
Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 3159-0040 

Vol. 2 Issue 10, October - 2015 

www.jmest.org 

JMESTN42350992 2694 

Clustering Using Principal Component Analysis 
As An Input Tool  

Okeke, Evelyn Nkiruka and Okeke, Joseph Uchenna
 

Department of Mathematics and Statistics, Federal University Wukari, Nigeria. 
Corresponding author: evelyn70ng@yahoo.com

Abstract—This study is on the application of 
principal component analysis to clustering as an 
approach to reducing the space of the data. In this 

study two real data sets (on C   emission and 
2015 Nigeria’s presidential election) were used for 
comparison. The result of the study revealed that 
clusters from transformed data (PC data) are more 
visible and follows previously known grouping 
than clusters from the original data. 
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1.0 Introduction 
The term cluster analysis is a statistical method for 
grouping objects of similar kind into respective 
categories. Indentifying groups of individuals or 
objects that are similar to each other but different from 
individual in other groups can be intellectually 
satisfying, profitable, or sometimes both. A general 
question facing researchers in many areas of inquiry 
is how to organize observed data into meaningful 
pattern. The essential concern of cluster analysis is to 
find groupings within group of objects, experimental 
units, or variables (or factor) etc in a way that the 
degree of association between objects is maximal if 
they belong to the same group and minimal otherwise. 
Given the above description, cluster analysis can be 
used to discover structure in the data without 
explaining why they exist. 
There is countless number of examples in which 
clustering plays an important role. Using type of fruits 
as an example by studying the mineral content of 
different types of fruits you can be able to form group 
of fruit thereby providing a substitute to each type 
when it is out of season. By studying different dialects 
of different people, one can be able to trace their 
ancestral homes.  Based on scores on psychological 
inventories, you can cluster patients into subgroups 
that have similar response patterns. This may help 
you in targeting appropriate treatment and study 
typologies of disease.  
Although both cluster analysis and discriminant 
analysis classify objects (or cases) into categories, 
discriminant analysis requires you to know group 
membership for the cases used to derive the 
classification rule. The goal of cluster analysis is to 
identify the actual group in which an object belongs. 
One of the problems of cluster analysis is on how to 
distinguish between the relevant and irrelevant 
variable to be included in the study. 

In this paper principal component analysis was used 
as an input tool to cluster analysis in reducing the 
dimension of the data thus making the cluster result 
easy to explore and visualize. This work is divided into 
sections; section one is on the introduction and 
description of cluster analysis, section two discussed 
the principal component analysis, section three is on 
data and its description, section four is about data 
analyses and the results, while section five is on the 
conclusion of the work.     
1.1 Relevant Variables in Cluster Analysis 
Issues that need consideration prior to caring out any 
cluster analysis include the following: appropriate 
scaling or weighting of the variables or transformation 
of them; measures of proximity, or metrics to use as 
indicator of closeness among the items to be 
clustered. Choice made at this stage can have a 
determining influence on the outputs of the 
subsequent analysis. Cluster sought should be scale 
invariant. The nature of the data, as well as the type of 
clustering one wishes to use in the specific situation 
will influence the choice of the input. Choice made at 
input stage can have determining influence on the 
result of the analysis. 
Selecting the variables to be included in the cluster 
analysis must be done with regard to both theoretical 
concept and practical considerations. Variable to be 
included will be only those variable that  

