
) and μ = ν/(1− ν). 

 
Strain-displacement relations:  
 

[εx, εy, εz] = [αu,x, αv,y , w,z]   (7) 
γxy = αu,y+ αv,x     (8a) 

[γxz, γyz] = [u,z+ αw,x, v,z+ αw,y]  (8b) 
 

In-plane equilibrium equations in terms of 
displacements are  
 

E'[α
2
∆u − ½(1+ ν) α

2
(v,x – u,y),y] + μ ασz,x+ τxz,z = 0 

      (9a) 
E'[α

2
∆v + ½(1+ ν) α

2
(v,x – u,y),x] + μ ασz,y+ τyz,z = 0

      (9b) 
 

Polynomials in z to express thickness-wise 
distributions of displacements are generated earlier 
[5], for convenience, from recurrence relations with f0 
= 1, f2k+1,z = f2k, f2k+2,z = − f2k+1 such that f2k+2(±1) = 0. 
They are, (up to k = 5),  
 

[f1, f2, f3] = [z, ½(1 – z
2
), ½(z – z

3
/3)] (10a) 

f4 = (5 − 6z
2 
+ z

4
)/24   (10b) 

f5 = z (25 −10z
2 
+z

4
)/120  

 (10c) 
 

In order to keep associated 2-D variables of 
transverse stresses as free variables, f2k+1 are 
replaced with f*2k+1given by  
 

f*2k+1= f2k+1− β2k-1 f2k-1, k = 1, 2, .....  (11) 
 
in which β2k-1= [f2k+1(1)/f2k-1(1)] so that f*2k+1(1) = 0. 
 
A. Some observations on the classical theories of 
extension and bending problems 
 

In the classical theory of extension problems, 
the plate with its faces free of transverse stresses is 
in a state of plane stress. In-plane equilibrium 
equations become  
 
α (σx,x+ τxy,y) = 0 , α (σy,y+ τxy,x) = 0  (12) 
 
to be solved with two conditions at each of x = 
constant edge (with analogue conditions along y = 
constant edges) in the primary problem 
 

(i) u = 0(y) or σx0(y) = Tx0(y)  (13a) 

(ii) v = 0(y) or τxy0(y) = Txy0(y)   (13b) 

 
If the edge conditions in (13) and similar 

conditions at y = constant edges correspond to stress 
components, it is convenient to express them in 
terms of second order derivatives of well-known and 
widely used Airy’s stress function Φ(x, y) such that 
equations (1, 2) are identically satisfied. In such a 
case, stress components are independent of material 
constants, thereby, elastic deformations. Stress 
components are 
  

σx = Φ,yy , τxy = − Φ,xy , σy = Φ,xx   (14) 
 
Airy’s function Φ is governed by the bi-harmonic 
equation ∆∆Φ = 0 (Δ = ∂

2
/∂x

2
 + ∂

2
/∂y

2
) from 

compatibility condition and the strains are compatible 
if ϵx,yy − 2γxy,xy + ϵy,xx = 0 ⟹ ∆∆ Φ = 0.  
   

 
In-plane strains from constitutive relations 

are dependent on material constants and 
displacements [u0, v0] are determined from strain-
displacement relations. (Such a simplistic procedure 
is not convenient in the analysis of laminated plates 
and if the material is orthotropic or anisotropic even 
in the case of homogeneous plates.) 
 

Equations corresponding to (12) are 
 

(E'/3) [α
2
∆u0 − ½(1+ ν) α

2 
(v0,x – u0,y),y]  = 0  

    (15a) 
(E'/3) [α

2
∆v0 + ½(1+ ν) α

2 
(v0,x – u0,y),y]  = 0 

    (15b) 
 

to be solved with edge conditions (13).  
 

In the corresponding bending problem, in-
plane displacements [zu1, zv1] are governed by the 
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same set of above equations with [u1, v1] replacing 
[u0, v0]. In Kirchhoff’s theory, [u1, v1] are expressed as 
gradients of a single function w0(x, y) from zero 
transverse shear strains. As such, static equations 
(1) have to be ignored due to two equations 
governing a single variable w0 and the required single 
equation through PEEES is given by the bi-harmonic 
equation ∆∆w0 = 0. However, tangential edge 
condition is replaced by an artificial condition. This 
problem does not arise in the extension problem due 
to the absence of w0. However, it is possible to 
express [u0, v0] in the form of gradients of a single 
function. 
 

