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Abstract—In this paper, the governing equations 
of micropolar thermoelasticity with diffusion are 
formulated in context of Lord-Shulman theory of 
generalized thermoelasticity. The plane wave 
solutions of these equations indicate the 
existence of six plane waves. The speed of these 
plane waves are computed for a particular 
material and plotted against the diffusion 
parameter, thermal parameter and frequency. 
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I. INTRODUCTION 

Linear elasticity describes the mechanical 
behavior of common solid materials, e.g., concrete, 
wood and coal. However, this theory does not apply to 
the behavior of many new synthetic materials of the 
elastomer and polymer type, e.g., polymethyl-
methacrylate, polyethylene and polyvinyl chloride. 
Structures in modern engineering are made with the 
use of polycrystalline and fibrous materials. The 
micropolar theory of elasticity takes into account the 
granular character of the medium, where solids can 
undergo macrodeformations and microrotations. The 
motion in micropolar solids is completely 
characterized by the displacement vector and the 
microrotation vector, whereas in classical elasticity, 
the motion is characterized by the displacement 
vector only. A micropolar continuum is a collection of 
interconnected particles in the form of small rigid 
bodies which undergoes both translational and 
rotational motions. Granular media and multimolecular 
bodies are typical examples of this medium. Rigid 
chopped fibres, elastic solids with rigid granular 
inclusions, and other industrial materials such as 
liquid crystals are other important examples of this 
medium. Eringen and his co-workers [1-3] developed 
the theory of micropolar elasticity. This theory aroused 
much interest due to its possible applications in 
investigation of deformation properties of solids, 
where the classical theory becomes inadequate. For 
example, the micropolar theory has possible 
applications in investigating materials with bar-like 
molecules which exhibit microrotation effects and 
support body and surface couples. Parfitt and Eringen 
[4] studied plane waves in linear theory of micropolar 
elasticity. Eringen [5] extended the theory of 
micropolar elasticity for heat conducting elastic solids 
by including thermal effects. Lord-Shulman 
generalization of linear micropolar thermoelasticity 

was developed by Boschi and Iesan [6]. Dost and 
Tabarrok [7] developed a Green-Lindsay 
generalization of micropolar thermoelasticity. Ciarletta 
[8] developed a theory of micropolar thermoelasticity 
without energy dissipation. Chandrasekharaiah [9] 
formulated a theory of heat flux micropolar 
thermoelasticity. Diffusion is a spontaneous 
movement of the particles from region of high 
concentration to low concentration. The fields of 
temperatures and diffusion in solids can not be 
neglected in research on development of high 
technologies. At elevated and low temperatures, the 
processes of heat and mass transfer play the decisive 
role in many problems of satellites, returning space 
vehicles, and landing on water or land. Even oil 
companies are interested in the process of 
thermodiffusion for more efficient extraction of oil from 
oil deposits. The thermodiffusion in elastic solids is 
due to coupling of fields of temperature, mass 
diffusion and that of strain in addition to heat and 
mass exchange with the environment. 

 Sherief et. al [10] developed the theory of 
generalized thermoelastic diffusion with one relaxation 
time, which allows the finite speed of propagation of 
waves. Singh [11, 12] studied the reflection of P and 
SV waves from free surface of an elastic solid with 
generalized thermodiffusion. Aouadi [13] developed 
the general equations of motion and constitutive 
equations based on the theory of Lord-Shulman with 
one relaxation time for a general homogeneous 
anisotropic medium with a microstructure, taking into 
account the effects of heat and diffusion. In the 
present paper we solve the governing equations for a 
linear, homogeneous and isotropic micropolar 
thermoelastic solid with diffusion for plane waves. The 
speeds of these plane waves are plotted against 
various diffusion and thermal parameters. Some 
particular cases are also discussed.  

II. GOVERNING EQUATIONS 

 Following Aouadi [13] the basic equations for 
homogeneous isotropic generalized linear micropolar 
thermoelastic diffusion in the absence of body forces, 
body couples, heat and mass diffusive sources are: 
Equations of motion 

  ,ji j iu                                 (1) 

  ,ijk jk ji j ij jJ                  (2) 

Generalized Fourier’s law of heat conduction 

  0 ,i i iq q K                        (3) 
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Equation of mass flux vector  

  
,i i iD P                             (4) 

Entropy equation 

  0 ,i iT S q                                  (5)   

Conservation of mass equation 

 ,i iC                                        (6) 

Constitutive equation 

 

1 2

(2 )

( )

ij kk ij ij

ijk k k ij ij

e e

r C

   

  

    

     
  

