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Abstract—The contribution of this research is in 
suggesting a useful method for precise speed 
control of a dc motor. The paper describes an 
application, where the armature of a dc motor is 
connected as one of the ratio arms of a 
Wheatstone bridge, now becoming an active dc 
bridge. The bridge is originally balanced for static 
armature conditions. Under running conditions of 
the dc motor, the bridge becomes unbalanced and 
its output voltage is continuously compared with 
a preset reference quantity. The electronic 
comparator can be designed as a nonlinear on-off 
element with hysteresis, while the complete 
control system is a combination of a linear and a 
nonlinear part. The system is analyzed for stability 
with the aid of the advanced D-partitioning and the 
Goldfarb stability criterion.  
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I.  INTRODUCTION  

A useful technique is proposed to design precise 
speed control of a dc motor. Maintaining very 
accurately a constant speed of a dc motor, subjected 
to a variable torque, is an important task in many 
industrial applications. Control system keeping a 
constant motor speed should incorporate some type 
of a speed-to-voltage converter in its feedback loop. 
Considering different methods of obtaining a signal 
proportional to the speed of the motor, an alternative 
solution is suggested, introducing an active dc bridge 
(ADCB), where the armature circuit of a separately 
excited dc motor is connected as one of the ratio arms 
of a Wheatstone bridge.  
 

The advantage of the ADCB is that it is not bringing 
any additional time constants and its output voltage 
depends directly on the armature emf, therefore on 
the speed of the dc motor. Further, the accuracy of 
this method is independent of the resistive bridge 
components. When applying an ADCB in a control 
system, it is essential to analyze its dynamics and 
derive its transfer function. Data obtained by the 
operation of the ADCB and the control system under 
operation, prove a successful solution of the speed-
voltage conversion used for accurate speed control of 
dc motors.  

II. STRUCTURE AND ANALYSIS OF THE ADCB  

The armature circuit of a separately excited dc 
motor is connected as one of the ratio arms of a 
Wheatstone bridge, shown in Figure 1. The bridge, 
connected to a dc supply voltage V, is originally 
balanced at idle armature conditions. Then only the 
armature resistance Ra participates in the bridge ratio 
arm bc, since the dc motor does not induce armature 
emf E at these circumstances.  

It is essential to limit the current in the branches ad 
and ac, therefore the resistors R1 and R2 must be of 
high value. They are used to balance the bridge at 
standstill motor conditions. The resistance R3 is 
equivalent in value with the rate of the armature 
resistance Ra. Also, it is assumed that the internal 
resistance of the supply voltage is equal to zero. 

 

 
 

Figure 1: Active dc Bridge (ADCB) 
 

    At running conditions of the dc motor, an armature 
emf E is induced and the Wheatstone bridge becomes 
unbalanced.  

     By deriving the transfer function of the ADCB, 
analyzing its circuit diagram and taking into account 
its dynamics, it can be proved that the bridge output 
voltage Vab depends directly on the induced armature 
emf E and hence on the motor speed n.  

     The output voltage of the bridge can be presented 
as follows: 

     cacbab VVV                                  (1) 
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aI  is the armature current 
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After substituting Equations (2) and (3) in (1): 
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The transfer function of an armature-controlled dc 
motor [2] is considered as well  
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where  n
60

2
     is the speed of the motor in rad/s 

             K   is the gain of the motor 

            a  is the armature time constant of the motor 

            m  is the electromechanical time constant of 

the motor 

              s    is the Laplace operator 

 
The following constants can be introduced: 
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where ec  = Constant 

              is the flux of the exciting coil 

 

Considering Equations (4) and (5), a block diagram 
of the ADCB is developed. The signal flow in the 
diagram is based on the principle of operation of the 
ADCB, as shown in Figure 2. The ADCB transfer 
function can be determined as the ratio of its output 
and input signals 

 
)(

)(
)(

sV

sV
sG ab

ADCB
                      (6) 

 
 

Figure 2: Block diagram of an ADCB 

 
The positive feedback loop of the block diagram in 

Figure 2 can be used to derive the following equivalent 
transfer function: 
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By implementing some of the Block Diagram 
Algebra rules [1], the original system is simplified in 
achieving successive reduction of the blocks.  