Like in the Poisson’s theory and its extension 
[1, 2], [u0, v0] are expressed in terms of gradients of 
two functions ψ0(x, y) and φ0(x, y) in the form [u0, v0] 
=α [ψ0,x + φ0,y, ψ0,y − φ0,x]. By simple manipulations 
of equations (15) with derivatives of these equations, 
ψ0(x, y) and φ0(x, y) are governed by two uncoupled 
bi-harmonic equations. Since only two edge 
conditions are prescribed, one obtains solution for ψ0 
with φ0 ≡ 0 or vice versa. Solutions thus obtained are 
one and the same for [u0, v0] so that [u0, v0] = [ψ0,x, 
ψ0,y] or [φ0,y, −φ0,x]. (Note that the solution is a 
combination of that of Laplace equation and the 
corresponding Poisson equation. Due to the later 
equation, harmonic parts of ψ0 and φ0 need not be 
conjugate to each other) 
 
Replacement of w0 in Kirchhoff’s theory with 𝛙1    
 

Similar analysis with suffix ‘0’ replaced with 
suffix ‘1’ is missing, rather surprisingly, in the bending 
problem in the reported literature (e.g., [6]). 
Kirchhoff’s theory [3] is used even in the absence of 
transverse stresses whereas replacing w0(x, y) with 
ψ1 is proper and there was no need to use artificial 
transverse shear resultants along the edges. Use of 
ψ1 instead of φ1 is proper since φ1 does not 
participate in (2) in the presence of transverse 
stresses. In this case, however, φ1≢ 0 since it exists 
as a harmonic function in the in-plane displacements 
necessary to satisfy three edge conditions in the 3D 
problem like in the proposed Poison’s theories (this 
function φ1 was originally introduced as ‘stress 
function’ by Reissner [7]). It is now clear that if one 
considers harmonic part of bi-harmonic ψ1, same set 
of harmonic functions has to be used in φ1 so as to 
replace tangential edge displacement from ψ1 with 
normal gradient of φ1. As such, in-plane 
displacements are in terms of gradients of [ψ1, φ1] 
and there is no need to use gradients of φ1 in 
transverse shear stresses. It justifies the extended 
Poison’s theory for proper initial solutions in the 
analysis of bending problems.  
 
On transverse stresses in extension problem    
 
If the prescribed transverse shear stresses along 
faces of the plate in the extension problem are 

gradients of a given potential function 1(x, y) other 

than ϵz0 from constitutive relation, they can be 
absorbed in the normal stress components in the 
above analysis. If one uses gradients of ϵz0 
consistent with zw1(x, y), then ϵz0 becomes zero from 
the analysis implying that w1 cannot be used as a 
domain variable. Moreover, w1 cannot be a priory 
prescribed condition along an edge of the plate. Zero 
ϵz0 implies that the problem is equivalent to the plate 
subjected to pure in-plane shear and the rotation (of 
infinitesimal element about the normal to the plate) 
ωz = α[v0,x− u0,y] = α

2
∆φ0 ≡ 0 so that φ0 is a solution 

of Laplace equation in place of bi-harmonic equation.  
 

III. SEQUENCE OF UNCOUPLED 2-D 
PROBLEMS  
 

Here, relevance of sequence of uncoupled 
2D static equations from expressing f(z) in Fourier 
series of trigonometric functions is examined. In the 
previous section, it is mentioned that the analysis is 
similar in extension and bending problems if the 
faces of the plate are free of transverse stresses. 
Such a similarity exists even in the case of 
prescribed stresses along the faces of the plate but 
slightly different in determining basic variables [u0, v0, 
w0]. 
 

It is known to be mandatory to satisfy 
thickness-wise integrated equilibrium equations with 
assumed in-plane displacements [u, v] in bending 
problems. This procedure can be reversed by the z- 
distribution of [u, v] obtained from integration of f(z) 
distribution of transverse shear stresses so that [u, v] 
are determined from static equilibrium equations 
avoiding PEEES. For this purpose, possible 
expansion of σz considered here in series in terms of 
cosine and sine functions in the extension and 
bending problems, respectively, with λn = 2/[(2n-1)π], 
(sum n = 1, 2, …..) are 
 

ze = σz0e + cos(z/λn) σz2n (extension problem) 

(16a) 

zb = sin(z/λn) σz2n-1 (bending problem)   

(16b) 
In the extension problem, face condition 

gives σz0e = q0/2 and it is connected with other 2D 
variables through constitutive relations only and σz2n 
need not be zero. Since σz0e by itself does not 
participate in (2), it is omitted in the subsequent 
integration process. 
 

In the bending problem, face condition can 
be satisfied by any one 2D variable σz2n-1. Choice of 
σz2n-1 is dependent on the appropriate z-distribution of 
edge conditions. Like in the primary extension 
problem, relevant 2D variables with w0(x, y) as face 
variable satisfy both static and integrated equilibrium 
equations, thereby, in complete conformity with 3D 
equations.  
 

Extended Poisson’s theory is, however, 
based on σz = z q1/2 associated with more practical 
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reactive or prescribed transverse shear, in place of 
parabolic or cosine distribution, along edges of the 
plate. In such a case, the above sinusoidal series 
becomes the expansion of z q1/2. Note that σz0 and 
σz1 participate in the in-plane equilibrium equations 
through semi-inverted constitutive relations.  
 

