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Abstract–This paper presents a new method for
modeling and residual life estimation for a techni-
cal system subject to deterioration and random fail-
ure. The evolution of the system state process is
modeled as a three-state hidden semi-Markov pro-
cess where the sojourn times in both operational
states follow a 2-phase Erlang distribution. The
multivariate observation vectors related to the sys-
tem state are available at discrete times through
condition monitoring which provides partial infor-
mation about the hidden condition of the system.
Using the reference model approach and the resid-
uals to represent the observation process, a new
estimation procedure is developed and explicit for-
mulas are derived for the system residual life esti-
mation. A numerical example is presented to illus-
trate the whole procedure.

Keywords–Expectation-maximization (EM) algo-
rithm; Partially observable system; Phase-type
distribution, Hidden semi-Markov model, Resid-
ual life estimation

I. INTRODUCTION

Recently, due to the advances in data measurement
and computer technology, it has become possible to
implement effective condition monitoring (CM) systems
for critical equipment which increase plant productivity.

The objective is to utilize the information obtained
from CM for the assessment of the actual condition of
the operating equipment without any unwanted disrup-
tion. The collected data carries only partial information
about the unknown state of the equipment and the di-
mensionality of such data is typically very large, with
lots of noise and cross and auto-correlation. Various
approaches have been applied for processing and mod-
eling of such data to develop prognostic procedures for
systems subject to CM [2]. In this paper, we focus on the

application of statistical modeling approaches. There
are three main types of statistical models which have
been widely used for prognostics using CM data based
on indirectly observed state processes, namely stochas-
tic filtering models [11], proportional hazard models
(PHM) [7], and the hidden Markov models (HMM) [4].
Recently, some hidden semi-Markov models (HSMM)
have also been developed for prognostics using CM
data (see e.g. [8, 9]). Although HSMM have been
successfully applied and provided promising results in
many areas, the research on HSMM for fault prognosis
based on CM data is very limited [10].

In this paper, we present a highly effective method
for fault prognostics of systems subject to CM which
is suitable for a wide range of deteriorating systems
with random, observable failure. We model the deteri-
oration process as a non-decreasing continuous time
homogenous semi-Markov chain with two unobserv-
able operational states and one observable failure state.
The system is considered to be in the healthy state
while degradation is below a critical level. The main-
tenance actions are only initiated when the system is
in the warning state which indicates that the system
experiences severe degradation which can cause fail-
ure. The two state HMM has been proposed in the
recent studies which used real data obtained from CM
such as spectrometric oil data [7] and vibration data
[12] for condition based maintenance (CBM). The au-
thors showed that considering the HMM with 2 states
(“in-control” and “out-of-control”) is sufficient for an early
fault detection and condition based maintenance. It has
also been noted in those papers that some real data
histories were very short, indicating the occurrence of
failure in the healthy state which led to the develop-
ment of a HMM with the possibility of a direct transition
to failure state from a healthy state. However, HMMs
generally assume that the sojourn time in each state is
exponentially distributed which is not always a realistic
assumption. In this paper, we assume that the sojourn
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times in both operational states have 2-phase Erlang
distributions. While the system is operational, vector
data that is stochastically related to the hidden sys-
tem state is obtained through CM at regular sampling
epochs.We assume that two types of data histories are
available: histories that end with observable system
failure, and censored data histories that end when the
system has been suspended from operation but has
not failed. We apply the Expectation-Maximization (EM)
algorithm to estimate the model parameters. Although
some researchers have investigated parameter esti-
mation for partially observable systems in both HMM
(see e.g. [5, 14]) and the HSMM framework (see e.g.
[1, 3]), to our knowledge, there are limited references
that considered both non-exponential sojourn times for
continuous-time deterioration processes and also the
failure information.

In fact, [3] is the only reference where an estima-
tion procedure was developed by considering a simple
Erlang(2,λ) distribution for the sojourn time in state
1 and an exponential distribution in state 2, plus the
failure information. Our paper is different from [3] in
several important aspects. First, we consider 2-phase
Erlang sojourn time distribution for both operational
states which is more appropriate for modeling real sys-
tems. Second, we introduce the transition probability as
an unknown state parameter and derive a close form re-
estimation formula for it, whereas in [3] the parameter
was assumed to be a function of other model param-
eters and it was not estimated. We derive the explicit
formulas for the conditional reliability function (RF) and
the MRL function in terms of the posterior probability
statistic which has already been shown to be a suffi-
cient statistic for decision-making [6]. We have found
that both MRL and RF indicators immediately identify
the time when the system starts experiencing severe
degradation. For the performance evaluation and illus-
tration of the ability of the developed model for fault
prediction, we compare the estimated conditional MRL
and RF with those estimated using HMM. Furthermore,
to test the accuracy of the proposed model to detect the
change for different value of shift size in the mean vec-
tor of observations, the small, medium and large size of
shifts have been investigated. The relative percentage
of deviation is used to compare the capability of the
proposed HSMM with the HMM for fault prognostic. It is
found that the proposed HSMM demonstrates different
performances for different shift sizes and on average it
produces 55.66% lower RPDs in all the three different
scenarios when compared with HMM. Therefore, we
can confidently assert that HSMM provides consider-
ably more precise MRL estimates in all the three cases
investigated. We have also observed that, failure to ac-
curately estimate the MRL is propagated with the new

data when the conditional RF of the system is calculated
using HMM.