The diagram in Figure 3(a) is showing reduction of 
blocks of the original system by combining cascaded 
elements in its feedback loop.  

 

Figure 3(a): Reduction of the ADCB block diagram (Step 1) 

 

Figure 3(b) represents the movement of a pickoff 
point behind a block.  

 

Figure 3(b): Reduction of the ADCB block diagram (Step 2) 
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In Figure 3(c) the positive feedback loop is 
eliminated.  

 

Figure 3(c): Reduction of the ADCB block diagram (Step 3) 

 

Next, in Figure 3(d), a combination of cascaded 
blocks is represented.  

 

Figure 3(d): Reduction of the ADCB block diagram (Step 4) 

 

Finally, in Figure 3(e), two parallel branches are 
combined to determine the ADCB transfer function as 
follows 

 

Figure 3(e): Reduction of the ADCB block diagram (Step 5) 
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Substituting Equation (7) in (8) results in 
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Since 031212  RRRRKK a  for a balanced 

ADCB, finally its transfer function can be presented as 
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Equation (10) shows that the ADCB can be 
considered as a second order model, for this reason it 
is expected that its transient response to a step-input 
signal is a damped oscillation [2], [3]. Also, since both 
Equations (5) and (10) are of second order, a 
comparison between them proves that the speed of 
the dc motor n, rpm is directly proportional to the 
output voltage of the ADCB Vab. Considering the 
relationship: 
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It follows that 
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III. SPEED CONTROL SYSTEM EMPLOYING AN  ADCB  

The ACDB is involved in a closed-loop control 
system. Its block diagram is shown in Figure 4. The 
objective of the control system is to maintain constant 
speed of the dc motor. There are two external 
disturbances to the system: variations of the load 
torque TL and variations of the supply ac voltage V. 
The control system is a sophisticated combination of a 
linear and a nonlinear part. Three possible input 
control signals are considered: Vr (setting the driving 

torque TD), r (setting the firing angle ) and TL (the 
load torque applied to the dc motor). The system is 
described in a way that for a set voltage Vr the output 
signal is the motor’s speed n.  

The supply ac line voltage V is applied to a thyristor 
Bridge Rectifier (BR). The output voltage of the BR Vcd 
is applied to a Wheatstone bridge (WB). The armature 
of the dc motor (M) is connected as one of the arms of 
the WB. The interaction of the M and the WB is a 
unique arrangement and a new technical solution as 
already described as (ADCB).  

The output voltage of the ADCB Vfb is an important 
feedback signal and depends only on the motor’s 
armature emf E = Vbc [4]. Variable load torque TL,  
applied to the motor, or the supply ac line V voltage 
does not affect its speed of the dc motor because of 
the tight closed-loop control. 

The feedback voltage Vfb is applied to a Reference 
and Comparison Unit (RCU). There it is compared 
with a reference voltage Vr. The RCU is a comparator, 
operating as a nonlinear ON-OFF element with 
hysteresis [5], [6]. Its output signal n controls the 
variable-phase pulse generator (VPPG). 

The VPPG consists of a current generator (CG) and 
a threshold unit (TU). The output voltage of the CG Vc 
is applied to the TU in this way controlling the 

thyristor-firing delay angles    of the BR [5], [6].   
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Figure 4: Block diagram of the closed-loop speed control system 

 

IV. CONTROL SYSTEM OPERATION  

The electronic circuit diagram of the speed control 
system is shown in Figure 5. The principle of operation 
of is described following the sequence of the control 
signals [5], [6].  