                                                     (7)                                                                                

  
, ,ji kk ij i j j i           (8) 

 
1

0

E
kk

C
S e aC

T


             (9) 

2 kkP bC e a                      (10) 

, ,

1
( )

2
ij i j j ie u u                        (11) 

where iu   is the displacement vector field, ij  is the 

force stress tensor, 
ije  is the strain tensor, 

i  is the 

vector of internal rotations,  ji  is the moment of 

couple stress tensor, ji  is the microcurvature tensor, 

ijk  is the alternating tensor, ijJ  is the microrotation 

tensor,  ir   is the rotation vector, ij  is the micro-

strain tensor, i denotes the flow of the diffusing mass 

vector, iq  is the vector of heat flux, S is the entropy, T 

is the absolute temperature, P is the chemical 
potential per unit mass, and C is the concentration of 

the diffusive material in the elastic body, K  is the 
coefficients of the thermal conductivity, D is the 
coefficients of diffusion,   is diffusion relaxation time,  

0  is thermal relaxation time ,   = T−T0 is the 

temperature of the medium in its natural state 

assumed to be such that  

0

1
T


 ,  T is the absolute 

temperature of the medium, T0 is the reference 

temperature of the body,  and     are Lame’s 

constants ρ, CE are, respectively, the density and 

specific heat at constant strain,  a, b, , , ,     are 

constitutive coefficients, ij  
is the Kronecker delta, 

1 (3 2 ) ,t       2 (3 2 ) ,c       Here 

,t c are the coefficients of linear thermal 

expansion and diffusion expansion respectively.  
With the help of relations (7) and (8)  in equations (1) 
and (2), we obtain  

         

2

1 2

( ) ( ) ( . )u u

C u

     

      

   

     
                (12)               

            

2 2 ( ) ( . )

u j

     

  

      

  
 
           (13) 

From equations (3), (5) and (9), we have 

 
2

0 1 0 0(1 )[ . ]ET u C aT C K
t

    


     
  

                                                                           (14) 
 From equations (4) , (6) and (10), we have  

      2 2 2

2 . 0D u Da Db C C C          
            

                                                                            (15)     
By Helmholtz representation of vectors, the 
displacement and microrotation vectors are written in 

terms of scalar   potentails  q,   and vector 

potentails   U,
 

  as   

          , . 0,u q U U
 

                       (16) 

         
, . 0, 

 

    
                   (17)   

 

With the use of equations (16) and (17) into equations 
(12) to (15), we have 

     
2 2 2

1 3 1 2( ) 0c c q C q      
              (18) 

   

2 2

0 1 0 0(1 )[ ]ET q C aT C K
t

    


     
  

        

                                                                          (19)             
4 2 2

2 0,D q Da Db C C C         
  (20) 

  

2 2 2 2

2 3 3( ) ( ) 0c c U c U
 

     
                   (21) 

  
2 2 2 2

4 0 02 ( ) 0c U 
  

     
(22)                                                                         

2 2 2 2

4 5 0( ) 2 0c c        
                              (23)  

where   

       

2 2 2 2

1 2 3 4

2 2 1 2
5 0 1 2
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, , , .

c c c c
j

c
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    

   

   
  

   

       

The equations (18) to (20) are coupled in scalar 

potentials , ,q C  and equations (21) and (22) are 

coupled in vector potentials U,
 

 .  Equation (23) is 

uncoupled in the scalar potential  . 

III. FORMULATION OF THE PROBLEM AND 

SOLUTION  

We consider plane waves propagating in 
homogeneous isotropic micropolar thermoelastic half 
space with diffusion in the positive direction of a unit 

vector n  as follows: 

    
( . )( , , ) ( , , ) ik n r Vtq C q C e                       (24) 
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where , ,q C  are the constants, V is the phase 

velocity, k is the wave number and r  is the position 
vector.  
Making use of equation (24) into equations (18) to 20), 
we have  

   
2 2 2 2 2 2

1 3 1 2[ ( ) ] 0V c c q V V C       
  

                                                                            (25)

          

    

2 2 2

1 0 0( ) 0ET q K C V aT V C      
 

                                                                       

 (26) 

    
2 2 2 * 4

2 ( ) 0D q DaV DbV V C      
   

                                                                            (27) 

where  
* ,

i
 


   and  kV   is the circular 

frequency of the wave.
      