For convenience, transverse shear stresses 
by z-integration of (16) are expressed as 
 

[ xz, yz]e = n sin (z/λn) [ xz, yz]2n  (17a) 

[ xz, yz]b =[ xz, yz]0b + n cos (z/λn) [ xz, yz]b2n-1 

     (17b) 
 
It is obvious that [τxz0b, τyz0b] are from 

solutions of auxiliary problem used in the extended 
Poison’s theory. By z-integration of [u,z, v,z] in [ xz, 

yz],  [u, v] apart from [u0, v0] in the extension 

problems are assumed for convenience in the form 
 

[u, v]e = n
2
[u, v]2ncos (z/ λn)   (18a) 

[u, v]b = n
2
 [u, v]2n-1sin (z/ λn)  (18b) 

 

(Note that term by term differentiation of ub (or vb) is 
valid whereas it is not valid in the expansion of zub 
(or z vb) in the Fourier expansion in terms of the 
corresponding sine functions.) 
 

The components [ xz, yz],z in the equilibrium 

equations are 
 

[ xz, yz]e,z = Σ[ xz, yz]e2ncos (z/λn) 

 (19a) 
[ xz, yz]b,z = − Σ[ xz, yz]b2n-1sin(z/λn) (19b) 

  
It is convenient to express 2D variables in (18) in the 
form  
 

[u, v]n = (− 1)
n
 α [ψn,x + φn,y, ψn,y – φn,x] (20) 

 
One gets equations governing 2D variables with [ xz, 

yz]n = α [ n,x, n,y]    

 

E'[α
2
∆u − ½(1+ ν) α (v,x– u,y]n =α n,x  (21a) 

E'[α
2
∆v + ½(1+ ν) α (v,x– u,y]n =α n,y  (21b) 

 
In (21), odd and even ‘n’ correspond to bending and 
extension problems, respectively. From (1, 2), one 
gets 
 

E'α
2
∆ en + σzn = 0, α

2
∆ωzn= 0   (22) 

 
Replacing en with α

2
∆ψ, one gets bi-harmonic 

equation governing ψ to be solved along with 
harmonic function φ satisfying three edge conditions.  
 

Expansion of z-distribution of σz in terms of 
either power series or polynomials in z is artificial in 
the analysis based on PEEES in the energy 
methods. This is due to ignoring σz = q/2 in extension 

problem and σz = z q/2 in the bending problem in the 
classical and higher order theories. (Even the 
Poisson’s theory of bending of plates is based on 
neglecting σz = z q/2 to resolve Poisson-Kirchhoff 
boundary conditions paradox).  

 
In bending problems, any f(z) function with 

f(1) = 1 can be used but restricted due to priory 
prescribed practical transverse shear stresses along 
the segments of the edge of the plate corresponding 
to the above mentioned linear distribution of σz. 
Higher order theories result only in the series 
expansion of neglected σz = z q/2 in the constitutive 
relations.  
 

It is clear now that the extended Poisson’s 
theory in conjunction with adapted iterative procedure 
is the proper procedure for analysis of plates till now 
to generate proper sequence of 2-D problems 
converging to 3-D problem within the classical small 
deformation theory of elasticity. 
 

IV. UNSYMMETRICAL LAMINATES: 
ALTERNATE FORM OF CLPT         
 

In view of limitations of theories based on 
plate element equations, we confine here to   the use 
of extended Poisson’s theory in a smeared laminate 
theory for analysis of unsymmetrical laminates. 
Classical theory of laminated plates (CLPT) is a 
smeared laminate theory in which number of 2-D 
variables is independent of number of layers. It offers 
great advantage in reducing computational effort 
involved in layer-wise theories. It is useful in local-
global approach for analysis of critical areas.  
 

Assumed bending displacements in CLPT 
are either from Kirchhoff’s theory or from First Order 
Shear Deformation Theory (FSDT). In Kirchhoff’s 
theory, zero transverse shear conditions along faces 
of the laminate are priory satisfied from strain-
displacement relations. In the case of unsymmetrical 
laminates, however, transverse shears from 
integrated equilibrium equations do not satisfy at one 
of the faces or maintain continuity across mid-plane 
of the laminate. Moreover, edge conditions involve 
integrated stress resultants which have no unique 
point-wise distribution, thereby the need of post-
processing for obtaining transverse stresses. FSDT 
requires ply-wise shear correction factors and it is 
shown to be an approximation to the associated 
torsion problem [8, 9].  
 