II. HSM MODELING AND PARAMETER
ESTIMATION

We assume that a system’s operating condition can
be categorized into two operational states known as
healthy state (state 1) and unhealthy state (state 2),
and one observable failure state (state 3), where the
sojourn time in operating state i follows a 2-phase Er-
lang distribution with parameters (2, λi), for i = 1, 2. We
model the state process (Xt : t ∈ R+) as a continuous
time homogeneous semi-Markov chain with state space
X = {1, 2, 3}. The machine starts working in a healthy
state and it can make transitions from healthy state to
unhealthy state with the probability p12 due to degra-
dation, or from healthy state to failure state with prob-
ability p13, where p12 + p13 = 1. The system condition
is monitored at equidistant sampling epochs ∆, 2∆, . . .
for ∆ ∈ (0,+∞) and vector data Y1, Y2, . . . ∈ Rd is
collected at these times which represent partial infor-
mation about the system state. It is assumed that the
observations have d-dimensional normal distribution
Nd(µi, Σi), and are conditionally independent given the

system state i.e. Yn|Xn∆ = i ∼ fi(yn)
iid∼ Nd(µi, Σi)

for i = 1, 2 where µi ∈ Rd and Σi ∈ Rd × Rd are
the unknown observation process parameters. These
assumptions are reasonable in real application once
appropriate data pre-processing methods have been
applied (see e.g.[13]). We also assume that two types
of data histories are available: failure histories and sus-
pension histories. Using the phase-type property of
Erlang distribution, we enlarge the state space. Let the
new state space be Z = {1, 2, 3, 4, 5}, where states
{1, 2} denote that the machine is working in a healthy
condition and states {3, 4} indicate that machine is op-
erating in a unhealthy condition. State {5} represents
the observable failure (absorbing) state. We then model
the state process (Zt : t ∈ R+) as a continuous time
homogeneous Markov chain with state space Z . The in-
stantaneous transition rates Q = (qij)i,j∈Z for the state
process from state i to state j are given by:

Q =


−λ1 λ1 0 0 0

0 −λ1 p12λ1 0 p13λ1
0 0 −λ2 λ2 0
0 0 0 −λ2 λ2
0 0 0 0 0


and otherwise qij = 0. The transition probability matrix
P(t) =

(
Pij(t)

)
i,j∈Z for state process Zt can be ob-

tained by solving the Kolmogorov backward differential
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equations giving the following results:

P11(t) = e−λ1t, P12(t) = λ1te−λ1t

P13(t) =
( e−λ2t − e−λ1t

(λ1 − λ2)2 + t
e−λ1t

λ2 − λ1

)
λ2

1 p12

P14(t) =
(
2

e−λ1t − e−λ2t

(λ1 − λ2)3 + t
e−λ1t + e−λ2t

(λ1 − λ2)2

)
λ2

1λ2 p12

P24(t) =
( e−λ1t − e−λ2t

(λ1 − λ2)2 + t
e−λ2t

λ1 − λ2

)
λ1λ2 p12,

P33(t) = e−λ2t, P34(t) = λ2te−λ2t, P44(t) = e−λ2t

Pi5(t) = 1−
5

∑
j=i

Pij(t) for i = 1, . . . , 5

Let ξ = inf{t > 0|Xt = 3} denote the time to fail-
ure and τ1 represents the sojourn time in healthy
state. Further suppose that we have collected M fail-
ure and N suspension histories. Failure history Fi
is assumed to be of the form ~Yi = (yi

1, . . . , yi
Ti
) for

Ti∆ < ξi ≤ (Ti + 1)∆, and suspension history Sj is as-

sumed to be of the form ~Yj = (yj
1, . . . , yj

Tj
) for ξ > Tj∆.

Let C = {F1, . . . , FM, S1, . . . , SN} represent all the ob-
servable data set and C̄ = {F̄1, . . . , F̄M, S̄1, . . . , S̄N} de-
notes the whole complete data set where each fail-
ure history and suspension history has been com-
pounded with the unobservable sample path informa-
tion of the hidden state process. Let Λ = (λ1, λ2, p12)
and Ψ = (µ1, Σ1, µ2, Σ2) be the sets of unknown state
and observation parameters. For the complete data
histories, the associated likelihood function is given by:

L(Λ, Ψ|C̄) =
M

∏
i=1

LF̄i(Λ,Ψ)

N

∏
j=1

LS̄j(Λ,Ψ) (1)

where,

LF̄(Λ, Ψ) =

{
g~Y|ξ,τ1

(~y|t, w) fτ1|ξ(w|t) fξ(t) w < t
g~Y|ξ,τ1

(~y|t, t)mτ1|ξ(t|t) fξ(t) w = t
(2)

represents a complete likelihood function for a single
failure history where mτ1|ξ(t|t) = P(τ1 = t|ξ = t) is
a conditional probability function of τ1 given ξ. Also
LS̄(Λ, Ψ) in Eq. (1) represents a complete likelihood
function of a suspension history given by:

LS̄(Λ, Ψ) = = g~Y|ξ,τ1
(~y|t, w)hξ|τ1

(t|w) fτ1(w) (3)

where hξ|τ1
(t|w) is the conditional reliability of ξ given τ1.

