
Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 3159-0040

Vol. 2 Issue 10, October - 2015

www.jmest.org

JMESTN42351096 2790

Evolutionary Trend In The Development Of
Computer Programming Languages And

Concepts
Dr.Onu Fergus.U.

Department of Computer Science, Ebonyi State
University,

Abakaliki, Nigeria.

Asogwa Tochukwu Chijindu
Department of Computer Engineering, Enugu State

University of Science and Technology(ESUT),
Enugu, Nigeria.

Mba Calister Nnenna

Department of Computer Engineering, Caritas
University,

Enugu, Nigeria

Edeh Eucharia Ujunwa

Information Communication Technology Unit, Projects
Development Institute (PRODA),

Enugu, Nigeria.

Abstract—Programming languages are the tools
that allow communication between the Computer
and Computer application developers. Apart from
being a static tool, programming languages
evolve ie they are created and constantly change
over the course of their use. Some issues led to
this evolution. Such issues include speed,
memory management, reusability, efficiency,
maintainability, portability and compatibility
issues. This paper traced the history, taxonomy,
evolutionary path, characteristics, usage and the
future of popular Computer programming
languages in use today. Experts’ inputs,
experiences from Software Engineering practice
and review of some reliable documents were the
sources of facts for this paper.

Keywords—Programming Languages,
Computer Programming, Evolution, Taxonomy,
Software Engineering, reusability, portability.

 Introduction
Background of Study

The term Computer language is sometimes used
interchangeably with programming language.

[1]

However, the usage of both terms varies among
authors, including the exact scope of each. One
usage describes programming languages as a subset
of Computer languages.

[2]
 In this vein, languages used

in computing that have a different goal than
expressing Computer programs are generically
designated Computer languages. For instance,
markup languages are sometimes referred to as
Computer languages to emphasize that they are not
meant to be used for programming.

[3]
 Another usage

regards programming languages as theoretical
constructs for programming abstract machines, and
Computer languages as the subset thereof that runs
on physical Computers, which have finite hardware
resources.

[4]
 John C. Reynolds emphasized that

formal specification languages are just as much
programming languages as are the languages
intended for execution. He also argued that textual
and even graphical input formats that affect the

behavior of a Computer are programming languages,
despite the fact they are commonly not turing-
complete, and remarked that ignorance of
programming language concepts is the reason for
many flaws in input formats. Programming language is
a formal constructed language designed to
communicate instructions to a machine, particularly a
Computer. Programming languages can be used to
create programs to control the behavior of a machine
or to express algorithms.

The earliest programming languages preceded the
invention of the digital Computer and were used to
direct the behavior of machines such as Jacquard
looms and player pianos.

[5]
 Thousands of different

programming languages have been created, mainly in
the Computer field, and many more are still being
created every year. Many programming languages
require computation to be specified in an imperative
form (i.e. as a sequence of operations to perform),
while other languages utilize other forms of program
specification such as the declarative form (i.e. the
desired result is specified, not how to achieve it).The
description of a programming language is usually split
into the two components of syntax (form) and
semantics (meaning). Some languages are defined by
a specification document (for example, the C
programming language is specified by an ISO
Standard), while other languages (such as Perl) have
a dominant implementation that is treated as a
reference.

 Aim and Objectives of the Research
The aim of this research is to really find out the
evolutionary trend in the development of Computer
Programming languages and concepts.
The objectives of the research are as follows:

 to examine the trends in the development of
Computer Programming languages.

 to study the history of Computer
Programming Languages.

 to find out the future development of
Computer Programming Languages.

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 3159-0040

Vol. 2 Issue 10, October - 2015

www.jmest.org

JMESTN42351096 2791

Literature Review
Programming Language Defined:

A programming language is a notation for writing
programs, which are specifications of a computation
or algorithm.

[6]
 Some authors restrict the term

"programming language" to those languages that can
express all possible algorithms.

[6][7]
 A Computer

programming language is a language used to write
Computer program, which involves a Computer
performing some kind of computations

[8]
 or algorithm

and possibly control external devices such as printers,
disk drives, robots,

[9]
 and so on. For example, Post

script programs are frequently created by another
program to control a Computer printer or display.
More generally, a programming language may
describe computation on some, possibly abstract,
machines. Programming languages differ from natural
languages in that natural languages are only used for
interaction between people, while programming
languages also allow humans to communicate
instructions to machines.

