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Abstract—This study investigates nonlinear 
Advection-Diffusion equation by making the 
diffusion constant D=D(c) a function of 

concentration. Linear model  ( )     and Square 

model  ( )      were constructed for the non 
constant diffusion coefficient. The two models 
were substituted in into the advection-diffusion 
equation and solved. The equations obtained were 
solved numerically using explicit finite difference 
method. The results obtained shows that non 
linear advection diffusion equation gives a better 
explanation to the transport of contaminant 
concentration in fluid. The square model reveals 
that for domestic purposes water is safer at the 
middle of a river or stream than the banks.  
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I.  INTRODUCTION  

The advection-diffusion equation (ADE) is basically 
one the simplest transport equation which describes 
the phenomena of transport in many areas of life. The 
advection-diffusion equation (ADE) has been useful in 
area like physics, chemistry, geology and biology in 
prediction of transport system [1] [2][3][4].  
Transport phenomena describes the process that 
takes a system of particles from a non-equilibrium 
state to an equilibrium state, from an equilibrium state 
to a non-equilibrium state, or from one non-equilibrium 
state to another [5]. 
The  ADE is a mathematical model that describes the 
transport of solutes in groundwater and surface water, 
the displacement of oil by fluid injection in oil recovery, 
the movement of aerosols and trace gases in the 
atmosphere, and miscible fluid flow processes in 
many other applications. In practical applications, 
these equations are commonly discretized via the 
Finite Difference (FD) or the Finite Element (FE) 
methods [6] [7]. 
The advection-diffusion equation is given by 
  

  
    

  

  
   

   

   
        (1) 

where c(x,t) is the concentration in the fluid of the 
substance in which we are interested,  
u is the fluid velocity in the x-direction 

D is the diffusion coefficient 

  is the coefficient of decay. 
In some cases, D can reasonably be taken as 
constant, while diffusion in high polymers and real 
application, it depends markedly on concentration. 
[8][9] studied a reaction-diffusion equation with a non 
constant diffusivity, D(x,t),  a continuous function. 
They used an explicit finite difference method to 
numerically determine the effect of the reaction and 
found four special form for D(x,t)  in which it was 
possible to reduce the reaction-diffusion equation to 
an equivalent constant diffusivity equation. 
In this study our assumptions are similar to [8] in that 
our models solve the nonlinear advection-diffusion 
equation with D being a function of concentration.  

 

II. METHODOLOGY 

The linear advection diffusion equation is given by (1). 
Making the diffusion coefficient function of 
concentration D=D(c), we have 
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The Linear Model 
Here, we assumed a linear model of the form 
 ( )           (3) 
where α is a consistent diffusion parameter 
substituting (3) into (2) we have 
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Square Model  
Here, we assumed a square model the form 

 ( )          (6) 
where   is a consistent diffusion parameter 
substituting  (6) into  (2) we have 
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Finite difference approximation 
Explicit finite difference scheme was used to solve (5) 
and (8)  with forward difference representations for the 
time derivatives and the central difference formulation 
for the spatial derivatives. 
The Linear Model given in (5) discretization becomes  
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The Square Model in  (8) discretization becomes 
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Equation (11) and (12) were solved with the following 
initial conditions, boundary conditions and 
parameters: 

c(1,t)=15, c(Nx,t)=5 and c(x,1) =15, Nx=41, 
Nt=51,α=0.0065, u=0.001 for (11) and 

c(1,t)=10, c(Nx,t)=3 and c(x,1) =10, Nx=40, 
β=0.000009, u=0.22 for (12) 
 

III. RESULTS AND DISCUSSION  

 
Linear Model 
Fig. 1- fig. 3 show the distribution of contaminant 
along the downstream (x axis) at difference simulation 
time for the linear diffusion model. At the initial 
simulation time for this model fig. 1 (t=4), the 
distribution of contaminant concentration is almost 
constant. This may be due to the fact that at the initial 
simulation time, the effect of the nonlinear advection 
diffusion equation was not strong enough. Toward the 
middle of the simulation time (t=40) fig. 2, the 
distribution of contaminant along downstream 
decreases uniformly until at x=0.4 to 0.8 where one 
sees little oscillation with decreasing amplitude. This 
may be as a result of the effect of our nonlinear model 
and probably in the distribution of contaminant along 
the simulation length (river) some traces of other 
source of contaminants was met. At the end of the 
simulation time fig. 3 shows similar behavior to fig 2, 
in this case it decreasing from the beginning of the 

simulation length until about x=0.7, when it decreases 
uniformly.  
The time variation for the linear advection diffusion 
equation is shown in fig. 4-6. At an initial point in the 
simulation plane (x=10), the time variation of 
contaminant is nearly linear along the simulation time 
(fig. 4). Getting to the simulation plane, the variation 
concentration decreases uniformly with little oscillation 
amplitude (fig. 5). At the end of the simulation plane 
the contaminant concentration decreases uniformly. 
 
Square Model 
Fig. 7 and fig. 8 show the distribution of contaminant 
along the downstream direction (x-axis) for the square 
model. At the initial simulation time (t=5), the 
distribution of contaminant decreases uniformly (fig. 7) 
except towards the end of the simulation plane were it 
obeys the boundary condition. This is not too different 
from the linear situation. It shows that the nonlinear 
model has no much effect at the initial simulation time. 
Towards the middle of the simulation time (fig. 8), the 
distribution of contaminant in the river started with little 
increase before decreasing uniformly toward the 
middle of the simulation plane and that was 
maintained until close to the boundary of the river 
where there is an increasing contaminant 
concentration with increase amplitude. This model 
clearly reveals that to get safe water for domestic 
purposes and rural dwellers that depend on river or 
stream, the middle of the river or stream is the best. 
This is in line with [8]. The time variation concentration 
for this model is interesting (fig. 9-11), at the 
beginning of the simulation length (x=3), the time 
variation of contaminant shows little increase until at 
t=1.2, where the concentration increases and 
decreases towards the end of the simulation time. The 
time variation of contaminant decreases uniformly at 
x=10 and x=30 (fig. 10-11) as expected for this model.  

 
Fig.1 distribution of Contaminant C(x) along 
downstream direction x at t=4 
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Fig.2: distribution of Contaminant C(x) along 
downstream direction x at t=40  

 
Fig.3: distribution of Contaminant C(x) along 
downstream direction x at t=50 

 
Fig.4: Time variation of Contaminant C(x) at 
x=10 
 

 
Fig.5: Time variation of Contaminant C(x) at x=36 

 
Fig.6: Time variation of Contaminant C(x) at x=40 

 
Fig.7: distribution of Contaminant C(x) along 
downstream direction x at t=5 
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Fig.8: distribution of Contaminant C(x) along 
downstream direction x at t=25 

Fig.9: Time variation of Contaminant C(x, y) at x=3 

Fig.10: Time variation of Contaminant C(x) at x=10 

 
Fig.11: Time variation of Contaminant C(x) at x=30 

CONCLUSION 

An investigation into our models for nonlinear 
Advection Diffusion equation reveals that nonlinear 
model explain the transport of contaminant better than 
the linear theory. The linear model and the square 
model considered in our case show that the middle of 
the river or stream contains safer water for domestic 

consumption. 
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