In the present work, an alternate form of 
CLPT is proposed to show that bending stresses in 
the case of unsymmetrical laminate are uncoupled 
from primary stresses in the extension problem. 
Extended Poisson’s theory (EPT) is adapted to 
eliminate post processing for finding transverse 
stresses and a supplementary problem is formulated 
to maintain continuity of these stresses across 
interfaces of the unsymmetrical layup of plies.   

http://www.jmest.org/
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For simplicity in presentation, a laminate 

bounded by 0 ≤ X≤ a, 0 ≤ Y≤ b and –hm ≤ Z ≤ hn with 
reference to the mid-plane Z = 0 in the Cartesian 
coordinate system (X, Y, Z) is considered. It is 
convenient to consider positive direction of Z- axis in 
the upward and downward directions so that 0≤ Z ≤ 
hn and 0≤ Z ≤ hm in the upper and bottom halves of 
the laminate, respectively.  Here, hm = hn but number 
of plies m need not be equal to n. For convenience, 
coordinates X, Y, and Z and displacements U, V, and 
W in non-dimensional form x= X/L, y=Y/L, z=Z/hn, 
u=U/hn, v=V/hn, w=W/hn and half-thickness ratio α = 
hn/L with reference to a characteristic length L 
[mod(x, y) ≤ 1] are utilized. Material of each ply is 
homogeneous and anisotropic with monoclinic 
symmetry. Interfaces are given by z = αk = hk/hn (k = 
1, 2, .…, n-1) in the upper-half and αk = hk/hm (k = 1, 
2, …., m-1) in the bottom-half of the laminate, 
respectively.  
 

Initial sets of solutions in the upper-half and 
bottom-half of the laminate in the layer-wise theory 
for analysis of bending of symmetric laminates [1, 2] 
and a general problem of unsymmetrical laminates in 
the article submitted elsewhere are unaltered up to 
the reference plane z = 0. In the case of 
unsymmetrical laminates, one has to consider 
continuity of non-zero displacements and transverse 
stresses across reference plane. Due to 
unsymmetrical layup, these sets of solutions in the 
upper-half and bottom-half of the laminate will be 
different to each other. A novel procedure was 
proposed to maintain their continuity across z = 0 
plane in the above mentioned article in which derived 
2-D problems of bending, extension and torsion in 
each ply are independent of lamination. Interface 
continuity of displacements and transverse stresses 
is through solutions of appropriate supplementary 
problems in the face ply and recurrence relations 
across interfaces. It is shown that methods of 
analysis of these problems are mutually exclusive to 
one other. 
 

Vertical displacement is w(x, y, z) and in-
plane displacements [u, v] are denoted as [ui], (i = 1, 
2). Similarly, stress components [σx, σy, τxy] and [τxz, 
τyz, σz] are denoted as [σi], [σ3+i], (i = 1, 2, 3), 
respectively. With the corresponding notation for 
strains, strain-stress and semi-inverted stress-strain 
relations with usual summation convention in which 
repeated suffix indicates summation over its specified 
range of integers are 

 
εi = Sij σj   (i, j = 1, 2, 3, 6)   (23) 
εr = Srs σs   (r, s = 4, 5)   (24) 
σi = Qij[εj – Sj6 σz]    (i, j = 1-3)  (25) 
σr= Qrs εs  (r, s = 4, 5)   (26) 

 
Sij and Qij (i, j = 1, 2, ….6) are elastic compliance and 
stiffness coefficients, respectively. With σi in (25), in-
plane equilibrium equations are 

 
α [Q1j(εj – Sj6 σz),x + Q3j(εj – Sj6 σz),y] + τxz,z = 0  

     (27a) 
α [Q2j(εj – Sj6 σz),y + Q3j(εj – Sj6 σz),x] + τyz,z = 0  

     (27b) 
 

Displacements in the classical theories are in 
the form [w0, - αzw0,x, - αzw0,y] and [u0, v0]  in pure 
bending and extension problems, respectively. 
Coupling between extension and bending problems 
is in the case of unsymmetrical laminates. This 
unsymmetrical lay-up of laminates may be classified 
into two groups: (1) Number of plies ‘m’ in the 
bottom-half is different from the number of plies ‘n’ in 
the upper-half of the laminate. (2) Even if m = n, 
thickness and/or material properties in a k

th
 ply are 

different from each other in these parts of the 
laminate. This coupling between extension and 
bending problems is through ‘B’ matrix in PEEEs due 
to thickness-wise integration of products of even and 
odd z-functions. This ‘B’ matrix imposes same order 
of effect on extension and bending displacements.  
 

An alternate form of CLPT designated as 
ACLPT is proposed here to differentiate this effect in 
extension and bending problems. In-plane 
displacements are assumed, with δ = 1 but zero for 
symmetric laminates, in the form  
 

[u, v] = [u0, v0] + (  δ – z) [u1, v1] (bending) (28) 

[u, v] = [1− δ (  + z)][u0, v0] +z [u1, v1 (extension) 

      (29) 
 

Equations governing [u1, v1] in bending and 
[u0, v0] in extension problems using extended 
Poisson’s theory are considered here.  