The g~Y|ξ,τ1
(~y|t, w) in Eqs. (2) and (3) denotes the con-

ditional density of the observation process given failure
time and sojourn time. For any w ∈ ((k− 1)∆, k∆], k =

1, 2, . . . , T:

g~Y|ξ,τ1
(~y|t, w) = g~Y|ξ,τ1

(~y|t, k∆)

=

exp

(
− 1

2 ∑k−1
n=1(y− µ1)

′Σ−1
1 (y− µ1)

− 1
2 ∑T

n=k(y− µ2)
′Σ−1

2 (y− µ2)

)
√
(2π)Td|Σ1|k−1|Σ2|T−k+1

(4)

and for any w > T∆:

g~Y|ξ,τ1
(~y|t, w) = g~Y|ξ,τ1

(~y|t, t) (5)

=
1√

(2π)Td|Σ1|T
exp
(
− 1

2

T

∑
n=1

(y− µ1)
′Σ−1

1 (y− µ1)
)

In the next theorems, we derive explicit formulas for
the density of ξ and also for the joint density of (ξ, τ1)
which will be used later to develop the pseudo likelihood
function.

Theorem 1. Let F1(t) and F2(t) be the cumulative dis-
tribution functions of the sojourn times in healthy and
unhealthy states, respectively. For each t ∈ R+, the
density function of time to failure is given by:

fξ(t) = p12L−1
s

(
f ?1 (s). f ?2 (s)

)
+ p13 f1(t)

where f ?(s) =
∫ ∞

t=0 e−st f (t)dt denotes the Laplace
transform (LT) of f (t) and L−1

s ( f (s)) is the inverse of
LT of f (s) .

Proof. Let’s assume that S1 represents the system state
at time τ1.

P(ξ ≤ t) = p12P(ξ ≤ t|S1 = 2) + p13P(ξ ≤ t|S1 = 3)

= p12

∫ t

u=0
P(ξ ≤ t|τ1 = u, S1 = 2)dF1(u)

+ p13

∫ t

u=0
P(ξ ≤ t|τ1 = u, S1 = 3)dF1(u)

= p12

∫ t

u=0
P(Xt−u = 3|X1 = 2)dF1(u)

+ p13

∫ t

u=0
dF1(u)

= p12

∫ t

u=0
F2(t− u) f1(u)du + p13F1(t) (6)

This expression cannot be integrated analytically for
most of lifetime distributions such as Weibull, Lognor-
mal and Erlang distributions. This equation may be
integrated by taking the Laplace transform of both sides.
By taking the Laplace transform of both sides of Eq. (6),
and changing the order of integration in the first term
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involving the double integrals, the following is obtained:∫ ∞

t=0
e−stP(ξ ≤ t)dt = p12

( ∫ ∞

t=0
e−st

∫ t

u=0
F2(t− u)

f1(u)du
)

dt + p13

∫ ∞

t=0
e−stF1(t)dt

F?
ξ (s) = p12

∫ ∞

u=0

∫ ∞

t=u
e−stF2(t− u) f1(u)dtdu

+p13F?
1 (s)

Performing a change of variable by defining y = t− u,
the following is obtained:

F?
ξ (s) = p12

∫ ∞

u=0

∫ ∞

y=0
e−s(y+u)F2(y) f1(u)dydu

+p13F?
1 (s)

= p12

∫ ∞

u=0
e−su f1(u)du

∫ ∞

y=0
e−syF2(y)dy

+ p13F?
1 (s) = p12 f ?1 (s)F?

2 (s) + p13F?
1 (s) (7)

Using the property of Laplace transform of cumulative
distribution function i.e. F?(s) = f ?(s)

s , Eq. (7) can be
written as,

f ?ξ (s) = p12 f ?1 (s). f ?2 (s) + p13 f ?1 (s)

Inverting Laplace transform of the above equation gives
the desired result,

fξ(t) = p12L−1
s

(
f ?1 (s). f ?2 (s)

)
+ p13 f1(t)

Theorem 2. For all non-negative 0 < w < t, the joint
density of ξ and τ1 is given by,

f(ξ,τ1)
(t, w) = L−1

(s,v)

(
p12 f ?1 (s + v) f ?2 (s)

+ p13
v

s + v
f ?1 (v + s)

)
Proof.

P(ξ ≤ t, τ1 ≤ w) = p12P(ξ ≤ t, τ1 ≤ w|S1 = 2)

+p13P(τ1 ≤ w, ξ ≤ t|S1 = 3)

= p12

∫ w

u=0
P(ξ ≤ t|τ1 = u, S1 = 2)dF1(u)

+p13

∫ w

u=0
P(ξ ≤ t|τ1 = u, S1 = 3)dF1(u)

= p12

∫ w

u=0
P(Xt−u = 3|X1 = 2) f1(u)

+p13

∫ w

u=0
f1(u)

= p12

∫ w

u=0
F2(t− u) f1(u)du + p13F1(w) (8)

For the joint distribution function f (t, w), the Laplace
transform is defined as:

L( f (t, w)) = f ?(s, v) =
∫ ∞

t=0

∫ ∞

w=0
e−st−vw f (t, w)dwdt.