The non-trivial solution of equation (25) to (27) 
requires 

 

    
 

6 4 2

0 1 2 0V A V A V A   
                     (28) 
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Here, the three complex roots 
2 , ( 1,2,3)jV j   of 

equation (28) correspond to Coupled Longitudinal 
Displacement (CLD)  wave , Coupled Thermal ( CT ) 
wave and  Coupled Mass Diffusion (CMD) wave, 

respectively. If we write 
1 * 1 1 ,j j jV V i q    (j = 1, 

2, 3), then clearly V*j and qj are the speeds of 
propagation and the attenuation coefficients of the 
CLD, CT, and CMD waves. 

Parfitt and Eringen [4] have shown that 
equations (21) and (22) represent ‘‘Coupled 
Transverse waves’’ propagating with velocity V4,5 
given by  

2 2 2 2 2

2 3 4 2 3

2 2 2 2 2 2 2

4,5 4 2 3 2 3

2 2 1/2

3 4

( / 2)
1

[{ ( / 2) }
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c c c c c x

V c c c c c x
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c c x

    
 

      
  

 
  

  

                                                                          (29)                                                                                                                                       

where,

2

0

2

2
x




 , the wave with speed 4V  

corresponds to Coupled Transverse Displacement 

(CTD) wave and the wave with speed 
5V   

corresponds to Coupled Transverse Microrotational 
(CTM) wave. These waves are not affected by 
diffusion and thermal parameters. The solution of 
equation (23) represents Longitudinal Microrotational 
wave propagating with velocity V6 given by 

2 2 2 2 2

6 4 5 0( ) 2 /V c c k                               (30) 

The set of coupled transverse waves with speed 
4V  

and longitudinal microrotational wave with speed 
6V  

exist only when for   >  02   below which they 

degenerate into distance decaying vibrations.  

IV.  PARTICULAR CASES  

(i) Micropolar thermoelastic medium 
In absence of diffusion parameters, i.e., if we consider 
β2 = b = a = D = 0 in equation (28), we obtain the 
following velocity equation  

4 2 2 2 2 2

1 3 1 3[ ] ( ) 0, (31)V c c K V K c c      
 

which corresponds to speeds of CLD and CT waves in 
micropolar thermoelastic medium. 

                   

 
(ii) Thermoelastic medium with diffusion 
In absence of microrotation parameters, i.e., if we 

consider  = 0; j = 0, 
2 2 2 2

3 4 5 00, 0, 0, 0,c c c      

in equation (28), we obtain the following velocity 
equation 

      

6 4 2

0 1 2 0, (32)V L V L V L   

                

     
where, 
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2
2 2

1 1

2
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2 1
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2
( ) ( ),

[ ].

L c K D D

a
L c K D D D K

b b

L K D c
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    

      

 











  The three roots of equation (32) corresponds to 

speeds of  CLD, CT and CMD waves in a 
thermoelastic medium with diffusion. 

IV. NUMERICAL RESULTS AND DISCUSSION  

 
The waves with speed V4, V5 and V6 are not affected 
by diffusion and thermal parameters. Equation (28) 
represents three plane waves with speed V1, V2 and 
V3 which are affected by diffusion and thermal 
parameters. To observe the effects of diffusion and 
thermal parameters on these waves we solved the 
equation (28) numerically and obtain the real value of 
the speed of propagation of CLD, CT, and CMD 
waves  for the following material constants of 
Aluminium-epoxy composite at T0 = 27

◦
C [14],  

     = 7.59 × 10
11

 dyne.cm
-2

,          

    = 1.89 × 10
11

 dyne.cm
-2
, 

      = 2.7× 10
3
 gm.cm

-3
,           

   
EC  = 2.361 cal.gm

-1 
.
◦
C

-1
, 
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     = 0.0149 × 10
11

 dyne.cm
-2
, 

   K  =0.492 cal. .cm
-1

.s
-1 

.
◦
C

-1
, 

   D  = 0.5 gs.cm
-3

,                       

   b  = 0.05 cm
5
.gm

-1
.s

-1
, 

   a  = 0.005 cm
2
.s

-2
. 

◦
C

-1
,            

   
t  = 0.005,     

   
c = 0.05,                                

     = 0.05s, 

     = 5 Hz,                                 

   
0   = 0.04s.  

The speed of CLD, CT, and CMD waves are 
plotted against the diffusion parameter D, a, b, 
thermal conductivity K and frequency ω in Figure 1 to 
5. The speed of CLD wave is 1.6118 × 10

4
 cm.s

-1
 at D 

= 0. It increases slowly to1.63598 × 10
4
 cm.s

-1
 at D = 

1. The speed of CT wave is 0.00077 × 10
4
 cm.s

-1
at D 

= 0. It increases sharply to 0.43473 × 10
4
 cm.s

-1
 at D 

= 1. The speed of CMD wave is 0.28871 × 10
4
 cm.s

-1
 

at D = 0. It increases to 0.36662 × 10
4
 cm.s

-1
 at D = 1. 