Characteristics of a Programming Language

 Some characteristics of programming language
include:

 Readability: A good high-level language will
allow programs to be written in some ways
that resemble a quite-English description of
the underlying algorithms. If care is taken, the
coding may be done in a way that is
essentially self-documenting.

 Portability: High-level languages, being
essentially machine independent, should be
able to develop portable software.

 Generality: Most high-level languages allow
the writing of a wide variety of programs, thus
relieving the programmer of the need to
become expert in many diverse languages.

 Brevity: Language should have the ability to
implement the algorithm with less amount of
code. Programs expressed in high-level
languages are often considerably shorter than
their low-level equivalents.

 Error checking: Being human, a Programmer
is likely to make many mistakes in the
development of a Computer program. Many
high-level languages enforce a great deal of
error checking both at compile-time and at
run-time.

 Efficiency: It should permit the generation of
efficient object code.

 Modularity: It is desirable that programs can
be developed in the language as a collection
of separately compiled modules, with
appropriate mechanisms for ensuring self-
consistency between these modules.

 Widely available: Language should be widely
available and it should be possible to

provide translators for all the major machines
and for all the major operating systems.

Uses of Programming Languages

A programming language provides a structured
mechanism for defining pieces of data, and the
operations or transformations that may be carried out
automatically on that data. A programmer uses the
abstraction present in the language to represent the
concepts involved in a computation. These concepts
are represented as a collection of the simplest
elements available (called primitives). Programming is
the process by which programmers combine these
primitives to compose new programs, or adapt
existing ones to new uses or a changing environment.
Programs for a Computer might be executed in a
batch process without human interaction, or a user
might type commands in an interactive session of an
interpreter. In this case the "commands" are simply
programs, whose execution is chained together.
When a language can run its commands through an
interpreter (such as a UNIX shell or other command-
line interface), without compiling, it is called a scripting
language. It is difficult to determine which
programming languages are most widely used, and
what usage means varies by context. One language
may occupy the greater number of programmer hours,
a different one have more lines of code, and a third
utilize the most CPU time. Some languages are very
popular for particular kinds of applications. For
example, COBOL is still strong in the corporate data
center, often on large mainframes.

[8][9]
 FOTRAN in

Scientific and Engineering applications; Ada in
aerospace, transportation, military, real-time and
embedded applications; and C in embedded
applications and operating systems. Other languages
are regularly used to write many different kinds of
applications. Combining and averaging information
from various internet sites, langpop.com claims that in
2013 the ten most popular programming languages
are (in descending order by overall popularity): C,
Java, PHP, JavaScript, C++, Python, Shell, Ruby,
Objective-C and C#.

A. Taxonomy of Computer Programming Language

There is no all-embracing classification for
Programming languages. A given programming
language does not usually have a single ancestor
language. Languages commonly arise by combining
the elements of several predecessor languages with
new ideas in circulation at the time. Ideas that
originate in one language will diffuse throughout a
family of related languages, and then leap suddenly
across familial gaps to appear in an entirely different
family. The task is further complicated by the fact that
languages can be classified along multiple axes. For
example, Java is both an object-oriented language
(because it encourages object-oriented organization)
and a concurrent language (because it contains built-

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 3159-0040

Vol. 2 Issue 10, October - 2015

www.jmest.org

JMESTN42351096 2792

in constructs for running multiple threads in parallel).
Python is an object-oriented scripting language.

In broad strokes, programming languages divide into
programming paradigms and a classification by
intended domain of use, with general-purpose
programming languages distinguished from domain-
specific programming languages. Traditionally,
programming languages have been regarded as
describing computation in terms of imperative
sentences, i.e. issuing commands. These are
generally called imperative programming languages.
A great deal of research in programming languages
has been aimed at blurring the distinction between a
program as a set of instructions and a program as an
assertion about the desired answer, which is the main
feature of declarative programming. More refined
paradigms include procedural programming, object-
oriented programming, functional programming, and
logic programming; some languages are hybrids of
paradigms or multi-paradigmatic. An assembly
language is not so much a paradigm as a direct model
of underlying machine architecture. By purpose,
programming languages might be considered general
purpose, system programming languages, scripting
languages, domain-specific languages, or
concurrent/distributed languages (or a combination of
these). Some general purpose languages were
designed largely with educational goals. A
programming language may also be classified by
factors unrelated to programming paradigm. For
instance, most programming languages use English
language keywords, while a minority do not. Other
languages may be classified as being deliberately
esoteric or not.