Taking the Laplace transform of both sides of Eq. (8),
we have,

F?(s, v) = p12

∫ ∞

t=0

∫ t

w=0

∫ w

u=0
e−st−vwF2(t− u) f1(u)dudwdt

+p13

∫ ∞

t=0

∫ t

w=0
e−st−vwF1(w)dwdt (9)

Changing the order of integration in the first and second
terms and performing a change of variable by defining
y = t− u, the following is obtained:

F?(s, v) = −p12

( ∫ ∞

u=0

∫ u

w=0

∫ ∞

y=0
e−s(y+u)−vwF2(y)

f1(u)dydwdu
)
+ p13

∫ ∞

w=0
e−vwF1(w)

∫ ∞

t=w
e−stdtdw

= −p12

∫ ∞

0

(1
v
(1− e−uv)

)
e−su f1(u)du

∫ ∞

0
e−syF2(y)dy

+
p13

s

∫ ∞

w=0
e−w(v+s)F1(w)dw

= − p12

v
(

f ?1 (s)− f ?1 (s + v)
)

F?
2 (s) +

p13

s
F?

1 (v + s)

Using the property of Laplace transform of cumula-
tive joint distribution function i.e. F?(s, v) = 1

sv f ?(s, v),
above equation can be written as,

f ?(ξ,τ1)
(s, v) = −p12

(
f ?1 (s)− f ?1 (s+ v)

)
f ?2 (s)+ p13

v f ?1 (v + s)
s + v

Finally, taking inverse Laplace transform of above equa-
tion we have:

f(ξ,τ1)
(s, v) = p12L−1

(s,v)

(
f ?1 (s + v) f ?2 (s) + p13

v
s + v

f ?1 (v + s)
)

Using the results of the Theorem 1 and 2, the distri-
butional property of the time to failure of the proposed
model is given by:

fξ(t) = p12λ2
1λ2

2
(2(e−λ1t − e−λ2t)

(λ1 − λ2)3 +
t(e−λ1t + e−λ2t)

(λ1 − λ2)2

)
+ p13λ2

1te−λ1t (10)

and for all 0 < w < t, the joint density of τ1 and ξ is
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given by:

f(ξ,τ1)
(t, w) = p12λ2

1λ2
2e−λ2(t−w)−λ1w(t− w)w (11)

Details can be found in Appendix A. Furthermore, the
conditional reliability function of ξ given τ1 = w for
w ≤ t is given by,

hξ|τ1
(t|w) = p12e−λ2(t−w)(1 + λ2(t− w)) (12)

and hξ|τ1
(t|w) = 1 for all w > t. Next, we evaluate the

E-step of the EM algorithm by performing the expec-
tation of the log of the likelihood function given in Eq.
(1):

Q(Λ, Ψ|Λ̂, Ψ̂) = Qstate(Λ|Λ̂, Ψ̂) + Qobs(Ψ|Λ̂, Ψ̂) (13)

Since the pseudo log-likelihood function can be decom-
posed as a function of state parameter and residual ob-
servation parameters (details can be found in Appendix
B, the M-step can be carried out separately for the state
and residual observation parameters. We solve for the
stationary point of the observation parameter by setting:

∂Qobs(Ψ|Λ̂, Ψ̂)

∂µ1
=

∂Qobs(Ψ|Λ̂, Ψ̂)

∂µ2
= 0

∂Qobs(Ψ|Λ̂, Ψ̂)

∂Σ−1
1

=
∂Qobs(Ψ|Λ̂, Ψ̂)

∂Σ−1
2

= 0

After some algebra, it is not difficult to check that there
is a unique stationary point Ψ̂ = (µ̂1, µ̂2, Σ̂1, Σ̂2) of the
pseudo log-likelihood function given by:

µ̂1 =
∑M

i=1〈Ĉ
i
, ni

1〉+ ∑N
j=1〈D̂

j
, nj

1〉

∑M
i=1〈Ĉ

i
, si

1〉+ ∑N
j=1〈D̂

j
, sj

1〉

Σ̂1 =
∑M

i=1〈Ĉ
i
, ni

3〉+ ∑N
j=1〈D̂

j
, nj

3〉

∑M
i=1〈Ĉ

i
, si

1〉+ ∑N
j=1〈D̂

j
, sj

1〉

µ̂2 =
∑M

i=1〈Ĉ
i
, ni

2〉+ ∑N
j=1〈D̂

j
, nj

2〉

∑M
i=1〈Ĉ

i
, si

2〉+ ∑N
j=1〈D̂

j
, sj

2〉

Σ̂2 =
∑M

i=1〈Ĉ
i
, ni

4〉+ ∑N
j=1〈D̂

j
, nj

4〉

∑M
i=1〈Ĉ

i
, si

2〉+ ∑N
j=1〈D̂

j
, sj

2〉

where ni
1 = (0, yi

1, ∑2
n=1 yi

n, . . . , ∑Ti
n=1 yi

n)
′, ni

2 =

(∑Ti
n=1 yi

n, ∑Ti
n=2 yi

n, . . . , yi
Ti

, 0)′, si
1 = (0, 1, . . . , Ti), and

si
2 = (Ti, . . . , 1, 0)′. Using Lagrangian multiplier, the

following formulas can be obtained:

p̂12 =
∑M

i=1 α̂i
1 + ∑N

j=1 β̂
j
1

∑M
i=1(α̂

i
1 + η̂i) + ∑N

j=1 β̂
j
1

,

p̂13 =
∑M

i=1 η̂i

∑M
i=1(α̂

i
1 + η̂i) + ∑N

j=1 β̂
j
1

Moreover, λ1 and λ2 can be obtained by using:

