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Abstract— Hyperspectral images have been 
used in anomaly and change detection 
applications such as search and rescue 
operations where it is critical to have fast 
detection. However, conventional Reed-Xiaoli (RX) 
algorithm [6] took about 600 seconds using a PC 
to finish the processing of an 800x1024 
hyperspectral image with 10 bands. This is not 
acceptable for real-time applications. A more 
recent algorithm known as kernel RX (KRX) [7] 
achieves better detection performance than RX at 
the expense of computational cost. For example, 
for the same 800x1024 image with 10 bands, KRX 
took 15 hours to finish the processing. In this 
paper, we present a general framework for fast 
anomaly detection using RX and KRX algorithms. 
First, a fast data reduction scheme using Principal 
Component Analysis (PCA) is proposed. This 
method takes less than 1 second to finish and the 
performance degradation is minimal. Second, we 
propose several speed boosting options in the RX 
and KRX algorithms. These options include image 
sub-sampling, the use of block pixels, and 
background pixel sub-sampling. Actual 
hyperspectral image has been used in our studies. 
Receiver operating characteristics (ROC) curves 
and actual computation times were used to 
compare the various options. For the 800x1024x10 
image, we were able to improve the speed by 
more than 220 times for RX and 700 times for KRX 
with minimal degradation in detection 
performance. 
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I.  INTRODUCTION  

Hyperspectral images have gained popularity in 
recent years. NASA’s Hyperion [1] has been 
operational since 2000. Moreover, NASA’s AVIRIS 
imager [2] has been used for fire damage assessment 
in a number of places in the US for the past 2 
decades. NASA is also planning the HyspIRI mission 
[3], which will cover the whole Earth. Comparing to 
color (GeoEye) [4] and multi-spectral imagers in 
LANDSAT [5] that have only 3-10 bands,  
hyperspectral imagers offer hundreds of spectral 
bands. As a result, the discrimination power using 
hyperspectral imagers are significantly better than 
multi-spectral counterparts.   

The RX [6] algorithm has been widely used in 
many image processing applications. However, due to 
high dimensionality of hyperspectral images, the RX 
algorithm took about 600 seconds to finish the 
processing of an 800x1024 hyperspectral image with 
10 bands. Recently, a kernel RX (KRX) algorithm was 
developed [7]. Although KRX has excellent 
performance in anomaly detection using hyperspectral 
images, one main issue is that it is computationally 
intensive. For example, we recently applied KRX to an 
800x1024 hyperspectral image with 10 bands and it 
took about 15 hours to generate the detection results. 
This is not acceptable for real-time applications.  

In this paper, we present a general framework for 
fast anomaly detection using RX and KRX algorithms. 
First, a fast data reduction scheme using Principal 
Component Analysis (PCA) is proposed. This method 
takes less than 1 second to finish and the 
performance degradation is minimal. Second, we 
propose several speed boosting options in the RX and 
KRX algorithms. These options include image sub-
sampling, the use of block pixels, and background 
pixel sub-sampling. Actual data have been used in our 
studies. Receiver operating characteristics (ROC) 
curves and actual computation times were used to 
compare the various options. We were able to 
improve the speed by more than 220 times for RX and 
700 times for KRX with minimal detection 
performance degradation.   

Section II of the paper provides a brief description 
of the hyperspectral image used in this study. Section 
III describes the fast algorithms with detailed 
computational complexity analysis. Section IV 
summarizes the evaluation results. Section V provides 
the concluding comments and future work. 

II. ABOUT HYPERSPECTRAL IMAGES 

We have used a hyperspectral image from the US 
Air Force in this research for anomaly detection 
investigations. The image data was collected in 
October 2005. The collection instrument was a pan 
and tilt mounted VNIR Imaging Spectrometer with 
~0.45 - 0.90 um wavelengths. For more information 
about the sensors, one should see [8]. This image has 
2 small  targets inserted in the form of tarp bundles. 

Table 1 shows the five attributes of the 
hyperspectral images. These attributes are solar 
elevation (deg), solar azimuth (deg), date, collection 
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time and weather conditions at the time of data 
collection. Fig. 1 shows the jpeg image of the AF 
image. The pixel signatures of the four panels are also 
shown in Fig. 1.  

Table 1: Collection times and weather conditions 
for the AF image 

Solar Elev. (deg)   Solar Az. (deg) Date  Collection Time Weather 

41.80           176.29          10/14/05     13:11:05       Partly cloudy  
                                                                                    with Haze 

 

 
(a) Oct 14 image with targets inside the circles. 

