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Abstract—Analytical and numerical solutions to a 
rotating uniform thickness functionally graded 
(FGM) disk are obtained. Solid and annular disk 
geometries are taken into consideration. The 
modulus of elasticity of the disk material is 
assumed to vary in the radial direction. A new 
one-parameter exponential model is used to 
express the variation of the modulus of elasticity. 
The results of the solutions are presented in 
tables and figures. Those presented in tables may 
form benchmark data for purely numerical 
calculations. 
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I.  INTRODUCTION 

Research on the prediction of stress and 
deformation in rotating or stationary disks under 
different loading conditions and comprising different 
materials is unending because of the importance of 
these basic structures in various branches of 
engineering. Plane stress analytical solutions for 
rotating solid and annular disk problems in the elastic 
state of stress have been available for many years in 
standard textbooks [1-5]. Solutions involving thickness 
variability, partially plastic stress states, and material 
nonhomogeneity relevant to this investigation may be 
found in the most recent articles by Afsar and Go [6], 
Allam et al. [7], Apatay and Eraslan [8], Arani et al. [9], 
Argeso [10], Asghari and Ghafoori [11], Bagri and 
Eslami [12], Bayat et al. [13,14], Calderale et al. [15], 
Damircheli and Azadi [16], Durodola and Attia [17], 
Eraslan et al. [18], Eraslan and Akis [19], Eraslan [20], 
Eraslan et al. [21], Eraslan and Orcan [22-24], Eraslan 
[25], Eraslan and Argeso [26], Farshi et al. [27], Go et 
al. [28], Hassani et al. [29,30], Jafari et al. [31], 
Kordkheili and Naghdabadi [32], Nie and Batra [33], 
Peng and Li [34], Tutuncu and Temel [35,36], Vullo 
and Vivio [37], Vivio and Vullo [38], You et al. [39,40], 
You et al. [41], and Zenkour [42,43]. 

In this work, analytical and numerical solutions are 
obtained for a rotating uniform thickness FGM disk. 
The problem uses a one-parameter exponential 
variation [44] given by 

           
      

   
   (1) 

where   is the parameter, r the radial coordinate,   

and b the inner and outer radii of the disk and    the 

value of   at    . The variation of      in a solid disk 
of unit radius for different values of parameter   is 

presented in Fig. 1. As seen in this figure, for    ,   
is an increasing, while it is a decreasing function of the 
radial coordinate for values of    . In FGM disks 
studied here   denotes the modulus of elasticity of the 
disk material. Similar variation has been used earlier in 
pressure chamber studies of Chen and Lin [44] but 
new in disk studies.  

 

Fig. 1. Variation of one-parameter exponential mode 
     for different values of  . 

II. MATHEMATICAL MODEL 

A. Basic Equations 

Thin disk and hence a state of plane stress is 
assumed. The modulus of elasticity E of the disk 
material varies according to 
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   (2) 

The strain displacement relations 

    
   

   
    and        

  

  
        (3) 

the equation of equilibrium 

 

   
             

                                         (4) 

the equations of the generalized Hooke's Law 

    
 

    
        

    
 
                                             (5) 

    
 

    
        

    
 
                                             (6) 

and the compatibility relation 

 

   
                                                              (7) 

constitute the basic equations of the model in their 

dimensionless forms [2]. In these equations,     
        and             represent the normalized 

strains,        the dimensionless radial coordinate, 

       the dimensionless inner radius,            

the normalized and dimensionless radial displacement, 

          and           the dimensionless 

stresses,  Poisson's ratio,           the 

dimensionless angular speed, ω the angular speed, ρ 

the mass density, and    the yield limit. Thereafter, 
overbars will not be used for simplicity. Introducing a 
stress function      of the form 

                                                                     (8) 

we find from the equation of equilibrium, Eq. (4) 

    
    

 

  
  

 

 
       

  

  
                    (9) 

so that the stress function   satisfies the equation of 
equilibrium. The equations of the generalized Hooke's 
Law now become 

   
 

    
      

   
 
 
 

 
        

  

  
                   (10) 