λ̂1 =
2 ∑M

i=1(α̂
i
1 + η̂i) + 2 ∑N

j=1(β̂
j
1 + ν̂j)

∑M
i=1(α̂

i
3 + η̂it) + ∑N

j=1(β̂
j
3 + q̂j)

,

λ̂2 = max
λ2

M

∑
i=1

(2α̂i
1 ln λ2 − α̂i

2λ2) +
N

∑
j=1

( 〈ĝ, a5〉j

f̂ j

−β̂
j
2λ2

)
where α̂i =

〈ĝ,d̂i〉
d̂

and β̂i =
〈ĝ,âi〉

f̂
for i = 1, 2, 3.

III. MEAN RESIDUAL LIFE ESTIMATION

Let Πn(i) = P(Zn∆ = i|y1, . . . , yn, ξ > n∆) denote the
posterior probability that the system is in state i at the
nth decision epoch for i ∈ Z where Π0(1) = 1. Using
Bayes’ rule for n ≥ 1 we have,

Πn(i) =
g(yn|Zn∆ = i, ξ > n∆, yn−1, Πn−1)Ci

n−1

f1(yn)∑2
j=1 Cj

n−1 + f2(yn)∑4
j=3 Cj

n−1

where,

Cj
n−1 =

j

∑
i=1

Pi,j(∆)Πn−1(i) j = 1, 2

Cj
n−1 =

j

∑
i=1

Pi,j(∆)Πn−1(i) j = 3, 4

g(yn|Zn∆ = i, ξ > n∆, yn−1) =

{
f1(yn) if i ∈ {1, 2}
f2(yn) if i ∈ {3, 4}

Let ~Πn = (Πn(1), . . . , Πn(4)) denote the vector of pos-
terior probability at the nth decision epoch. For any
t ≥ 0, the conditional RF and the MRL at the nth deci-
sion epoch are given by,

R(t|~Πn) = P(ξ > n∆ + t|ξ > n∆, Yn = yn, ~Πn)

= ∑
1≤i≤4

∑
i≤j≤4

P(Zn∆+t = j|Zn∆ = i, ξ > n∆,

yn, ~Πn−1)× P(Zn∆ = i|ξ > n∆, yn, ~Πn−1)

=
4

∑
i=1

(1− Pi5(t))Πn(i)

µn∆ = E(ξ − n∆|ξ > n∆, Yn = yn, ~Πn)

=
∫ ∞

0
R(t|~Πn)dt = (

2
λ1

+
2

λ2
p12)Πn(1)

+ (
1

λ1
+

2
λ2

p12)Πn(2) +
2

λ2
Πn(3) +

1
λ2

Πn(4)
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Table 1: Optimal parameter estimates using the EM algorithm

Parameters Initial values 1st iteration 2nd iteration Final estimation

λ1 .15 .20 .23 .25
λ2 .50 .66 .69 .67
p12 .65 .78 .82 .89
p13 .35 .12 .18 .11

µ1

(
0
0

) (
.51
.34

) (
.46
.28

) (
.29
−.10

)
µ2

(
1.5
1

) (
1.91
1.18

) (
2.05
1.25

) (
1.91
1.47

)
Σ1

(
.50 .25
.25 1.00

) (
.58 .33
.33 1.48

) (
.67 .38
.38 1.56

) (
1.11 .48
.48 1.75

)
Σ2

(
1 .5
.5 1.5

) (
1.31 .87
.87 1.77

) (
1.64 1.07
1.07 1.92

) (
2.08 1.47
1.47 2.37

)
Q× 103 - -1.45 -1.35 -1.21

Time (sec) - 4.40 7.47 15.53

IV. Numerical example

A numerical example to illustrate the entire estimation
procedure is presented in this section. Let’s assume
that the system deterioration follows a continuous-time
homogenous semi-Markov chain (Xt : t ∈ R+) with
state space X = {1, 2, 3}. The states 1 and 2 are unob-
servable, representing the healthy and unhealthy oper-
ational states respectively. The sojourn time in healthy
and unhealthy state follows a 2 phase Erlang distribu-
tion with parameter λ1 andλ2, respectively. The system
can make transitions from healthy state to warning state
with the probability p12 or from healthy state to failure
state with the provability p13, where p12 + p13 = 1. The
state parameters and the transitions probabilities are
given by,

λ1 = .3, λ2 = .8, p12 = .80, p13 = .20

At equidistant sampling times n∆, ∆ = .1, the observa-
tions {Yn, n = 1, 2, . . .} are collected through condition
monitoring and Yn is assumed to follow 2-dimensional
normal distribution N2(µ1, Σ1) or N2(µ2, Σ2), depending
on whether the system is in the healthy or unhealthy
state, where,