The ac line voltage is applied to the BC via a filter 
(C1, L1, L2). This voltage is also applied via two step-
down centre-tapped transformers (Tr2, Tr3) to rectifiers 
providing supply to the RCU and the VPPG. The 
bridge converter consists of two thyristors Th1, Th2 and 
two diodes D1, D2.  Its output controlled dc voltage is 
applied to the cd diagonal of the ADCB. To balance 
the ADCB, operating as an Active Wheatstone Bridge 
(AWB), it is preliminary disconnected from the BC and 
a dc constant voltage is applied to its cd diagonal.  The 
balance is indicated at the diagonal ab. It is achieved 
at static armature conditions by varying the resistor 
R16. At running conditions the emf E of the armature is 
proportional to the speed of rotation n. A voltage 
divider R18, R19 is providing the proper level of the 
feedback voltage Vfb. At running conditions [5], [6] the 
current Iab through R18 and R19 is proportional to E. 
Since Vfb = R19Iab, it follows that the feedback voltage 
Vfb is directly proportional to the speed n. Vfb is 
compared with the reference voltage Vr obtained from 
the voltage divider R12, R13. By varying the reference 
voltage, the driving torque TD of the motor can be 
preliminary set to a given value. The comparator U1 is 
designed as a nonlinear element with saturation and it 
is realized by an operational amplifier connected in an 
open-loop configuration. It can be easily redesigned to 
operate as an ON-OFF element with hysteresis, for 
better performance of the system [6], [7], [8]. 
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Figure 5: Electronic circuit diagram of the speed control system 
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 During each half cycle of the line voltage the CG 
charges the capacitor C3. The charging current is 
constant and the voltage Vc across C3 increases 
linearly. At a preliminary selected value of this voltage 
the TU is activated.  

The charging time of C3 can be varied by the 
resistor R9 controlling the thyristor firing angles . In 
this way the speed of the motor can be selected and 
set accordingly by varying R9.  

The TU includes the transistors Q1 and Q2. During 
the charging of C3 they are cut-off. When Vc reaches 
its critical value Q1 and Q2 saturate. C3 discharges 
rapidly via the primary winding of the pulse transformer 

Tr1. The thyristors Th1 or Thr2 are fired by a pulse 
developed at the secondary winding of Tr1.  

  

V. STABILITY ANALYSIS OF THE CONTROL SYSTEM  
 

     The speed control system, described by the 
electronic circuit diagram, consists of a linear and a 
nonlinear section. The system’s stability analysis can 
be performed by applying of the Goldfarb stability 
criterion, also known as the Describing Function 
analysis [7], [8]. The complete block diagram of the 
speed control system is shown in Figure 6. 

 

 

Figure 6: Block diagram of the speed control system 

 

     The block diagram of the speed control system can 
be simplified as shown in Figure 7. 

 

 Figure 7: Modified block diagram of a closed-loop system 

 

The Describing Function analysis assumes that the 
output of a nonlinear element is a periodic signal 
having the same fundamental frequency as that of the 
input where all harmonics and any dc component are 
neglected.  

Following the conception of the describing function 
analysis [9], [10], the transfer function of the nonlinear 
element can be presented as: 

  

 

                                                                                (13) 
 

Then, the transfer function of the closed-loop system 
shown in Figure 7.1 becomes: 

 

                                                                                (14) 

 

Accordingly, the characteristic equation of the closed-
loop system is [9], [10]: 
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The characteristic equation (15) is also known as 
the harmonic balance equation. The harmonic 
balance equation is a necessary condition for the 
existence of limit cycles in the nonlinear system [8], 
[9], [10]. The Describing Function analysis can be 
considered as a linear approximation of a static 
nonlinearity limited to the first harmonic [9], [10]. The 
accuracy of the analysis is even better for higher-
order systems since they have better low-pass filter 
characteristics. The harmonic balance equation is 
similar to the characteristic polynomial function that 
leads to the Nyquist condition for closed-loop stability.  
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If equation (16) is satisfied, then the system output 
will be experiencing a limit cycle. This corresponds to 

the case where the GP(j) locus passes through a 
critical point. While in the conventional frequency-
response analysis of linear control systems, the 
critical point is (-1, j0), in the describing function 
analysis, the critical point is modified so that the entire 

Z(M) = -1/N(M,) locus becomes a locus of critical 
points. Therefore, the relative location and intersection 

of the Z(M) = -1/N(M,) locus and the GP(j) locus will 
provide the stability information [9], [10]. 

The stability of a nonlinear system is determined 

by plotting the Z(M) = -1/N(M,) locus and the GP(j) 
locus on a common plane. There is an important 

precondition that GP(j) should correspond to a stable 
stand-alone system.  

