Fixed Point Results With Rational Expressions On Fuzzy Mappings

Manoj Kumar Shukla¹ and Surendra Kumar Garg²

¹Department of Mathematics, Govt. Model Science College, Jabalpur, (MP)

manojshukla012@yahoo.om

²Department of Mathematics, Shri Ram Institute of Technology, Jabalpur, (MP), India

Abstract—The present paper we prove some fixed point theorems and common fixed point results for fuzzy mappings over a complete metric space which include the rational expressions in these types results. AMS Subject Classification: 47 H10, 54H25

Keywords—Fuzzy metric space, sequence, common fixed point.

Introduction

In 1965 the fuzzy sets was introduced by Zadeh [21]. After that a lot of work has been done regarding fuzzy sets and fuzzy mappings. The concept of fuzzy mappings was first introduced by Heilpern [10], he proved fixed point theorem for fuzzy contraction mappings which is a fuzzy analogue of the fixed point theorem for multi valued mappings of Nadler [15], Vijayraju and Marudai [19] generalized the Bose and Mukherjee's [2] fixed point theorems for contractive types fuzzy mappings. Marudai and Srinivasan [14] derived the simple proof of Heilpern's [10] theorem and generalization of Nadler's [15] theorem for fuzzy mappings.

Bose and Sahani [3], Butnariu [4,5,6], Chang and Huang [7], Chang [8], Chitra [9], Som and Mukharjee [18] studied fixed point theorems for fuzzy mappings. Lee and Cho [12] described a fixed point theorem for contractive type fuzzy mappings which is generalization of Heilpern's [10] result. Lee, Cho, Lee and Kim [13] obtained a common fixed point theorem for a sequence of fuzzy mappings satisfying certain conditions, which is generalization of the second theorem of Bose and Sahini [3].

Recently, Rajendran and Balasubramanian [17] worked on fuzzy contraction mappings. More recently Vijayraju and Mohanraj [20] obtained some fixed point theorems for contractive type fuzzy mappings which are generalization of Beg and Azam [1], fuzzy extension of Kirk and Downing [11] and which obtained by the simple proof of Park and Jeong [16]. In the present paper we are proving some fixed point and common fixed point theorems in fuzzy mappings

containing the rational expressions.

Preliminaries

To prove the results we need following definitions and assumptions:-

Fuzzy Mappings: Let X be any metric linear space and d be any metric in X. A fuzzy set in X is a function with domain X and values in [0, 1]. If A is a fuzzy set and $x \in X$, the function value A(x) is called the grade of membership of x in A. The collection of all fuzzy sets in X is denoted by F(x).

Let $A\in F(x).and \ \alpha\in [0,\ 1].The set <math display="inline">\alpha$ –level set of A, denoted by A_α

 $A_{\alpha} = \{x: A(x) \geq \alpha\} \text{ if } \alpha \in [0, 1],$

 $A_0 = \{x : A(x) > 0\}$, whenever B is clouser of B

Now we distinguish from the collection F(x) a sub collection of approximate quantities, denoted W(x).

Definition 2.1: A fuzzy subset A of X is an approximate quantity iff its α -level set is a compact subset (non fuzzy) of X for each $\alpha \in [0, 1]$, and $\sup_{x \in X} A(x) = 1$

When $A \in W(x)$ and $A(x_0) = 1$ for some $x_0 \in W(x)$, we will identify A with an approximation of x_0 . Then we shall define a distance between two approximate quantities.

Definition 2.2: Let A, B \in W(x), $\alpha \in [0,1]$, define $p_{\alpha}(A,B) = \inf_{x \in A_{\alpha}, y \in B\alpha} d(x, y), D_{\alpha}(A,B)$

$$= dist(A_{\alpha}, B_{\alpha}), d(A, B) = \sup D_{\alpha}(A, B)$$

Where dist. is Hausdorff distance. The function p_{α} is called α -spaces, and a distance between A and B. It is easy to see that p_{α} is non decreasing function of α . We shall also define an order of the family W(x), which characterizes accuracy of a given quantity.