 
A. Bending problem        

 
Transverse stresses from auxiliary problem with α

2
 

Δψ0 + q1/2 = 0 are  
 

σz = z q1/2     (30a) 

[ xz0, yz0] = α[ψ0,x ψ0,y]    (30b) 

 
In-plane displacements are represented in the form 

[u, v] = − (  δ – z) [u1, v1]* in which 

 
u1* = u1+ γxz0 − α w0,x    (31a) 
v1* = v1 + γyz0 − α w0,y    (31b) 

 

Transverse shear strains, with [γxz0, γyz0] = [(S44 xz0 + 

S45 yz0), (S55 yz0 + S45 xz0)], are 

 
γxz* = [u1 + γxz0] ,  γyz* = [v1 + γyz0]  (32) 

 
Correspondingly, transverse shear stresses are 
 

τxz* = [Q44u1 + Q45v1 + xz0]    (33a) 

http://www.jmest.org/
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τyz* = [Q55v1 + Q45u1 + yz0]  (33b) 

 
Transverse shear stresses associated with [u1, v1]:  
 

τxz0 = [Q44 u1 + Q45 v1]    (34a) 
τyz0 = [Q55 v1 + Q45 u1]   (34b) 

 
Transverse stresses in each ply: 
 

[τxz, τyz] = [τxz, τyz]* + f2
k
 [τxz2, τyz2]

k
  (35) 

σz = z q1/2 + [f3 σz3]
k
    (36) 

 
The function f2 in Eq. (35) and f3 in Eq. (36) are  
 

f2 =  [(αk− z) δ – (αk
2
 – z

2
)]  (37a) 

f3 = [(αkz − ½ z
2
) δ – (αk

2
z – ⅓ z

3
)] (37b) 

 

f3(z) in each ply is replaced with 3(z) given by  

 

3(z) = [(αkz − ½ z
2
) δ – (αk

2
z – ⅓ z

3
)] – β1αk

2
 z  

     (38) 

in which β1 = [½ δ − ⅔] so that 3(αk) = 0.  

      
 From equilibrium equation in transverse 
stresses, one gets      
 

α [τxz0,x + τyz0,y]= β1αk
2 
σz3   (39a) 

σz3 = α [τxz2,x + τyz2,y]   (39b) 
 

To satisfy integrated equilibrium equations, it is 
convenient to assume 
 

[u1, v1] = − [(ψ1,x + φ1,y), (ψ1,y – φ1,x)] (40) 
 

Vertical deflection w0 in [u1, v1]* is replaced by ψ1 in 
[2} so that  
 

u1* = −α (2ψ1,x+φ1,y) + γxz0  (41a) 
v1* = −α(2ψ1,y−φ1,x)]  + γyz0 ]  (41b) 

 
Reactive transverse stresses are  

 

xz2 = α [Q1j ( j – Sj6 σz1),x + Q3j ( j – Sj6 σz1),y]  

(42a) 

yz2 = α [Q2j ( j – Sj6 σz1),y + Q3j ( j – Sj6 σz1),x]  

(42b) 
τxz2* = xz2 + τxz0 ,  τyz2* = yz2 + τyz0  (43) 

σz3* = σz3 + σz1    (44a) 
σz3 = − α ( xz2,x + yz2,y)   (44b) 

 
Equation governing in-plane displacements (u1, v1) is 
given by  

 
α β1αk

2
 ( xz2,x + yz2,y) = α [τxz0,x + τyz0,y] (45) 

 
Equation (45) is a fourth order equation in ψ1 to be 
solved along with plane Laplace equation ∆φ1 = 0. In 
the above analysis, ply-wise equilibrium equations 
are satisfied independent of lamination. In-plane 

displacements [u, v] thus obtained are dependent on 
material constants in each ply.  
 

In ACLPT, [u1, v1] become dependent on 
laminate stiffness coefficients in place of ply material 
constants by assuming that they are same in all plies. 
Here, it is not convenient to use stationary property of 
total potential in the energy method. [u, v] are 
dependent on different type of laminate stiffness 
coefficients. One needs stress resultants in plate 
element given by (with sum on k) 
 

Vx = −½ (αk – αk-1)[δ – (αk + αk-1)] (Q44 u1 + Q45v1)
(k)

 
     (46a) 

Vy = −½ (αk – αk-1)[δ – (αk + αk-1)] (Q55 v1 + Q45u1)
(k)

 
     (46b) 

x2 = −½ α (αk – αk-1)[δ – (αk + αk-1)][Q1j( j – Sj6 σz1),x 

+ Q3j( j – Sj6 σz1),y]
(k)

   (47a) 

y2 = −½ α (αk – αk-1)[δ – (αk + αk-1)][Q2j( j – Sj6 σz1),y 

+ Q3j( j – Sj6 σz1),x]
(k)

   (47b) 

  
Equation governing ψ1 becomes: β1α ( x2,x + 

y2,y) = α (Vx,x + Vy,y) which is again a fourth order 

equation in ψ1 to be solved along with harmonic 
function φ1 subjected to the following three conditions 
along x = constant edges (and analogue conditions 

along y = constant edges), with i = −½α Σ (αk – αk-

1)[δ – (αk + αk-1)]Qij( j – Sj6 σz1)]
(k
 (i, j = 1, 2, 3), 

 

(i) u1(y) = 0 or x = ⅓Tx1(y)   (48a) 

(ii) v1(y) = 0 or xy = ⅓Txy1(y)   (48b) 

(iii) ψ1(y) = 0 or Vx = ½Txz0(y)  (48c) 
 

Denote the in-plane displacements [u1, v1] 

thus obtained by [ 1, 1] which are continuous across 

interfaces except across z = 0 plane. Moreover, [ xz, 

yz] = β1[ xz2, yz2] are simply in terms of [ 1, 1]  and 

β1 z3 = α [ xz,x+ yz,y]. (Post processing through 

equilibrium equations in CLPT for finding transverse 
stresses is eliminated. Note that this commonly used 
procedure does not ensure satisfaction of either face 
conditions or continuity conditions across reference 
plane.) 
 