µ1 =

(
.2
−.1

)
, Σ1 =

(
1.3 .5
.5 1.8

)
,

µ2 =

(
2.0
1.5

)
, Σ2 =

(
2 1.5

1.5 2.5

)
,

Using these parameters, K = 200 number of failure and
suspension are generated. Running the proposed esti-
mation procedure on the generated data with a stopping
criterion of ‖ (Λn+1, Ψn+1)− (Λn, Ψn) ‖≤ 10−6, the pa-
rameters are estimated. Table 1 shows the estimated
parameters in each iteration. The EM algorithm takes

on average 11.53 second, which is extremely fast for off-
line computations. This is an attractive feature for real
applications. Before using the parameters’ estimates
for reliability prediction, we evaluate the performance
of the estimation procedure by its ability to increase
the pseudo log-likelihood function. As shown in Figure
1.a, the pseudo log-likelihood function is increasing in
each iteration and also as the number of observation
increases the corresponding pseudo log-likelihood’s
value decreases in all the investigated scenarios. We
next evaluate the correctness of the parameter esti-
mates for different number of collected histories using
root mean square error (RMSE) measurement. For n
number of unknown parameters, the RMSE measures
the difference between the estimated values θ̂ and the
actual values θ and can be obtained by:

RMSE =

√
∑n

i=1(θ̂i − θi)2

n

As shown in Figure 1.2 , the RMSE values is relatively
higher for K = 100. By increasing the number of obser-
vation histories, the estimated error decreases.

Now that the parameters’ estimates have been ob-
tained, the model can be used for wear prediction based
on conditional MRL and RF. For this purpose, a new
group of 100 failure histories using the true model pa-
rameters is simulated. The conditional mean residual
life and reliability functions for each failure history are
then computed at each sampling epoch using the opti-
mal parameter estimates. Estimated reliability at each
sampling epoch for the particular failure history is pro-
vided in Figure 2.a. For the performance evaluation, we
also compare the estimated conditional MRL and RF
with those of estimated from hidden Markov modeling.
The conditional MRL and RF for HMM can be estimated
using:
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Figure 1: Performance evaluation of the parameter estimates

µn∆ =
λ2 + p12λ1 + Πn(p13λ1 − λ2)

λ1λ2

R(t|Πn) =

(
λ1e−λ1t − λ2e−λ2t + (λ2 + p12λ1

+Πn(p13λ1 − λ2))(e−λ2t − e−λ1t)
)

λ1 − λ2

where Πn is the probability of being in the unhealthy
state at nth decision epoch. As Figure 2.a shows, one
epoch after the change occurred the computed reliabil-
ity values dropped significantly for both models. This
suggests that there is a high probability that the system
working condition has changed and therefore an imme-
diate preventive maintenance should be considered to
avoid producing non-conforming products and possible
production shutdowns due to system failure. The esti-
mated MRL for both models at each sampling epoch
for the investigated failure history are plotted in Figure
2.b. The MRL statistics for both models drop noticeably
after the change occurred with one sampling interval
delay. Both trends suggest that the working state has
experienced a status change from healthy to unhealthy
condition around time 18.3 and full system inspection
and preventive maintenance might be required. The
small drops in both estimated RF or MRL before the
occurrence of the change tend to recover quickly in next
sampling epochs.

To test the accuracy of the proposed model to de-

tect the change for different values of µ2, three different
values for µ2 are investigated and the MRL statistics at
the last sampling epoch before failure occurrences are
computed for all the simulated failure histories using
the above mentioned procedure. Relative percentage
deviation (RPD) as a common performance measure
has been used to compare the capability of the pro-
posed HSMM model with HMM for fault prognostic us-
ing Bayesian MRL statistics. RPD is obtained by the
following formula,

RPD =
1
n ∑ |

ARL−MRLestimate
ARL

| × 100, (14)

where ARL represents the actual remaining life of a
machine at the last sampling epoch and n is the total
number of investigated failure histories i.e. n = 100.
Clearly, lower values of RPD are preferable. RPDs
of three different investigated scenarios for both mod-
els have been obtained and shown in Table 2. As the
results show, the proposed HSMM demonstrates differ-
ent performances for different shift sizes and we can
conclude that the proposed HSMM model outperforms
HMM when estimating the remaining residual life in all
cases. HSMM produced RPDs which are 49%, 52%,
and 66% smaller than those for HMM considering small,
medium, and large sizes of the changes. On average,
HSMM produced 55.66% lower RPDs in all the three dif-
ferent scenarios when compared with HMM. Therefore,
we can confidently assert that HSMM provides more
reliable MRL estimates in all three cases investigated.