   
 

    
      

   
 
      

  

  
  

 

 
                      (11) 

Substituting the strains in terms of   into the 
compatibility relation, Eq. (7), leads to the governing 
differential equation 

   

   
  

 

 
 

 

   
 
  

  
  

 

 
 

  

   
 
 

 
          (12) 

where 

            
  

   
                           (13) 

B. Analytical Solution 

The governing equation, Eq. (12), is a second 
order, nonhomogeneous, linear ordinary differential 
equation with variable coefficients. The general 

solution is obtained by the power series method. The 
solution can be put into the form  

                                                 (14) 

where    and    are arbitrary integration constants and 
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          (16)                               

        
    

 

 
      

       

        
  

             

          
   

                  

            
           (17)                                         

Remark: For     the solution by Eq. (14) takes the 
form 

        
  

 
 
 

 
                               (18) 

or 

         
  

 
 
 

 
              (19) 

Then from Eq. (11) 

           
       

  
 
 

 
              (20) 

and from Eq. (3) 

           
       

 
 
 

 
              (21) 

or 

     
 

 
 
 

 
                                     (22) 

which is the well known solution for a uniform 
thickness homogeneous disk [5]. 

The series in Eqs. (15)-(17) simplify notably if the 
Poisson's ratio   is assigned to a numerical value. As 
an example, for         they take the forms: 

        
  

       
   

     

          
   

     

           
   

      

             
   

       

               
                             (23) 
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           (24)                                                  

and 

        
    

  

  
 

   

          
  

      

             
   

       

               
             (25)                                          

The rapid convergent nature of these series is obvious 
as         always.  

    In the case of a rotating solid disk, the stresses must 
be finite at the center, hence     . The outer 

boundary is free of traction, and as a result,        . 
Then, we find from Eq. (14) 

    
     

     
                                                       (26) 

It should be noted that, for a solid disk 

             
 

 
  

  

  
                                  (27) 

The boundary conditions for a rotating annular disk are 
                which leads to 

         
                     

                     
      

    
                     

                     
                                  (28) 

C. Numerical Solution 

The governing equation is written as 
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        (29)    
 
If we let       and           then by 
differentiating 
 

   

  
 
  

  
      

   

  
 
   

   
   

 

 
 

 

   
 
  

  
  

 

 
 

  

   
 
 

 
 

                 (30) 

or 

   

  
      

   

  
   

 

 
 

 

   
     

 

 
 

  

   
 
  

 
            

        (31) 

In this way, the governing equation is transformed into 
an initial value problem (IVP) consisting of two 
dependent variables. This IVP can accurately be 
integrated by using a state of the art ODE solver, 

starting with the initial conditions:   
   and  

 . Since 

          for both solid and annular disks   
    

and          but   
  is not known. This unknown 

initial value can be determined by shooting iterations. 
The condition that should be satisfied is 

          

Hence, iterations begin with an initial estimate   
  and 

continue until         is satisfied. 

At the       iteration, the IVP described by Eq. (31) 

is solved 3 times: starting with   
   to obtain    

       with   
        to obtain           and 

finally with   
        to obtain            where 

    is a small increment of the order of ∼10⁻³. A better 

approximation to   
  is then acquired from Newton's 

formula 

  
    

    
    

     

     
                                (32) 

When the iterations converge, the IVP system in Eq. 

(31) is solved once more with the converged   
  value 

in order to determine the stress and deformations. 
The Runge-Kutta-Fehlberg fourth-fifth order 
integration method is used with tight tolerances for the 
integration of the IVP. 

The advantages of this method are the accuracy, 
stability, and rapid rate of convergence. With a 

reasonable initial estimate   
  only a few iterations are 

performed to reach convergence. 