 
(b) Four panel signatures in Oct 14 image 

Fig. 1. Close look at the AF image with signature plots 
of the four panels in the images. 

III. FAST ALGORITHMS 

A. Complexity Analysis of RX and KRX 

We first briefly review the RX and KRX algorithms 
in the following paragraphs. We then analyze their 
computational complexity. 

 
Algorithm RX: 
Input: Image I, inner window size l, outer window size u 
Output: A single band image O which indicates the 

anomaly value  
Algorithm: 

For each pixel p in the inner window with signature 
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The background pixels are extracted as shown in 

Fig. 2.  
  

 
Fig. 2.  Illustration of background pixel selection in RX 

algorithm. 
 
The two core elements of RX algorithms are to: 

1. Extract the background pixels bX  for a pixel r . 

2. Compute an anomaly score d using a distance 

function ),( bXrfd   

The RX algorithm assumes the background 
conforms to a normal distribution and uses the log 
likelihood in distance function. In contrast, the KRX 
algorithm first maps the pixels to a new feature space 
and then applies the RX algorithm, i.e. 

      brxbkrx XrfXrf  ,,   

where  bkrx Xrf ,  denotes the KRX distance function 

and  brx Xrf ,  denotes the RX distance function,  r  

is a non-linear mapping of r. The dimension of the 
new feature space can be infinite. However, it is 

proven that krxf can be directly calculated using 

kernels without explicit mapping. The kernels implicitly 
compute inner products in the feature space.  

In RX algorithm, background extraction and 
distance calculation is done for every pixel. This 
iterative process makes the computation very 
expensive for an image with millions of pixels. The 
time complexity of a standard RX algorithm is O(NC), 
where N is the number of pixels and C is the time of 
distance calculation. Other RX based algorithms have 
the same form of complexity except that the C is 
different. For RX,  

)()( 32 KOMKOCrx   

where M is the number of background pixels and K is 
the number of bands. The first term is the time 
complexity for covariance matrix computation and the 
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second term is the time complexity for computing the 
inversion of covariance matrix, which is usually done 
using singular value decomposition (SVD). For KRX, 

)()( 32 MOKMOCkrx  . 

In general, KM  . For instance, suppose the 
outer window size is 15, the inner window size is 5, 
and the band number is 10, then M = 200 and K = 10. 
Therefore, the time complexity can be simplified as  

)( 2MKOCrx   and )( 3MOCkrx  . 

From the above analysis, we can see that KRX is 
much more expensive than RX. For instance, if M = 
200 and K = 10, the time complexity of KRX algorithm 
is about 400 times of that of the RX algorithm. 

As a matter of fact, even the RX algorithm cannot 
achieve real-time processing for high dimensional 
hyperspectral image. For instance, the Air Force 
hyperspectral image has 800 samples, 1024 lines and 
124 bands. For outer window size of 45 and inner 
window size of 15, even only using 10 bands in the 
anomaly detection computations, it takes RX about 
600 seconds to complete the process, which is not 
acceptable. 

B. Fast Implementations 

To reduce the computational complexity of RX 
and KRX, a straightforward approach is to first 
perform spectral band reduction by using Principal 
Component Analysis (PCA). In this work, we applied 
PCA to reduce the number of bands from 124 down to 
10 bands. PCA can be finished in 1 second, which 
introduces minimal additional computational cost.  
After that, a dimension reduction in the spatial domain 
using sub-sampling is performed. Suppose the 
number of samples and lines are reduced by s times; 
the number of outer window size and inner window 
size are also reduced by s times; the number of bands 
are reduced by d times. Then the number of pixels N 

is reduced by 
2

s times, the number of bands K is 

reduced by d times and the number of background 

pixels M is reduced by 
2

s  times. Suppose the 

background pixels are further sub-sampled such that 
the number of window dimension is reduced by c 
times. Then the overall speed boosting for RX 
algorithm is  

224 cdsBrx   

The speed boosting for KRX algorithm is 
68csBkrx   

If s = 3, d = 10 and c = 2, then 32, 400
rx

B   and

419,904
krx

B  . Obviously, this is a significant reduction 

in computation time. However, even using these 
settings, both RX and KRX are still not real-time.  

To further reduce the computational complexity, 
we proposed a concept called block pixel. Instead of 
using a unique background for each single pixel, this 
method uses the same background for a block of 

pixels to compute the distances, as Fig. 3 shows. 