 Characterized the object being clustered 

 Relate specifically to the objective of the 
cluster analysis 

Cluster analysis has no mechanism for differentiating 
between relevant and irrelevant variable. Therefore 
the choice of variable included in a cluster analysis 
must be underpinned by conceptual considerations. 
This is very important because the cluster formed can 
be very dependent on the variable included (Everitt, 
Londau, and  Leese 2001). The inclusion of an 
irrelevant variable increases the chance that outlier 
will be created on these variables which will have a 
substantive effect on the results. Thus one should not 
include variable indiscriminately, but instead choose 
the variable with the research objective as the 
criterion for selection. In practical vein, cluster 
analysis can be drastically affected by the inclusion of 
one or two inappropriate or undifferentiated variables. 
The researcher is always encourage to examine the 
results and eliminate variables that are not distinctive 
(i.e. that do not differ significantly) across the derived 
clusters. This procedure allows for the cluster 
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techniques to maximally define clusters based only on 
those variables exhibiting difference across the object. 
1.2 Clustering Methods 
In clustering there are numerous ways you can sort 
cases into groups. The choice of a method depends 
on, among other things, the size of the data file.  
If you have a large data file (even, 1000 cases is large 
for clustering) or a mixture of continuous and 
categorical variable, you should use the SPSS two-
step procedure. In two-step cluster, to make a large 
problem tractable, in the first step, cases are assigned 
to “preclusters”. In the second step, the preclusters 
are clustered using the hierarchical cluster algorithm. 
You can specify the number of clusters you want or let 
the algorithm decide based on preselected criteria.  
 If you have a small data set and wants to easily 
examine solution with increasing number of clusters, 
you may use hierarchical clustering. For hierarchical 
clustering, you choose a statistic that quantifies how 
far apart (or similar) two cases are. Then you select a 
method for forming the groups. Because you can have 
as many clusters as you do cases (not a useful 
solution), your last step is to determine how many 
clusters you need to represent your data. You do this 
by looking at how similar clusters are when you create 
additional cluster or collapse existing ones. 
Hierarchical methods includes 
Single linkage 
Complete linkage 
Average linkage 
Centroid linkage 
Others   
In single linkage clustering, the dissimilarity between x 
and y is the smallest dissimilarity between two points 
in opposite group, that is,  
   * (   )          +  
In complete linkage clustering dissimilarity between x 
and y is the largest dissimilarity between two points in 
opposite group, that is,  
   * (   )          +  
In average linkage clustering dissimilarity between x 
and y is average dissimilarity over all points in 
opposite group, that is,  

 

|  | |  |
∑ ∑  (   )          

                                                          (WIKIPEDIA 
2015) 
In centroid linkage the distance between two groups is 
the Euclidean distance between their centroids, that 
is, 
 (   )  ‖ ̅   ̅‖   
If you know the number of clusters you want to form 
and you have a moderately sized data set, you use k-
mean clustering, In k-mean clustering, you select the 
number of clusters you want. The algorithm iteratively 
estimates the cluster means and assigns each case to 
the cluster for which its distance to the cluster mean is 
the smallest. 
1.3 Partitioning 
As an alternative both to hierarchical and to 
overlapping clustering, partitioning approaches assign 
each object to exactly one cluster. A generic 

description of the objective is to maximize 
similarity/cohesiveness/homogeneity within each 
cluster while maximizing heterogeneity among 
clusters. 
1.4 Measures of Similarity /Dissimilarity 
Distance measures are the most commonly use 
measures of similarity between objects. Most of the 
analytical techniques for assessing distance are 
particularly sensitive to outliers. Screening for outliers 
is advisable. 
 Different distance measures leads to different cluster 
solution. Thus it is advisable to use several measures 
and compare the results to the theoretical or known 
patterns.  
When the variables have different units, one should 
standardize the data before running the cluster. 
Standardization is particularly advisable when the 
range of one variable is much larger than that of 
others. 
When the variables are intercorrelated (either 
positively or negatively), the Mahalanobis distance 
measure is likely to be the most appropriate because 
it adjusts for intercorrelation and weights all variables 
equally. 
1.41 Euclidean Distance 
Euclidean distance is the most common use of 
distance. In most cases when people talk about 
distance, they will refer to Euclidean distance. The 
Euclidean distance between points   and   is the line 
segment connecting them   ̅̅ ̅ . In Cartesian 

coordinates, if    (       ) and   (       ) are 
two points in Euclidean n-space, then the distance (d) 
from   to   or from   to   is given by the Pythagorean 
formula 

                                √∑ (       )
  

     

 √(     )
  (     )

    (     )
                   ( ) 

                                      
 1.42 Mahalanobis Distance 
To obtain a useful distance measure in a multivariate 
setting, we must consider not only the variances of the 
variables but also their covariance or correlations. The 
simple Euclidean distance between y and   ̅ , (   
 ̅) (    ̅)  is not useful because there is no 
adjustment for the variance or the covariance. For a 
statistical distance, we standardize by inserting 
inverse of the covariance matrix: 
  
          