These variations of speeds of CLD, CT and CMD 
waves are shown by black, blue and red lines 
respectively in Figure 1. 
 

 
 

Figure 1. Variations of the speeds of plane waves     
against diffusion parameter D 

The speed of CLD wave is 1.62313 × 10
4
 

cm.s
-1 

at b = 0. It decreases slowly to 1.61088 × 10
4
 

cm.s
-1

 at b = 1. The speed of CT wave is 0.38178 × 
10

4
 cm.s

-1
 at b = 0. It decreases to 0.03604 × 10

4
 

cm.s
-1 

at b = 0.220 and then increases sharply to 
0.27090 × 10

4
 cm.s

-1
 at b = 1. The speed of CMD 

wave is 0.33781 × 10
4
 cm.s

-1
 at b = 0. It increases 

sharply to 0.89571 × 10
4
 cm.s

-1 
at b = 1. These 

variations of speeds of CLD, CT and CMD waves are 
shown by black, blue and red lines respectively in 
Figure 2. 

 
 

Figure 2. Variations of the speeds of plane waves 
against diffusion parameter b 

The speed of CLD wave is 1.62305 × 10
4
 

cm.s
-1

 at a = 0. It decreases slowly to 1.60397 × 10
4
 

cm.s
-1

 at a = 0.5. The speed of CT wave is 0.33059 × 
10

4
 cm.s

-1
 at a = 0. It decreases to 0.11278 × 10

4
 

cm.s
-1

 at a = 0.5. The speed of CMD wave is 0.34362 
× 10

4
 cm.s

-1
 at a = 0. It increases to 1.01924 × 10

4
 

cm.s
-1

 at a = 0.5. These variations of speeds of CLD, 
CT and CMD waves are shown by black, blue and red 
lines respectively in Figure 3. 

 
 
Figure 3. Variations of speeds of plane waves against 
diffusion parameter a 

The speed of CLD wave is 1.61682 × 10
4
 

cm.s
-1

 at K = 0. It increases slowly to 1.62799 × 10
4
 

cm.s
-1

 at K = 1. The speed of CT wave is 0.26772 × 
10

4
 cm.s

-1
 at K = 0. It increases slowly to 0.34519 × 

10
4
 cm.s

-1
 at K = 1. The speed of CMD wave is 

0.00049 × 10
4
 cm.s

-1 
at K = 0. It increases sharply to 

0.46774 × 10
4
 cm.s

-1
 at K = 1. These variations of 

speeds of CLD, CT and CMD waves are shown by 
black, blue and red lines respectively in Figure 4. 
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Figure 4. Variations of the speeds of plane waves 
against thermal conductivity K 

The speed of CLD wave is 1.60798 × 10
4
 

cm.s
-1

 at ω = 0.1 Hz. It increases slowly to 1.71883 × 
10

4
 cm.s

-1 
at ω = 20 Hz. The speed of CT wave is 

0.04726 × 10
4
 cm.s

-1
 at ω = 0.1 Hz. It increases to 

0.54911 × 10
4
 cm.s

-1 
at ω = 20 Hz.. The speed of 

CMD wave is 0.04982 m × 10
4
 cm.s

-1
 at ω = 0.1Hz. It 

increases to 0.59531 × 10
4
 cm.s

-1
 at ω = 20 Hz. 

These variations of speeds of CLD, CT and CMD 
waves are shown by black, blue and red lines 
respectively in Figure 5.   

 
 

Figure 5.  Variations of the speeds of plane waves 

against frequency  

      

V. CONCLUSIONS 

 
The plane wave propagation in a 

homogeneous, isotropic and linear micropolar 
thermoelastic half space with diffusion is studied. It is 
found that there exist six plane waves namely 

Coupled Longitudinal Displacement (CLD) wave, 
Coupled Thermal (CT) wave, Coupled Mass Diffusion 
(CMD) wave, Coupled Transverse Displacement 
(CTD) wave, Coupled Transverse Microrotational 
(CTM) wave and Longitudinal Microrotational wave. 
Out of these six waves three waves CLD, CT and 
CMD with wave speeds V1, V2 and V3 are influenced 
by diffusion parameter, thermal parameter, frequency, 
thermal relaxation time and other material constants. 
The numerical results for a particular example of 
material show the significant effect of diffusion 
parameter, thermal parameter and frequency on the 
speeds of plane waves.  
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