Definition 2.3: Let A, B \in W(x). An approximate quantity A is more accurate then B, denoted by A \subset B, iff A(x) \leq B(x), for each x \in X.

Now we introduce a notion of fuzzy mapping, i.e. a mapping with value in the family of approximate quantities.

Definition 2.4: Let X be an arbitrary set and Y be any metric linear space. F is called a fuzzy mapping iff F is mapping from the set X into W(Y), i.e., $F(x) \in W(Y)$ for each $x \in X$

A fuzzy mapping F is a fuzzy subset on $X \times Y$ with membership function F(x, y).The function value F(x, y) is grade of membership of y in F(x).

Let $A \in F(X)$, $B \in F(Y)$ the fuzzy set $F^{-1}(B)$ in F(X), is defined as

 $F^{-1}(B)(x) = \sup_{y \in Y} (F(x, y) \cap B(y))$ where $x \in X$ First of all we

shall give here the basic properties of α -space and α -distance between some approximate quantities.

Lemma 1: Let $x \in X$, $A \in W(X)$, and $\{x\}$ be a fuzzy set with membership function equal a characteristic function of set $\{x\}$. If $\{x\}$ is subset of a then $p_{\alpha}(x, A) = 0$ for each $\alpha \in [0, 1]$.

Lemma 2: $p_{\alpha}(x,A) \leq d(x,y) + p_{\alpha}(y,A)$ for any $x, y \in X$.

Lemma 3: If $\{x_0\}$ is subset of A, then $p_{\alpha}(x_0, B) \le D_{\alpha}(A, B)$ for each $B \in W(X)$.

Lemma 4[12]: Let (X, d) be a complete metric linear space, T be a fuzzy mapping from X into W(X) and $x_0 \in X$, then there exists $x_1 \in x$ such that $\{x_1\} \subset T\{x_0\}$

Lemma 5[13]: Let A, $B \in W(X)$ then for each $\{x\} \subset A$, there exists $\{y\} \subset B$ such that $D(\{x\}, \{y\}) \leq D(A, B)$

Let X be a non empty set and I = [0, 1].A fuzzy set of X is an element of I^x. For A, B \in I^x we denote A \subseteq B if and only if A(x) \leq B(x) for each x \in X.

Definition (2.5)[15]: An intuitionist fuzzy set (i-fuzzy set) a of X is an object having the form $A = \langle A^1, A^2 \rangle$,

where A¹, A² \in I^x and A¹(x) + A²(x) \leq 1 for each x \in X. We denote by IFS(X) the family of all i-fuzzy sets of X

Definition (2.6)[14]: Let x_{α} be a fuzzy point of X. We will say that $\langle x_{\alpha}, 1 - x_{\alpha} \rangle$ is an i-fuzzy point of x and it will be denoted by $[x_{\alpha}]$.

In particular $[x] = \langle \{x\}, 1 - \{x\} \rangle$ will be called an ipoint of X.

Definition (2.7)[15]: Let A, $B \in IFS(X)$. Then A \subset B if and only if A¹ \subset B¹ and B² \subset A²

Remark 2: Notice $[x_{\alpha}] \subset A$ if and only if $x_0 \subset A^1$ Let (X, d) be a metric linear space. The α - level set of A is denoted by

$$A_{\alpha} = \left\{ x : A(x) \ge \alpha \right\} \text{ if } \alpha \in \left] 0, 1 \right] \text{ and } A_0 = \left\{ x : A(x) \ge 0 \right\},$$

Where B denotes the clouser of (non fuzzy set) B Heilpern [10] called a fuzzy mapping from the set of X into a family W(X) \subset I^x defined as A \in W(X) if and only if A_a is compact and convex in X for each $\alpha \in$]0,1] and

Sup {Ax: $x \in X$ } = 1. In this context we give the following definitions.