V. CONCLUSIONS

In this paper, we have applied a hidden semi-Markov
modeling for early fault detection and residual life esti-
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Table 2: RPD of the estimated MRL statistic for different values of µ2

Model µ2 = (.8, .6) µ2 = (2, 1.5) µ2 = (4, 4.5)
HMM 72% 78% 135%

HSMM 23% 26% 69%
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Figure 2: Estimated conditional RF and MRL for investigated failure history

mation for a system subject to deterioration and random
failure. The system state process has been modeled
as a 3-state hidden semi-Markov process. It has been
assumed that vector observations are available at regu-
lar sampling times through system condition monitoring.
The observations are related to the true underlying
state of the system which is unobservable. Given that
the sojourn time distributions for both operational states
are provided, the unique method for deriving an explicit
form of failure time distribution and joint distribution of
time to failure and sojourn time have been presented.
Using the available failure and suspended data histories
obtained from CM, a new parameter estimation proce-
dure has been developed using the EM algorithm and
explicit formulas have been derived for the conditional
reliability function and the mean residual life of the
system. A numerical example has been developed to
illustrate the estimation and fault detection procedure. It
has been found that both indicators immediately identify
the time when the system starts experiencing severe
degradation. It has been also shown that the proposed
HSMM provides more reliable MRL and RF statistics
than HMM which make it suitable for real situations.
To compare the effectiveness of the proposed method
with other approaches, we plan to develop a case study
using real data in future research.
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APPENDIX

A.

Let sojourn time distributions in healthy and unhealthy
states follow Erlang distribution with probability distri-
bution functions f1(t; 2, λ1) and f2(t; 2, λ2), respectively.

Since Ls
(
λ2te−λt) = λ2

(λ+s)2 and using Theorem 1 for

each t ∈ R+, the density function of ξ is given by:

fξ(t) = p12L−1
s

( λ2
1

(λ1 + s)2 .
λ2

2
(λ2 + s)2

)
+ p13λ2

1te−λ1t

= p12λ2
1λ2

2
( 2e−λ1t

(λ1 − λ2)3 −
2e−λ2t

(λ1 − λ2)3

+
e−λ1tt

(λ1 − λ2)2 +
e−λ2tt

(λ1 − λ2)2

)
+ p13λ2

1te−λ1t,

and for all 0 < w < t,

f(ξ,τ1)
(t, w) = p12L−1

(s,v)

( λ2
1

(λ1 + s + v)2 .
λ2

2
(λ2 + s)2

)
+p13L−1

(s,v)

( v
s + v

λ2
1

(λ1 + s + v)2

)
= p12λ2

1λ2
2e−λ2(t−w)−λ1w(t− w)wH(t− w)

+p13λ2
1

(
− e−λ1twδ(−t + w)

−H(t− w)δ′(t− w)

λ2
1

+
e−λ1w H(t− w)δ′(t− w)

λ2
1

+
e−λ1wwH(t− w)δ′(t− w)

λ1

)
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where H(w− t) is a Heaviside step function and δ(t) is
a Dirac Delta function,

δ(t) =
{

0 if t 6= 0
∞ if t = 0

H(w− t) =


0 if w < t
1
2 if w = t
1 if w > t

Since 0 < w < t, f(ξ,τ1)
(t, w) can be written as,

f(ξ,τ1)
(t, w) = p12λ2

1λ2
2e−λ2(t−w)−λ1w(t− w)w

B.

Q(Λ, Ψ|Λ̂, Ψ̂) =
M

∑
i=1

QFi (Λ, Ψ|Λ̂, Ψ̂) +
N

∑
j=1

QSj(Λ, Ψ|Λ̂, Ψ̂)

For a single failure history,

QF(Λ, Ψ|Λ̂, Ψ̂) = Qstate
F (Λ|Λ̂, Ψ̂) + Qobs

F (Ψ|Λ̂, Ψ̂)

The first term Qstate
F is given by,

Qstate
F (Λ|Λ̂, Ψ̂) =

A
B

where,

A =
( ∫

w<t
ln
(

fτ1|ξ(w|t) fξ(t)
)

ĝ~Y|ξ,τ1
(~y|t, w) f̂τ1|ξ(w|t)

+ ln
(

mτ1|ξ(t|t) fξ(t)
)

ĝ~Y|ξ,τ1
(~y|t, t)m̂τ1|ξ(t|t) f̂ξ(t)

)
B =

∫
u<t

ĝ~Y|ξ,τ1
(~y|t, u) f̂τ1|ξ(u|t) fξ(t)du

+ĝ~Y|ξ,τ1
(~y|t, t)m̂τ1|ξ(t|t) fξ(t)

mτ1|ξ(t|t) = 1−
∫

w<t
fτ1|ξ(w|t) =

p13λ2
1te−λ1t

fξ(t)

To simplify the notation, for the remainder of the
analysis we denote vectors ĝ =

(
ĝ~Y|ξ,τ1

(~y|t, ∆), . . . ,

ĝ~Y|ξ,τ1
(~y|t, T∆), ĝ~Y|ξ,τ1

(~y|t, t)
)′

, d̂i = (d̂1
i , . . . , d̂T

i , d̂t
i) for

i = 1, . . . , 5, and for any vector v, w, v′.w = 〈v, w〉
represents the inner product. Therefore,