Historical Development of Computer
Programming Languages

Ever since the invention of Charles Babbage’s
difference engine in 1822, Computers have required a
means of instructing them to perform a specific task.
This means is known as a programming language. In
1945, John Von Neumann at the Institute for
Advanced Study developed two important concepts
that directly affected the path of Computer
programming languages. The first was known as
“Shared-Program Technique”. This technique stated
that the actual computer hardware should be simple
and not need to be hard-wired for each program.
Instead, complex instructions should be used to
control the simple hardware, allowing it to be
reprogrammed much faster. The second concept was
also extremely important to the development of
programming languages. Von Neumann called it
“Conditional Control Transfer”. This idea gave rise to
the notion of subroutines, or small blocks of code that
could be jumped to in any order, instead of a single
set of chronologically ordered steps for the Computer
to take. The second part of the idea stated that
Computer code should be able to branch based on

logical statements such as IF (expression) THEN, and
looped such as with a FOR statement. “Conditional
Control Transfer” gave rise to the idea of “libraries,”
which are blocks of code that can be reused. In 1949,
a few years after Von Neumann’s work, the language
Short Code appeared. It was the first Computer
language for electronic devices and it required the
programmer to change its statements into 0’s and 1’s
by hand. Still, it was the first step towards the complex
languages of today. In 1951, Grace Hopper wrote the
first compiler, A-0. A compiler is a program that turns
the language’s statements into 0’s and 1’s for the
Computer to understand. This led to faster
programming, as the programmer no longer had to do
the work by hand.

In 1957, the first of the major languages appeared in
the form of FORTRAN. Its name stands for FORmula
TRANslating system. The language was designed at
IBM for scientific computing. The components were
very simple, and provided the programmer with low-
level access to the Computers innards. Today, this
language would be considered restrictive as it only
included IF, DO, and GOTO statements, but at the
time, these commands were a big step forward. The
basic types of data in use today got their start in
FORTRAN, these included logical variables (TRUE or
FALSE), and integer, real, and double-precision
numbers.

In 1958, John McCarthy of MIT created the LISt
Processing (or LISP) language. It was designed for
Artificial Intelligence (AI) research. The Algol language
was created by a committee for scientific use in 1958.
Its major contribution is being the root of the tree that
has led to such languages as Pascal, C, C++, and
Java. It was also the first language with a formal
grammar, known as Backus-Naar Form or BNF.
Pascal began in1968 and its development was mainly
out of necessity for a good teaching tool. C was
developed in 1972 by Dennis Ritchie while working at
Bell Labs in New Jersey. The transition in usage from
the first major languages to the major languages of
today occurred with the transition between Pascal and
C. Its direct ancestors are B and BCPL, but its
similarities to Pascal are quite obvious. C uses
pointers extensively and was built to be fast and
powerful at the expense of being hard to read. But
because it fixed most of the mistakes Pascal had, it
won over former-Pascal users quite rapidly.

In the late 1970’s and early 1980’s, a new
programming method was developed. It was known
as Object Oriented Programming(OOP). Objects are
pieces of data that can be packaged and
manipulated by the programmer. Bjarne Stroustroup
liked this method and developed extensions to C
known as “C with Classes.” This set of extensions
developed into the full-featured language C++, which
was released in 1983. C++ was designed to organize
the raw power of C using OOP, but maintain the

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 3159-0040

Vol. 2 Issue 10, October - 2015

www.jmest.org

JMESTN42351096 2793

speed of C and be able to run on many different
types of Computers. In the early 1990’s, interactive
TV was the technology of the future. Sun
Microsystems decided that interactive TV needed a
special, portable (can run on many types of
machines), language. This language eventually
became Java. In 1994, the Java project team
changed their focus to the web, which was becoming
“the cool thing” after interactive TV failed. The next
year, Netscape licensed Java for use in their internet
browser, Navigator. At this point, Java became the
language of the future and several companies
announced applications which would be written in
Java, none of which came into use. Java had serious
optimization problems but may wind up as the
instructional language of tomorrow as it is truly
object-oriented and implements advanced
techniques such as true portability of code and
garbage collection.