   ((    ̅) )   ((    ̅))                           ( ) 

The (squared) distance    between two vectors were 
first proposed by Mahalanobis (1936) and are often 
referred to as Mahalanobis distances. If a random 
variable has a larger variance than another, it receives 
relatively less weight in a Mahalanobis distance. 
Similarly, two highly correlated variables do not 
contribute as much as two variables that are less 
correlated. In essence, then, the use of the inverse of 
the covariance matrix in a Mahalanobis distance 
(involving random variables) has the effect of (1) 
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standardizing all variables to the same variance and 
(2) eliminating correlations. 
1.43 Measures of Association or Dissimilarity 
coefficients 
If we consider two binary-valued vectors x and y then 
the element –by-element matches are of four types 
labeled  a, b, c, and  d as in fig. 1 
                            y 
                       1     0 
           1        
x 
           0 
 
Fig. 1: The four possible pattern resulting from 
matching elements of two binary-valued vectors x and 
y. 
For example, if   (       ) and   (       ), then 
the first entries (   ) in each vector are an a-type pair, 

the second (   ) are a b-type pair, etc. An endless 
number of coefficients of agreement can be written as 
a function of those four types; for example, Pearson 
product moment correlation is given by 

  
(     )

,(   )(   )(   )(   )-   
                  ( ) 

.   
Cheetham and Hazel (1969) were among the first to 
catalogue the various coefficients published and 
based on the format of fig. 1.1, and their list had less 
than 24 entries. 
2.0 Principal Component Analysis 
Principal component analysis is a statistical tool that 
finds the underlying structure in the data. It finds the 
direction of most variance in a set of data, that is, the 
direction where the data is most spread out. This tool 
brings out strong patterns in a data set and makes 
data easy to explore and visualize.  
Principal component analysis is a variable reduction 
procedure. This is useful when you have obtained 
data on a large number of variables or factors and 
believe that there is some redundancy in those 
variables. In this case, redundancy means that some 
of the variables are correlated with one another, 
possibly because they are measuring the same 
construct. Because of this redundancy, you believe 
that it should be possible to reduce the observed 
variables into a smaller number of principal 
components (artificial variables) that will account for 
most of the variance in the observed variables. 
It is true that classical PCA is a one sample 
techniques applied to data with no groupings among 
observations and no partitioning of variable into 
subset   and   for instance (Rencher 1995) but it has 
been found useful in multiple regression when 
computational or statistical problems arise in the 
presence of severe multicollinearity in the set of 
independent variables           (Hadu and Linq 

1989) and where there are too many independent 
variables relative to the number of observations 
(Rencher 1995); discriminant analysis with small 
sample situation, perhaps with fewer observations 
than variables (Kahirsaga, Kocherkots, and 
Kochecloakata 1990); cluster analysis when 

Euclidean distance between observation in p-
dimensional space are closely approximated by 
Euclidean distance in space spanned by the first   

principal components, provided the first   eigenvalues 
account for a high percentage of the trace of the 
covariance matrix; canonical regression when you 
have so many dependent variables correlating with a 
set of   independent variables. 
2.1 Mathematical Details of Principal Component 
Analysis  
Consider forming a scalar variate Y as a linear 
combination of the original variate     

                                   ( ) 

 where            is a p-dimensional vector. 

 The mean of Y is 

 ̅     ̅       ̅     ̅                  ( ) 
Consider the variance of Y 

   
 

   
∑(    ̅)   
 

   

                           ( ) 

since 

    ̅            ̅     (    ̅)              ( ) 
                  
and the transpose of a scalar is equal to that scalar 

∑(    ̅) 
 

   

 ∑  (    ̅)(    ̅) 

 

   

                ( ) 

 
Since a is a constant over   , hence 

   
 

   
∑(    ̅) 
 

   

   [
 

   
∑(    ̅)(  

 

   

  ̅)]                 ( ) 

                                                             (  ) 
By multiplying out the vectors, the quadratic form      
can be expressed in terms of the elements of a and S 
as 

         

Algebraically, we can define the first principal 
component to be the linear combination          of 

the original variables   subject to the constraint 
that         , where    is the corresponding 

eigenvector of the first eigenvalue of    . We therefore 

require finding the vector   that satisfies this 
condition. The conditions for vector    to maximize 

       subject to the constraint         are precisely 

the same as those for the vector    to maximize  
   
       (       )                        (  ) 