III. PRESENTATION OF RESULTS 

In the following calculations         The von Mises 
yield criterion given by  

      
         

    

is used to determine the elastic limit of the disk [20]. As 
   and    are dimensionless, the elastic limit 

corresponds to       

A. Solid Disk  

Calculations are performed in order to determine 
the elastic limit of a rotating uniform thickness 
homogeneous solid disk. This is achieved by taking 
      The elastic limit angular speed is determined 

as            which is in perfect agreement with 
that reported by Eraslan [20]. The corresponding 
integration constants are            and          
In a related investigation by Eraslan and Akis [19], 
lower stresses are observed when the modulus of 
elasticity is an increasing function of radial coordinate. 
In this regard, calculations are performed for solid 
disks taking        and       at the speed 

           For         the nonzero integration 

constant is obtained as             and it is 
            for        Numerical solutions are 

also realized at the speed           for         
       and        On average, 3 iterations are 

performed to reach converged   
 . The results of these 

calculations are presented in Figs. 2 - 4 and in Table 1. 
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Fig. 2. Variation of radial stress in a rotating FGM solid 
disk for different values of β. Solid lines belong to analytical, 
dots to numerical solutions. 

 

 

Fig. 3. Variation of circumferential stress in a rotating 
FGM solid disk for different values of β. Solid lines belong to 
analytical, dots to numerical solutions. 

In all figures solid lines belong to analytical, while 
dots numerical solutions. Fig. 2 shows the variation of 
the radial stress, Fig. 3 circumferential stress and Fig. 
4 radial displacement corresponding to different values 
of grading parameter   The agreement between 
analytical and numerical solutions is obvious. Some 
selected points of the analytical solutions are also 
provided in Table 1. 

 

Fig. 4. Variation of radial displacement in a rotating FGM 
solid disk for different values of β. Solid lines belong to 
analytical, dots to numerical solutions. 

B. Annular Disk 

An annular disk with dimensionless inner radius 
       is considered. Assigning      calculations 
are performed to determine the elastic limit angular 
speed of this disk. The result turns out at           

corresponding to the constants             and 
            Analytical calculations are also 

performed for        and       at the same 
speed. The integration constants corresponding to 
       and       are calculated as               
          and                           
respectively. The results of these calculations are 
compared with numerical ones in Figs. 5-7. Selected 
points of the analytical solutions are tabulated in Table 
2. 
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Fig. 5. Variation of radial stress in a rotating FGM annular 
disk of       for different values of β. Solid lines belong to 
analytical, dots to numerical solutions. 

 

Fig. 6. Variation of circumferential stress in a rotating 

FGM annular disk of       for different values of β. Solid 
lines belong to analytical, dots to numerical solutions. 

 

Fig. 7. Variation of radial displacement in a rotating FGM 
annular disk of       for different values of β. Solid lines 
belong to analytical, dots to numerical solutions. 
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TABLE I.  ANALYTICAL SOLUTIONS TO ROTATING FGM SOLID DISKS. 

  
        

                                                   