Discussions
So far, technological upgrade has been the major
reason for the advances in the software engineering
industry. Such upgrades are observed in the areas of
hardware components, software components, users’
needs, networks as well as distributed processing.
These areas have direct implications on the issues
that really contribute to software development trend
and evolution. Such issues include but not limited to
the following: Microprocessor’s speed/access time,
memory management issues, efficiency issues,
compatibility issues, reusability and portability issues.
Earlier software programs occupied a lot of memory
spaces, so running such programs was not fast and
as such was not efficient by any means. Code reuse,
which is a common feature of the object oriented
languages, does not apply in the procedural
languages.

Though FORTAN was good at handling numbers, it
was not so good at handling input and output, which
mattered most to business computing. Business
computing took off in 1959, and because of this,
COBOL (Common Business Oriented Languages)
was developed. It was designed from the ground up
as the language for businessmen. Its only data types
were numbers and strings of texts. A LISP list is
denoted by a sequence of items enclosed by
parentheses. LISP programs themselves are written
as a set of lists, so that LISP has the unique ability to
modify itself, and hence grow on its own. The LISP
syntax was known as “Cambridge Polish,” as it was
very different from standard Boolean logic. Though
Algol implemented some novel concepts, such as
recursive calling of functions, the next version of the
language, Algol 68, became bloated and difficult to
use. This led to the adoption of smaller and more
compact languages, such as Pascal. Pascal was
designed in a very orderly approach; it combined
many of the best features of the languages in use at
the time, COBOL, FORTRAN, and ALGOL. While
doing so, many of the irregularities and oddball

statements of these languages were cleaned up,
which helped it gain users. The combination of
features, input/output and solid mathematical features,
made it a highly successful language. Pascal also
improved the “pointer” data type, a very powerful
feature of any language that implements it. Pascal
also helped the development of dynamic variables,
which could be created while a program was being
run, through the NEW and DISPOSE commands.
However, Pascal did not implement dynamic arrays,
or groups of variables, which proved to be needed
and led to its downfall (Bergin, 101-102). Wirth later
created a successor to Pascal, Modula-2, but by the
time it appeared, C was gaining popularity and users
at a rapid pace.
In procedural languages, programs are made up of
modules, which are parts of a program that can be
coded and tested separately, and then assembled to
form a complete program. These modules are
procedures, where a procedure is a sequence of
statements. These procedures are functions, which
map arguments to return statements. An alternative to
procedural programming is Object Oriented
Programming. Object Oriented Programming is meant
to address the difficulties with procedural
programming. In object oriented programming, the
modules in a program are classes, rather than
procedures. The object-oriented approach lets you
create classes and objects that model real world
objects. One common trend in the development of
programming languages has been to add more ability
to solve problems using a higher level of abstraction.
The earliest programming languages were tied very
closely to the underlying hardware of the Computer.
As new programming languages have developed,
features have been added that let programmers
express ideas that are more remote from simple
translation into the underlying hardware instructions. A
language’s designers and users must construct a
number of artifacts that govern and enable the
practice of programming. The most important of these
artifacts are the language specification and
implementation.

 Specification of Programming Languages
The specification of a programming language is an
artifact that the language users and the implementers
can use to agree upon whether a piece of source
code is a valid program in that language, and if so,
what is its behavior. A programming language
specification can take several forms including the
following:

 An explicit definition of the syntax, static
semantics, and execution semantics of the
language. While syntax is commonly specified
using a formal grammar, semantic definitions
may be written in natural language (eg as in C
language), or a formal semantics (eg as in
standard ML and scheme specifications).