The constants and the dynamic properties of the 
different structural blocks are determined by 
considering the values of all the components and the 
parameters of the dc motor. Then, taking into account 
the variable gain K, the transfer function of the total 
linear section is revealed by the following expression 
[11], [12]:   
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     The nonlinear part of the control system is 
behaving as a nonlinear ON-OFF element with 
hysteresis. Its transfer function is: 
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Figure 8:  Characteristic and properties of the  

ON-OFF nonlinearity with hysteresis 

 

 where   M  is  the amplitude of the input variations   
 

     It is assumed that the parameters of the 
nonlinearity (K1 = 1 and h = 0.4) are constant.  A 
function Z(M) is obtained by applying equation (18). 
The results for different amplitudes M are shown in 
Table I. 
 

TABLE I  Z(M) = -1/N(M) AT DIFFERENT AMPLITUDES M  
 

M 0.4 0.8 1.6 2.4 

N(M) 3.18–90 1.59–30 0.8–14 0.53–10 

Z(M) –0.31+90 –0.63+30 –1.25+14 –1.9+10 

 

     To determine the stability margins of GP(j) as a 
stand-alone system, the D-Partitioning analysis is 
applied in the discrete-time domain with the aid of the 
bilinear transform. By implementing the Euler's 
approximation, the sampling period Ts should be 

within the range Ts  (0.1Tmin to 0.2Tmin), where Tmin is 
the minimum time-constant of the continuous-time 
system or the analogue plant model prototype [13], 
[14], [15]. From the characteristic equation of the 
continuous independent plant GP(s):   
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     The variable parameter K of the linear section of 
the system is determined as: 
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    Initially, the variable K(s) is introduced as a 
continuous function. To provide the opportunity for a 
potential introduction of a digital controller, next it is 
converted into its digital equivalent K(z) with the aid of 
the bilinear transform [16]. The D-Partitioning is 
achieved in the discrete-time domain in terms of the 
variable gain K as follows:  

 

>> K=tf([-0.0126 -1.98 -72 -1000],[0 21600]) 

Transfer function: 

-0.0126 s^3 - 1.98 s^2 - 72 s - 1000 

------------------------------------ 

               21600 

>> Kd1 = c2d(K,0.001,'tustin') 

Transfer function: 

-5040 z^3 + 1.436e004 z^2 - 1.363e004 z + 4307 

---------------------------------------------- 

            z^3 + 3 z^2 + 3 z + 1 

Sampling time: 0.001 

>> dpartition(Kd1) 

 
 

 
 

Figure 9:  D-Partitioning analysis in the discrete-time domain of the 

linear section prototype in terms of the variable gain K   
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     The D-Partitioning curve, plotted in the K-plane and 
as seen in Figure 9, is considered within the 

frequency range  =  s/2 =  2/2Ts =  3141.6 
rad/sec [17]. 

     The D-Partitioning determines three regions on the 
K-plane: D(0), D(1) and D(2). Only D(0) is the region 
of stability, being always on the left-hand side of the 

curve [17], [18], [19]. Therefore, GP(j) will be stable 

only when 0  K  0.475. The performance of the 
entire system depends on the stability of the 
continuous linear section as a stand alone system. 

Further, Z(M) = -1/N(M,) locus and the GP(j) locus  
at (K = 0.1, 0.25 and 0.4) are plotted on a common 
plane as shown in Figure 10. This is achieved by 
applying the following code: 

 

   >> Gp01=tf([0 2160],[0.0126 1.98 72 1000]) 

   Transfer function: 

              2160 

   ----------------------------------- 

   0.0126 s^3 + 1.98 s^2 + 72 s + 1000 

   >> Gp025=tf([0 5400],[0.0126 1.98 72 1000]) 

   Transfer function: 

              5400 

   ----------------------------------- 

   0.0126 s^3 + 1.98 s^2 + 72 s + 1000 

   >> Gp04=tf([0 8640],[0.0126 1.98 72 1000]) 

   Transfer function: 

              8640 

   ----------------------------------- 

   0.0126 s^3 + 1.98 s^2 + 72 s + 1000 

   >> Gp1d=c2d(Gp01,0.001,'tustin') 