Bending displacements and transverse 
stresses in the above analysis from ACLPT are 
 

[u, v] = − (  δ – z) [ 1, 1]   (49) 

[τxz, τyz] = [ xz0, yz0] +   [(αk– z) δ – (αk
2
 – z

2
)] [ xz2, 

yz2]     (50) 

σz = z q1/2 +   [(αk z − ½ z
2
) δ – (αk

2
z – ⅓ z

3
)] z3 

      (51) 
αw0(x, y) = − ∫[ 1dx + 1dy]  (52) 

 
4.1.1 Discontinuities across z = 0 plane         
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Bending displacements and transverse shear 
stresses along z = 0 plane are       
  

[u, v]
(u, b)

  = − ½ δ[ 1, 1]
(u, b)

   (53) 

αw0
(u, b)

= −∫[ 1dx + 1dy]
(u, b)

   (54) 

τxz
(u, b)

 = xz0+ ½t1(δ – t1) xz2
(u, b)

  (55a) 

τyz
(u, b)

 = yz0 + ½t1(δ – t1) yz2
(u, b)

  (55b) 

 
It can be seen from equations (53, 54, 55), continuity 
of displacements and transverse stresses requires 
only continuity of [ 1, 1] and [ xz2, yz2] in the 

adjacent plies of the reference plane. For this 
purpose, one has to consider first the problem of 
reference plane subjected to  
 

τxz
(u, b)

= ½ {t1(δ – t1) xz2
(b, u)

−½ {t1(δ – t1) xz2
(u, b)

  

     (56a) 
τyz

(u, b)
 = ½ {t1(δ – t1) yz2

(b, u)
−½{t1(δ – t1) yz2

(u, b)
  

     (56b) 
 

It is convenient to introduce the coordinate zʹ 
= (1− z) for (z ≥ 0) so that the reference plane z = 0 
corresponds to zʹ = 1. Consequently, hkʹ = 1− hk, α kʹ 
= (1– αk) and [τxz, τyz] are [τxz, τyz]ʹ. Here, q = 0 along 
zʹ = 1 and the faces zʹ= 0 are free of transverse 
stresses.  

 
Replace [u1, v1] with [u1ʹ, v1ʹ] and δ = 0 and 

determine [u1ʹ, v1ʹ], as before, in terms of laminate 
stiffness coefficients with three conditions Mxʹ = 0, 
Mxyʹ = 0, Vxʹ = Txzʹ (y) along x = constant edges (with 
analogue conditions along y = constant edges).  

 
Displacements in the extension problem 

coupled with bending displacements now become 
  

[ 0, 0] = [u0, v0] − ½ δ [(u1 + u1ʹ), (v1 + v1ʹ)] 

(57) 
 

Modified in-plane displacements [ 0, 0] are 

obtained from the earlier smeared laminate theory by 
replacing [u0, v0] with [ 0, 0] in the differential 

equations and edge conditions. The displacements 
thus obtained along with face variable w0(x, y) from 
top and bottom halves of the laminate are continuous 
across the reference plane z = 0.  
 

B.  Extension problem 
 
We consider [u, v] such that they do not effect 
displacements z[u1, v1] (ignoring their relations with 
w0)  in the presence of bending loads by assuming z-
distribution orthogonal to z in the form  
 

[u, v] = [1 − δ (  + z)] [u0, v0]  (58) 

 
Transverse strains are zero and  
 

[ϵx, ϵy]= [1 − δ (  + z)] α [u0,x, v0,y]  (59a) 

γxy = [1 − δ (  + z)] α (v0,x + u0,y)  

 (59b) 
 
Stress components in k

th
 ply are, with (i, j = 1, 2, 3) 

 

σi
(k)

 = [1 − δ ( + z)] Qij
(k)

εj0
(k)

        (60) 

 
In smeared laminate theories, stress 

resultant in plate element is sum of ply-wise stress 
resultant in k plies with k equal to ‘n’ and ‘m’ in the 
upper and bottom halves of the laminate, 
respectively. Hence, summation sign on k in each 
half implies that k varies up to ‘n’ in the upper-half 
and up to ‘m’ in the bottom-half of the laminate. 
Accordingly, stress resultants added together with z = 
− z in the bottom-half in the smeared laminate theory 
and PEEEs with (i, j = 1, 2, 3) are 
 

Ni = Σ [(1 −   δ)
2 
tk – 2 δ(1– δ)(αk – αk-1)+ 

+ δ
2
 (αk

2
 – αk-1

2
)]Qij

(k
 εj0

(k)
    (61) 

 
Nx,x + Nxy,y = 0 ,  Ny,y + Nxy,x = 0   (62) 

 
Solution of the above equilibrium equations 

along with appropriately modified edge conditions 
gives [u0, v0] denoted as [ 0, 0] same in all plies, 

thereby, continuous across interfaces.  
 