 A description of the behavior of a translator
for the language (eg the C++ and FORTRAN
specifications). The syntax and semantics of

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 3159-0040

Vol. 2 Issue 10, October - 2015

www.jmest.org

JMESTN42351096 2794

the language have to be inferred from this
description, which may be written in natural or
a formal language.

 A reference or model implementation,
sometimes written in the language being
specified (eg Prolog or ANSI REXX). The
syntax and semantics of the language are
explicit in the behavior of the reference
implementations.

Implementation of Programming Languages

An implementation of a programming language
provides a way to write programs in that language
and execute them on one or more configurations of
hardware and software. There are broadly two
approaches to programming language
implementation viz: compilation and interpretation. It
is generally possible to implement a language using
either technique. The output of a compiler may be
executed by hardware or a program called an
interpreter. In some implementations that make use
of the interpreter approach, there is no distinct
boundary between compiling and interpreting. For
instance, some implementations of BASIC compile
and then execute the source a line at a time.
Programs that are executed directly on the hardware
usually run faster than those interpreted in software.
One technique for improving the performance of
interpreted programs is just-in time compilation.
Here, the virtual machine, just before execution,
translates the blocks of byte code which are to be
used to machine code, for direct execution on the
hardware.

Conclusion
As the developers’ needs have evolved, so have the
abilities of programming languages evolved. If a
programming language is not expressive enough,
then it must evolve to allow its users the ability to
articulate their abstractions or it will become extinct. At
one time, many believed that a single multi-purpose
programming language would allow developers to
standardize. However, the wide variety of problems
that need solving and the diverse philosophies of
developers have appropriately led to different
languages for different purposes. Programmers do not
need to use complex languages; there is enough
complexity in the world for them already. During all
these evolutions, the basic role of a programming
language will not change – allowing the developer to
easily express abstract ideas in a language that a
machine can execute. Future advances in
programming languages will only be made possible by
the evolutionary advances being made today. In the
near future, the general evolutionary trends of
increasing machine independence, increasing
programming language interoperability, and
increasing modularity will continue.

References

1 Robert A. Edmunds, The Prentice-Hall
standard glossary of computer terminology,
Prentice-Hall, 1985, p. 91

2 Pascal Lando, Anne Lapujade, Gilles Kassel,
and Frédéric Fürst, TOWARDS a General
Ontology of Computer Programs, ICSOFT
2007, pp. 163-170

3 S.K. Bajpai, INTRODUCTION To Computers
And C Programming, New Age International,
2007, ISBN 81-224-1379-X p. 346

 4 John C. Reynolds, SOME thoughts on
teaching programming and programming
languages,SIGPLAN Notices, Volume 43,
Issue 11, November 2008, p.109

5 Ettinger, James (2004), Jacquard's Web,
Oxford University Press

6 Aaby, Anthony (2004). INTRODUCTION to
programming Languages.

7 Bruce J. (1987). PRINCIPLES of
Programming Languages. Oxford University
Press. p. 1.ISBN 0-19-511306-3

8 David A. Schmidt, THE structure of typed
programming languages, MIT Press, 1994,
ISBN 0-262-19349-3 , p. 32

9 Pierce, Benjamin (2002). TYPES and
Programming Languages. MIT Press.
p. 339.ISBN 0-262-16209-1

10 Ben Ari, Mordechai (1996).
UNDERSTANDING Programming
Languages. John Wiley and Sons.

11 David A. Schmidt, THE structure of typed
programming languages, MIT Press, 1994,
ISBN 0-262-19349-3 , p. 32

12 Steven R. Fischer, A HISTORY of language,
Reaktion Books, 2003, ISBN 1-86189-080-X ,
p. 205

13 Éric Lévénez (2011). "COMPUTER Language
History”.

14 Jing Huang (2012). ARTIFICIAL Languages
vs Natural Languages

15 Luca Cardelli and Peter Wegner. “ON
UNDERSTANDING Types, Data Abstraction
and Polymorphism”. Manuscript (1985).
Retrieved 19 July 2015.

16 Dijkstra, Edsger W.”ON THE FOOLISHNESS
of natural language programming” EWD667.

17 Perlis, Alan (September 1982). “Epigram on
programming” SIGPLAN Notices Vol. 17, No.
9. pp. 7–13.