   Transfer function: 

      1.984e-005 z^3 + 5.952e-005 z^2 + 5.952e-005 z + 1.984e-005 

   ----------------------------------------------------------- 

           z^3 - 2.849 z^2 + 2.704 z - 0.8545 

   Sampling time: 0.001 

   >> Gp2d=c2d(Gp025,0.001,'tustin') 

   Transfer function: 

   4.96e-005 z^3 + 0.0001488 z^2 + 0.0001488 z + 4.96e-005 

   ------------------------------------------------------- 

           z^3 - 2.849 z^2 + 2.704 z - 0.8545 

   Sampling time: 0.001 

   >> Gp3d=c2d(Gp04,0.001,'tustin') 

   Transfer function: 

   7.936e-005 z^3 + 0.0002381 z^2 + 0.0002381 z + 7.936e-005 

   --------------------------------------------------------- 

         z^3 - 2.849 z^2 + 2.704 z - 0.8545 

   Sampling time: 0.001 

   >> nyquist(Gp1d,Gp2d,Gp3d) 

 

     According to the Goldfarb stability criterion, the 
control system is stable for any one of the cases, 
since each locus GP1d, GP2d or GP3d is not enclosing 
the point (-1, j0) of the complex plane and also is not 
enclosing this part of the characteristic Z(M), 
corresponding to the increment of M after a crossing 

point (,), related to a limit cycle [7], [20], [21], [22]. 
 

     Due to the variation of the linear section gain K, the 
limit cycles are with different amplitude M and 

frequency of oscillation  as seen from Figure 10.  
 

 

Figure 10: Application of the Goldfarb stability criterion 

 

VI. LOAD CHARACTERISTICS OF THE DC MOTOR 

INCORPORATED INTO CONTROL SYSTEM  

 

Comparison of the load steady-state characteristics 
of the dc motor n = f(T), before and after application of 
the feedback control, is shown in Figure 11. At a load 
torque TL = 0.6Nm and Vbc = 180V the relative drop in 
the motor’s speed for the case of the open-loop 
system is 7.78%, while for the closed-loop system it is 
only 1.11%.  At TL = 0.6Nm and Vbc = 50V the relative 
drop in speed is 22.8% without a feedback and 0.23% 
with a feedback.  
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Figure 11: Load characteristics of the DC motor 
 with and without a feedback 

 
 

VII. CONCLUSIONS 

A tight speed control system of a dc motor drive is 
suggested and analyzed. The armature circuit of a dc 
motor is connected as one of the ratio arms of a 
Wheatstone bridge, now becoming an active dc bridge 
(ADCB). This is a unique solution for accurate control 
of a dc motor speed, since armature emf E, induced at 
running conditions of the dc motor can be used as a 
precise feedback signal. Analyzing the ADCB, it was 
proven that the bridge output voltage Vab = Vfb 
depends directly on the induced armature emf E and 
hence on the motor speed n.  
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The suggested type of the nonlinear stage used in 
the system is an ON-OFF element with hysteresis. 
The control system is analyzed for stability with the 
aid of the Goldfarb stability criterion. As a stability 
precondition, it is proven that if the gain factor K is 

within the range 0  K  0.475, the continuous linear 
section as a stand alone system will be stable. Also it 
is proven that the complete control system is stable 

since the locus the continuous linear section, for 0  K 

 0.475, is not enclosing this part of the characteristic 
Z(M), corresponding to the increment of M after a 

crossing point (,), related to a limit cycle.  

The developed control system operates in a limit 

cycle at specific magnitude  and frequency of 

oscillation , which occurs due to the continuous 
comparison between feedback voltage Vfb and the 
reference voltage Vr. This is a typical mode of 
operation for some industrial control systems 
containing nonlinear elements.   

The advantages of the suggested speed control 
system can be seen in the best way from the load 
steady-state characteristics of the dc motor. They 
show almost constant motor’s speed for a specified 
range of the load torque. The developed tight-speed 
control system is tested successfully in laboratory 
conditions. It can be implemented in a variety of 
industrial motor drive applications, subjected to 
variable load, where constant speed is required.  
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