0.00 1.00000 0.94650 0.89355 1.00000 0.94650 0.89355 0.00000 0.00000 0.00000 

0.05 0.99750 0.94677 0.89629 0.99856 0.95060 0.90262 0.03497 0.03291 0.03090 

0.10 0.99000 0.94205 0.89408 0.99425 0.95185 0.90894 0.06972 0.06527 0.06095 

0.15 0.97750 0.93233 0.88691 0.98705 0.95025 0.91251 0.10407 0.09688 0.08996 

0.20 0.96000 0.91762 0.87478 0.97697 0.94576 0.91328 0.13779 0.12756 0.11778 

0.25 0.93750 0.89791 0.85767 0.96402 0.93839 0.91124 0.17069 0.15712 0.14427 

0.30 0.91000 0.87320 0.83560 0.94818 0.92811 0.90636 0.20256 0.18540 0.16931 

0.35 0.87750 0.84349 0.80853 0.92947 0.91492 0.89861 0.23318 0.21225 0.19275 

0.40 0.84000 0.80876 0.77648 0.90788 0.89879 0.88796 0.26235 0.23749 0.21451 

0.45 0.79750 0.76902 0.73943 0.88341 0.87972 0.87439 0.28987 0.26098 0.23449 

0.50 0.75000 0.72427 0.69738 0.85606 0.85768 0.85786 0.31553 0.28258 0.25258 

0.55 0.69750 0.67449 0.65031 0.82584 0.83268 0.83835 0.33912 0.30214 0.26873 

0.60 0.64000 0.61969 0.59823 0.79273 0.80468 0.81583 0.36044 0.31955 0.28286 

0.65 0.57750 0.55987 0.54112 0.75674 0.77367 0.79026 0.37927 0.33466 0.29490 

0.70 0.51000 0.49501 0.47898 0.71788 0.73965 0.76161 0.39542 0.34737 0.30481 

0.75 0.43750 0.42512 0.41180 0.67614 0.70259 0.72986 0.40867 0.35755 0.31254 

0.80 0.36000 0.35019 0.33957 0.63152 0.66248 0.69496 0.41881 0.36510 0.31805 

0.85 0.27750 0.27021 0.26228 0.58402 0.61930 0.65689 0.42565 0.36992 0.32131 

0.90 0.19000 0.18519 0.17993 0.53364 0.57304 0.61562 0.42897 0.37190 0.32231 

0.95 0.09750 0.09512 0.09250 0.48038 0.52368 0.57110 0.42857 0.37095 0.32101 

1.00 0.00000 0.00000 0.00000 0.42424 0.47121 0.52330 0.42424 0.36698 0.31740 

TABLE II.  ANALYTICAL SOLUTIONS TO ROTATING FGM ANNULAR DISKS. 

  
        

                                                   

0.20 0.00000 0.00000 0.00000 1.00000 0.92494 0.85227 0.20000 0.18499 0.17045 

0.24 0.14277 0.13214 0.12176 0.84348 0.78941 0.73599 0.19216 0.17771 0.16373 

0.28 0.22380 0.20802 0.19245 0.74620 0.70595 0.66530 0.19014 0.17574 0.16182 

0.32 0.27119 0.25300 0.23491 0.68006 0.64980 0.61848 0.19159 0.17689 0.16269 

0.36 0.29835 0.27926 0.26012 0.63165 0.60914 0.58517 0.19517 0.17990 0.16520 

0.40 0.31235 0.29325 0.27394 0.59390 0.57773 0.55990 0.20008 0.18403 0.16863 

0.44 0.31720 0.29862 0.27970 0.56280 0.55206 0.53955 0.20576 0.18878 0.17256 

0.48 0.31532 0.29759 0.27941 0.53593 0.52997 0.52226 0.21184 0.19381 0.17666 

0.52 0.30822 0.29157 0.27436 0.51178 0.51014 0.50684 0.21804 0.19887 0.18074 

0.56 0.29691 0.28147 0.26540 0.48935 0.49167 0.49251 0.22415 0.20379 0.18463 

0.60 0.28205 0.26792 0.25311 0.46795 0.47397 0.47874 0.23000 0.20841 0.18822 

0.64 0.26413 0.25137 0.23791 0.44712 0.45662 0.46515 0.23544 0.21263 0.19143 

0.68 0.24348 0.23213 0.22006 0.42652 0.43930 0.45148 0.24036 0.21636 0.19418 

0.72 0.22035 0.21043 0.19981 0.40590 0.42181 0.43753 0.24465 0.21952 0.19643 

0.76 0.19492 0.18644 0.17729 0.38508 0.40396 0.42313 0.24822 0.22204 0.19813 

0.80 0.16733 0.16029 0.15264 0.36392 0.38565 0.40819 0.25098 0.22388 0.19926 

0.84 0.13769 0.13208 0.12595 0.34231 0.36676 0.39259 0.25285 0.22498 0.19978 

0.88 0.10607 0.10189 0.09729 0.32018 0.34722 0.37628 0.25375 0.22531 0.19969 

0.92 0.07256 0.06978 0.06672 0.29745 0.32697 0.35918 0.25362 0.22482 0.19896 

0.96 0.03718 0.03581 0.03427 0.27407 0.30596 0.34125 0.25240 0.22349 0.19759 

1.00 0.00000 0.00000 0.00000 0.25000 0.28413 0.32244 0.25000 0.22128 0.19557 
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