 
The standard procedure for maximizing a function of 
several variables subject to one or more constraints is 
by the method of Lagrange multiplier.  With just one 
constraint, the method uses the fact that the stationary 
point of differentiable function of   variables, say 

 (       ), subject to constraint  (       )    are 

such that there exist a number  , called Lagrange 
multiplier, such that   

a b 

c d 
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                                      (  ) 

                                                                                                               
at stationary points. 
These   equations, together with the constraints, are 
sufficient to determine the coordinate of the stationary 
points.  Further investigation to see if a stationary 
point is maximum, minimum or saddle points is made 
using a new function,  ( ) such that 

 ( )   ( )  , ( )   -                  (  ) 
               
where the term in the square bracket is of course 
zero.  The derivative of  ( ) is                

   ( )

  
 
  ( ) 

   
                                         (  ) 

Using the form of  ( ), and letting  

 (  )    
       (       )                       (  )      

 ∑∑          

 

   

 

   

   (∑   
 

 

   

  )           

where     (         ).  Then 

  ( )

    
  ∑      

 

   

                              

                     (  ) 
 

To find the vector    
  that maximizes  ( )  

We set 
  (  )

    
   for all   and solve the resulting set of 

simultaneous equations. 
Now 

∑      

 

   

                                  (  ) 

 
The left hand side is the kth element of    , while the 
right hand side is the kth element of      .  

Thus when all   equations are treated simultaneously, 

it follows that the maximizing value of    must satisfy  
                                              (  ) 

That is, 
(     )     

This is a homogeneous set of   equations in   
unknowns. For non-trivial solution     

|     |                                      (  ) 
   
                           
                   
   is the first eigenvalue of   and the solution    is its 
corresponding eigenvector normalized so that 
       . 
Now we consider the second principal component. We 
look for a second linear combination 

                                            (  ) 
                   
of the original variable   subject to constraint that and 

  
    ∑    

  
     , where             . In 

addition, this line (  ) must be orthogonal to the one 
defining the first principal component, the condition for 

which is that   
      

    ∑    
      

 
   . The 

variance of       

   (  )    
                                (  ) 

Maximizing this variance subject to the constraints 
above will involve two Lagrange multipliers  
(   and m) and thus we must require to maximize 

 (  )    
       (  

     )   (  
   )                 (  ) 

 ∑∑         

 

   

 

   

   (∑   
   

 

   

)

  (∑      

 

   

)                      

Thus,  

  (  )

    
  ∑      

 

   

                              

                     (  ) 

Setting 
  (  )

    
   for all k leads to the equation 

(     )   
 

 
                          (  ) 

By multiplying (24) by   
 , and recalling that        , 

while          we see that 

  
     

 

 
                                       (  ) 

 
By also multiplying (24) by     and remembering that 

        however yield   
      . Since   

     is a 

scalar quantity and   is a symmetric matrix then 
  
       

      . Substituting in (25) thus yields 

   , and  from (24) we see that the coefficient of 

the second principal component also satisfy (  
   )  =0. The fact that the variance of the second 
principal component must be maximum after the first 
component has been accounted for shows that the 
coefficient of the second principal component (  ) are 

giving by the elements of the eigenvector      
correspond to the second largest eigenvalue    of  . 

Continuing in this manner, the element of      turn out 

to be the eigenvector associated with jth largest 
eigenvalue   . 

 
3.0 Numerical Application 
3.1 Source of Data 
The two data sets we used in this study are published 
data on C   Emission of 2011 and their possible 
correlates for some countries (United States, China, 
Russia, India, Japan, Germany, Canada, and United 
Kingdom) and 2015 Nigeria’s presidential election 
(INEC Nigeria 2015). The possible correlate for C   
emission we considered includes GDP, Industrial 
output, export output, energy consumption and 
manufacturing output. In the 2015 Nigeria’s 
presidential election the votes of 14 registered political 
parties for the 36 states of the Federation including 
the Federal Capital Territory were considered. 
4.0 Analyses and Results 
Principal component analyses of the original data sets 
were computed to enable us to reduce the dimension 
of the data sets. In C   emission data, two principal 
components (PCs) that account for more than 80 
percent of the total variation in the original data were 
selected. In 2015 Nigeria’s presidential election data, 
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four principal components were selected. The 
selected principal components from the original data 
sets were used to transform the original data sets. 
The cluster analyses of the original data sets and that 
of the transformed data (PC data) were done using 
Minitab computer package. The dendrograms of few 
out of  gthe many analyses are shown in the following 
figures below: 
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Fig. 2a: Single linkage Cluster of C   Emission 
(Original data) 
 