Transverse stresses dependent on material 
constants and sub-laminate stiffness coefficients are 
obtained from the usual post processing from 
integration of equilibrium equations in each ply 
maintaining continuity across inter faces of each ply. 
However, the procedure from one face to the other 
face is at the expense not satisfying face conditions. 
If the process is used separately in each half, then 
these stresses are not continuous across the 
reference plane z = 0. 
 

The above transverse stresses from post 
process in each ply adjacent to the reference plane z 
= 0, with  
 

f1(z) = [(1−  δ) (α1− z) + δ (α1
2
 – z

2
)/2] 

f2(z) = {(1−  δ)[α1(α1− z) − (α1
2
− z

2
)/2] +  δ [(α1

2
 (α1− 

z)  – (α1
3
− z

3
)/3]} 

are    
 

xz
(u, b)

 = − αf1(z)[(σ x,x + σxy,y)
(1)

]
(u, b)

 (63a) 

yz
(u, b)

 = − αf1(z)[(σ y,y + σxy,x)
(1)

]
 (u, b)

 (63b) 

z 
(u, b)

 = α
2
f2(z) ( xz,x + yz,y)

(u, b)
  (64) 

 
Note that in-plane distributions of the above stress 
components are in terms of [ 0, 0]. 

 
Transverse stresses [τxz, τyz, σz] along the 

reference plane z = 0 from upper-half and bottom-half 
of the laminate with  

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 3159-0040 

Vol. 2 Issue 11, November - 2015 

www.jmest.org 
JMESTN42351195 3210 

 

f1(0) = [(1− δ α1( −  α1], 

f2(0) = [(1− δ  (   +   α1) α1
2
] 

are 
 

[τxz, τyz] = f1(0)[τxz, τyz]
(u, b)

    (65a) 
σz = f2(0) σz

(u, b)
    (65b) 

 
It can be seen from above equations, 

continuity of transverse stresses requires only 
continuity of [ xz0, yz0] in the adjacent plies of the 

reference plane. For this purpose, one has to 
consider first the problem of reference plane 
subjected to  
 

τxz
(u, b)

 = f1(0)( xz2
 (b, u)

 – xz2
(u, b)

)  (66a) 

τyz
(u, b)

 = f1(0)( yz2
(b, u)

 – yz2
(u, b)

)  (66b) 

  
It is convenient to introduce the coordinate zʹ 

= (1− z) for (z ≥ 0) so that the reference plane z = 0 
corresponds to zʹ = 1. Consequently, hkʹ = 1− hk, αkʹ = 
(1– αk) and [τxz, τyz, σz ] are [τxz, τyz, σz ]ʹ which are 
zero along zʹ= 0 faces.  
 

Replace [u0, v0] with [u0ʹ, v0ʹ] and δ = 0 in 
equations (61-65) and determine [u1ʹ, v1ʹ], as before, 
in terms of laminate stiffness coefficients with three 
conditions  

 
Nxʹ = 0   ,   Nxyʹ = 0   ,   Vxʹ = Txzʹ (y)  (67) 

 
at x = constant edges (with analogue conditions 
along y = constant edges). The displacements un-
coupled with bending displacements now become  

 

u0 = [1 − δ (  + z)] ( 0 + δu0ʹ)   (68a) 

v0 = [1 − δ (  + z)] ( 0 + δv0ʹ)  (68b) 

  
Displacements [u0, v0], thereby, [τxz, τyz, σz] thus 
obtained are continuous not only across z = 0 plane 
but also across all interfaces of plies.   
 

From the above analysis, [u, v]e in extension 
problem (denoted with suffix ‘e’) from smeared 
laminate theory are 
 

ue = [1 − δ (  + z)] ( 0e + δ u0eʹ + z 1e) (69a) 

ve = [1 − δ (  + z)] ( 0e + δv0eʹ + z 1e) (69b) 

  
C. Torsion associated with bending loads        
 
For determination of w0(x, y) which is a primary 
variable in bending (associated torsion) problems, all 
three static equations (1) and (2) are required and 
they are different from integrated equations. 
Kirchhoff’s theory is based on integrated equations 
normally used in bending problems. Author’s recent 
investigations, however, indicate that sum of τxy in 

bending and τxy in torsion is zero in the exact 
solutions of 3D equations. This is due to the use of 
w0 as domain variable in torsion problems and as 
face variable in bending problems. Poisson’s theory 
recently proposed by the author brings out this 
distinction in the analysis of these problems. 
 