Qstate
F (Λ|Λ̂, Ψ̂) =

〈ĝ, d̂1〉
d̂

ln p12 + η̂ ln p13 + 2(
〈ĝ, d̂1〉

d̂
+ η̂)

ln λ1 + 2
〈ĝ, d̂1〉

d̂
ln λ2 −

〈ĝ, d̂2〉
d̂

λ2 − (
〈ĝ, d̂3〉

d̂
+ η̂t)λ1 + C1

where for L = (k − 1)∆ and L = k∆ for k = 1, . . . , T;
and L = T∆ and L = t for k = t,

d̂k
1 = p̂12λ̂1

2
λ̂2

2e−λ̂2t
∫ L

L
e−w(λ̂1−λ̂2)w(t− w)dw

d̂k
2 = p̂12λ̂1

2
λ̂2

2e−λ̂2t
∫ L

L
e−w(λ̂1−λ̂2)w(t− w)2dw

d̂k
3 = p̂12λ̂1

2
λ̂2

2e−λ̂2t
∫ L

L
e−w(λ̂1−λ̂2)w2(t− w)dw

d̂k
4 = p̂12λ̂1

2
λ̂2

2e−λ̂2t
∫ L

L
e−w(λ̂1−λ̂2) ln(t− w)w(t− w)dw

d̂k
5 = p̂12λ̂1

2
λ̂2

2e−λ̂2t
∫ L

L
e−w(λ̂1−λ̂2) ln(w)w(t− w)dw

d̂ = 〈d̂1, ĝ〉+ p̂13λ̂1
2e−λ̂1ttĝ~Y|ξ,τ1

(~y|t, t),

η̂ =
p̂13λ̂1

2e−λ̂1ttĝ~Y|ξ,τ1
(~y|t, t)

d̂

C1 =
〈ĝ, d̂4〉

d̂
+
〈ĝ, d̂5〉

d̂
+ η̂ ln t

Also using the same approach,

Qobs
F (Ψ̂|Λ̂, Ψ̂) =

T

∑
k=1

ĉk ln
(

g~Y|ξ,τ1
(~y|t, k∆)

)
+ ĉt ln

(
g~Y|ξ,τ1

(~y|t, t)
)

where,

ĉk =
d̂k

1 ĝ~Y|ξ,τ1
(~y|t, k∆)

d̂
for k = 1, . . . , T

ĉt =
p̂13λ̂1

2e−λ̂1ttĝ~Y|ξ,τ1
(~y|t, t)

d̂

Thus, for Ĉ = (ĉ1, . . . , ĉT , ĉt), ln g =(
ln g~Y|ξ,τ1

(~y|t, ∆), . . . , ln g~Y|ξ,τ1
(~y|t, T∆), ln g~Y|ξ,τ1

(~y|t, t)
)′

,

Qobs
F (Ψ|Λ̂, Ψ̂) = 〈Ĉ, ln g〉

Moreover, following the same approach for a single
suspension history, we will have:

QS(Λ, Ψ|Λ̂, Ψ̂) = Qobs
S (Ψ|Λ̂, Ψ̂) + Qstate

S (Λ|Λ̂, Ψ̂)

where for âi = (â1
i , . . . , âT

i , ât
i) for i = 1, . . . , 4 and

a5 = (a1
5, . . . , âT

5 , ât
5),

Qstate
S (Λ|Λ̂, Ψ̂) =

〈ĝ, â1〉
f̂

ln p12 + 2(
〈ĝ, â1〉

f̂
+ ν̂) ln λ1

−〈ĝ, â2〉
f̂

λ2 +
〈ĝ, a5〉

f̂
− (
〈ĝ, â3〉

f̂
+ q̂)λ1 + C2
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where,

âk
1 = p̂12λ̂1

2e−λ̂2t
∫ L

L
we−λ̂1w+λ̂2w(1 + λ̂2(t− w))dw

âk
2 = p̂12λ̂1

2e−λ2t
∫ L

L
w(t− w)e−λ̂1w+λ̂2w(1 + λ̂2(t− w))dw

âk
3 = p̂12λ̂1

2e−λ2t
∫ L

L
w2e−λ̂1w+λ̂2w(1 + λ̂2(t− w))dw

âk
4 = p̂12λ̂1

2e−λ2t
∫ L

L
w ln(w)(1 + λ̂2(t− w))e−λ̂1w+λ̂2wdw

ak
5 = p̂12λ̂1

2e−λ̂2t
∫ L

L
w ln(1 + λ2(t− w))e−λ̂1w+λ̂2w

(1 + λ̂2(t− w))dw

f̂ = 〈â1, ĝ〉+ ĝ~Y|ξ,τ1
(~y|t, t)λ̂1

2
∫ ∞

t
ue−λ̂1udu;

q̂ =
λ̂2

1 ĝ~Y|ξ,τ1
(~y|t, t)

f̂

∫
w>t

w2e−λ̂1wdw

C2 =
〈ĝ, â4〉

f̂
+ λ̂2 ĝ~Y|ξ,τ1

(~y|t, t)
∫ ∞

t
w ln(w)e−λ̂1wdw;

ν̂ =
λ̂2

1 ĝ~Y|ξ,τ1
(~y|t, t)

f̂

∫
w>t

we−λ̂1wdw

and also,
Qobs

S (Ψ|Λ̂, Ψ̂) = 〈D̂, ln g〉

where D̂ = (D̂1, . . . , D̂T , Dt), and

D̂k =
âk

1 ĝ~Y|ξ,τ1
(~y|t, k∆)

f̂
for k = 1, . . . , T

D̂t =
ĝ~Y|ξ,τ1

(~y|t, t)λ̂1
2 ∫ ∞

t ue−λ̂1udu

f̂
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