 In fig. 2a we observed the existence of four clusters 
thou the clusters seem to overlap. In that dendrogram 
Russia, India, and Canada fall in one group with 
similarity rate of 96.29 percent; Germany and UK fall 
in a group with similarity rate of 94.18 percent; China 
joins the existing two groups with similarity rate of 
89.02 percent while Japan joins them with similarity 
rate of 82.71 percent. With the rates at which China 
and Japan joined the clearly observed two groups 
they are merged to form a group. US is on a separate 
group and it joins other group at similarity rate of 
36.61 percent. 
In fig. 2b four non-overlapping clusters were 
observed. Russia, and India are joined together at 
similarity rate of 99.03 percent; Canada joins them 
with similarity rate of 96.58 percent. With this rate at 
which Canada joins the Russia and India we decided 
to put Russia, India, and Canada in one group thereby 
disregarding the group of Russia and India alone. 
Germany and UK fall in a group with similarity rate of 
93.01 percent; China joins the existing two groups 
with similarity rate of 87.04 percent while Japan joins 
them with similarity rate of 85 52 percent. These rates 
of China and Japan made us to group them in one 
group. US is on a separate group and it joins already 
existing groups at similarity rate of 35.65 percent. 
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Fig. 2b: Single linkage Cluster of C   Emission (PC 
data) 
Figures 2a and 2b also revealed that among the eight 
countries we studied that Russia and India are among 
the countries that produce least C  emission. Among 

those countries US is the highest producers of C   
emission.  
From fig. 3a the number of groups cannot be clearly 
stated because the clusters are overlap. But from fig. 
3b, five groups (or clusters) were observed. From that 
dendrogram were observed that Abia, Beyelsa, 
Ebonyi, Cross River, Anambra, Enugu, and Imo have 
the same voting pattern and as a result they are 
merged together to form a group.  
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Fig. 3a: Single linkage Cluster of 2015 Nigeria’s 
Presidential Election (Original Data) 
 
Adamawa, Osun, Kogi, Ogun, Benue, Ondo, Lagos, 
Kwara, Edo, Ekiti, Nasarawa, Taraba, FCT, Oyo, 
Gombe, and Plateau have similar voting pattern and 
for this they are grouped together in one cluster. 
Jigawa and Bauchi have similar voting pattern and 
they are grouped in one cluster.  Kaduna, Sokoto, 
Niger, Yobe, Zamfara, Kebbi, and Borno have similar 
voting pattern and for this they formed a group. Kano, 
Katsina, Rivers, Delta and Akwa Ibom have similar 
voting pattern and they are grouped together in one 
cluster. Observe that the states that formed the last 
cluster are from the geographical regions (South 
south and North west) from which the two major 
contenders President Buhari and Ex-president 
Goodlock came from.  
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From the five groups (or clusters) we obtained, we 
discovered that all the South East states are in the 
same group; all the South West states are in the same 
group; the North central states apart from Kaduna and 
Niger fall in the same group. 
From figure 3b also we observed that the highest 
number of votes came from Kano. 
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Fig. 3b: Single linkage Cluster of 2015 Nigeria’s 
Presidential Election (PC data) 
 
5.0 Conclusion  
From the result of the analyses we conclude that 
Principal component analysis is very efficient input 
tool to cluster analysis in grouping objects into 
cluster(s) because it produces already existing pattern 
in original data and also gives better display than the 
original data especially when the number of variables 
are many. Other hierarchical clustering methods we 
studied (complete linkage, average linkage, and 
centroid linkage) show the same result. The Minitab 
package was chosen for this study because it 
produces clear dendrogram than other statistical 
packages available to us. 
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