Assuming the block size is b x b, a further 
2

b  time 

reduction can be achieved for both RX and KRX.  

While the above complexity reduction techniques 
can significantly speed up the process, they are all 
approximation approaches and may degrade the 
performance. Fortunately, after applying a filtering on 
the detection results, the performance can be 
significantly improved and comparable to the results 
using original data.  

 
Fig. 3. Illustration of using the same background for a 

block of pixels. 

IV. EVALUATION RESULTS 

The complexity analysis in Section III gives order 
of magnitude estimates of the computational effort of 
various algorithms. In practice, due to other factors in 
the PC (multi-tasking, multiple processes, memory 
access, etc.), there will be differences between the 
estimates and the actual computation time. The 
experiments in this section were carried out on a sub-
sampled (3x3) Air Force image (Fig. 1) where PCA 
was applied to reduce the number of spectral bands 
from 124 to 10. Before the application of 3x3 sub-
sampling, the computational times for RX and KRX 
were 598 seconds and 15 hours, respectively, for the 
800x1024x10 hyperspectral image. 

Now, Fig. 4 and Fig. 5 show the ROC and 
computation time results for RX and KRX, 
respectively, where band number reduction and 3x3 
sub-sampling have been implemented. Description of 
the labels in Fig. 4 and Fig. 5 are as follows: 

1. original: no background sub-sampling and 
block pixels options 

2. background (2x2): 2x2 sub-sampling on 
background pixels  

3. block (3x3): the block size is 3x3 
4. block( 3x3)+background (2x2): both block 

and background sub-sampling options are 
used 

5. “smooth” means the anomaly detection result 
is smoothed using a 3x3 average filter. 

 
RX results are shown in Fig. 4. We have the 

following observations:  

 Background sub-sampling does not bring 
much speed enhancement (Fig. 4b);  

 Block pixel brings significant speed 
enhancement (Fig. 4b);  

 After smoothing on the detection results, the 
anomaly detection performance of all 
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methods is similar (Fig. 4a), meaning that fast 
algorithms do not degrade the detection 
performance. 

 
Note that the processing time of RX with all of the 

options is just about 2.7 seconds, which is 1/8 of the 
processing time (23 seconds) of the RX on the same 
sub-sampled image and is 1/220 of the original RX on 
the whole image (596 seconds) of 800x1024 image 
with 10 bands. If one compares with the 
computational time without sub-sampling (596 
seconds) and with all options (2.7 seconds), then the 
speed improvement factor is 220. 

 
(a) ROC 

 
(b) Time (seconds) 

Fig. 4. Comparison of RX using block (3x3) and 
background sub-sampling (2x2) options. 

 
KRX results are shown in Fig. 5. We have the 

following observations:  

 Both background sub-sampling and block 
pixel bring significant speed enhancement;  

 Combining both options brings best speed 
improvement;  

 Smoothing improves the anomaly detection 
performance significantly;  

 The anomaly detection performance of using 
background sub-sampling is comparable to 
that of the original method;  

 The anomaly detection result of KRX is much 
better than RX. 

 
Note that the processing time of KRX with all of 

the options is about 78 seconds, which is 1/62 of the 
processing time (4,840 seconds) of KRX on the same 
sub-sampled (3x3) image. The processing time of 
KRX on the 10 band 800x1024 image was about 15 
hours. So the overall reduction factor is close to 700. 
That is, the speed improvement is from 15 hours 
down to 78 seconds.  

 
(a) ROC 

 
(b) Time (seconds) 

Fig. 5. KRX using block (3x3) and background sub-
sampling (2x2) options. 

VI. CONCLUSIONS 

Existing anomaly detection algorithms such as RX 
and KRX require significant computational power in 
terms of many minutes/hours to process a 
hyperspectral image. This limits the application scope 
of RX and KRX in real-time applications. In this paper, 
we propose a systematic approach to performing fast 
execution of RX and KRX algorithms. First, we apply 
PCA to reduce the spectral dimension. Second, we 
apply spatial sub-sampling to reduce the spatial 
dimension. Third, we apply background sub-sampling 
and block pixel concept to further enhance the speed 
up. Experimental results demonstrate that the speed 
up factor is 220 for RX and 700 for KRX. All of 
experiments were done using a regu8lar PC. 
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Future work will include the utilization of multiple 
cores in PC. Nowadays, 8-core or 16-core PCs are 
cheaper than $1,000s. Another option is to utilize 
powerful GPUs. 
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