Displacements [w0, u0, v0] in the classical 
theory of unsymmetrical laminates (CLPT) are 
coupled through B matrix in plate element equilibrium 
equations (PEEEs) arising due to thickness-wise 
integration of products of even and odd z-functions. 
This ‘B’ matrix imposes same order of effect on [u0, 
v0] and α [w0,x, w0,y]. Displacements in CLPT are 
assumed in the form w = w0(x, y), u = u0 – z α w0,x , v 
= v0 – z α w0,y. Here, w0 is a domain variable and the 
coupling is between extension and torsion problems. 
An alternate form of CLPT denoted as ACLPT shows 
that the effect of un-symmetry in bending 
displacements is independent of [u0, v0]. Extended 
Poisson’s theory is used satisfying both static and 
integrated equilibrium equations. A secondary 
problem is formulated governing induced second 
order displacements of extension problem for the 
purpose of maintaining continuity of transverse 
stresses across interfaces of plies. Same analysis is 
applicable here also by replacing domain variable ψ1 
in bending problem with domain variable w0(x, y) in 
torsion problem. Hence, the corresponding analysis 
is not presented here. Associated torsion-type 
problem in extension problem requires the use of [u2, 
v2] and the analysis of their influence on bending 
displacements needs to be carried out in future 
investigation. 
 
V. CONCLUDING REMARKS WITH 

SUGGESTIONS FOR FUTURE WORK     

 
Set of polynomials generated in z are 

necessary in satisfying both static and integrated 

equilibrium equations. Poisson’s theory and 

Extended Poisson’s theory are based on satisfaction 

of both static and integrated equilibrium equations.  

One significant feature of the present work is that the 

ply analysis is independent of lamination. This 

feature needs exploitation in investigations on 

optimum ply lay-up, its utility in the analysis of 

associated eigen-value problems of free vibration 

and buckling of plates, and even in the area of 

fracture mechanics. However, polynomials in z are 

not adequate for proper solutions of 3-D problems. 

Solution of a supplementary problem based on 

appropriate trigonometric function in z representing 

each of displacement and stress components is 

required. Solution of additional similar problem is 

required in the analysis of unsymmetrical laminates. 

 
Sequence of 2D problems converging to 3D 

problem is through extended Poisson’s theory in 
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conjunction with an auxiliary problem and a 
sequence of supplementary problems. 
 

An alternate form of classical laminate theory 
is proposed for analysis of unsymmetrical laminated 
plates using extended Poisson’s theory. There is no 
coupling between extension and problems. Effect of 
un-symmetry is through linear variation of transverse 
stresses independent of each other in these 
problems.  
 

Analysis in extension and bending problems 
in ACLPT is based on assumed displacements (28) 
and (29). There is a need to quantify amount of 
discontinuity in transverse stresses across reference 
plane before using solution of auxiliary problem. It is 
dependent on location of reference plane which, in 
principle, can be any z = constant plane except either 
face of the laminate. Use of discontinuity in the 
corresponding strain energy density for this purpose 
gives wide scope for future investigations in finding 
the location of reference plane with either minimum 
or minimum of maximum discontinuity.    
 

Coupling due to ‘B’ matrix in CLPT imposes 
same order of effect on extension and bending 
displacements but this coupling appears to be 
different in ACLPT. It is worthy of consideration in 
future investigations. 
 

Number of 2D displacement variables is 
limited to minimum number mainly because the in-
plane distributions of these variables are not ply 
dependent and can never be equal to ply dependent 
distributions in layer-wise theories. Normal 
requirement is two term representation of each in-
plane displacement variable in the analysis of 
unsymmetrical laminates like in the present ACLPT. 
In CLPT, bending displacements are in terms of a 
single variable w0(x, y) due to its use as a domain 
variable and two (instead of three required in 3D 
problem) edge conditions are prescribed in each of 
extension and bending problems. 
 

In ACLPT, three edge conditions in bending 
are prescribed due to use of w0(x, y) as face variable 
in Poisson’s theory and extended Poisson’s theory. 
Corresponding in-plane displacements are 
determined by satisfying both static and integrated 
equilibrium equations. Such facility is absent in 
extension problems since the even prescribed σz = 
q0/2 along faces of the laminate does not disturb the 
equilibrium equations. If transverse shear stresses 
are prescribed along faces of the laminate, they have 
to be asymmetric in z and have to satisfy equilibrium 
equation in z-direction even in the case of the above 
prescribed σz = q0/2. They are governed by static 
equilibrium equation. One gets from integrated 
equation σz = f2(z)σz2 with unknown σz2. Its 
determination is dependent on second order [u2, v2] 
displacements which have to be obtained from 

Poisson’s theory satisfying both static and integrated 
equilibrium equations. 
 
  From the above observations, it is clear that 
one requires one term representation in bending and 
two term representation in extension problems with w 
from integration of εz from constitutive relation. Higher 
order displacement terms are to improve in-plane 
distributions whose utility in global-local approach in 
the analysis of critical areas of unsymmetrical 
laminates may not be of much important.  
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