Definition (2.8)[6]: Let X be a metric space and $\alpha \in [0, 1]$. Consider the following family

 $W_{\alpha}(X) = \{A \in I^{x} : A_{\alpha} \text{ is nonempty , compact and convex}\}$

Now we define the family if i-fuzzy sets of X as follows:

 $\Phi_{\alpha}(X) = \left\{ A \in IFS(X) : A^{1} \in W_{\alpha}(X) \right\},\$

it is clear that $\alpha \in I, W(X) \subset \Phi_{\alpha}(X)$

Definition (2.9)[14]: Let x_{α} be a fuzzy point of X. we will say that x_{α} is a fixed fuzzy point of the fuzzy mapping F over X if $x_{\alpha} \subset F(x)$ (i.e. the fixed degree of x is at least α). In particular and according to [10], if $\{x\} \subset F(x)$, we say that x is a fixed point of F.

Main Results

Theorem 1: Let $\alpha \in [0, 1]$ and (X, d) be a complete metric space. Let F be continuous fuzzy mapping from X into $W_{\alpha}(X)$ satisfying the following condition:

 $D_{\alpha}(F(x), F(y)) \leq K(M(x, y))$, For all $x, y \in X$ with $x \neq y$, and

$$M(x, y) = \phi \begin{cases} d(x, y).p_{\alpha}(x, Fy), p_{\alpha}(y, Fy).p_{\alpha}(x, Fy), \\ \frac{d(x, y) + p_{\alpha}(x, Fy)}{1 + d(x, y).p_{\alpha}(x, Fy)}, \\ \frac{p_{\alpha}(x, Fx) + p_{\alpha}(x, Fy)}{1 + p_{\alpha}(x, Fx).p_{\alpha}(x, Fy)}, \\ \frac{p_{\alpha}(y, Fy) + p_{\alpha}(x, Fy)}{1 + p_{\alpha}(y, Fy).p_{\alpha}(x, Fy)} \end{cases}$$

for all $K\in(0,1].$ Then there exists $x\in X$ such that x_α is a fixed fuzzy point of F iff $x_0,\,x_1\in X$ such that

$$x_1 \in F(x_0)_{\alpha}$$
 with $\sum_{n=1}^{\infty} k^n d(x_0, x_1) < \infty$. In particular if $\alpha = 1$

then x is a fixed point of F.

Proof: If there exists $x \in X$ such that x_{α} is fixed fuzzy point of F, i.e. $x_{\alpha} \subset F(x)$ then $\sum_{n=1}^{\infty} k^n d(x, x) = 0$. Let $x_0 \in K$ and suppose that there exists $x_1 \in (F(x_0))_{\alpha}$ such that $\sum_{n=1}^{\infty} k^n d(x_0, x_1) < \infty$.

Since $(F(x_1))_{\alpha}$ is a nonempty compact subset of X, then there exists $x_2 \subset (F(x_1))_{\alpha}$, such that $d(x_1, x_2) = p_{\alpha}(x_1, F(x_1)) \leq D_{\alpha}(F(x_0), F(x_1))$ By induction we construct a sequence $\{x_n\}$ in X such that $x_n \subset (F(x_{n-1}))_{\alpha}$,

and $d(x_n, x_{n+1}) \le D_{\alpha}(F(x_n), F(x_{n-1}))$. Since K is given to be the non-decreasing, so $d(x_n, x_n) \le K \{M(x_n, y)\}$

$$= K \phi \begin{cases} d(x_n, x_{n-1}) \ge K \{M(x, y)\} \\ d(x_n, x_{n-1}) \cdot p_a(x_n, F(x_{n-1}), p_a(x_{n-1}, F(x_{n-1}))) \cdot p_a(x_n, F(x_{n-1})), \\ \frac{d(x_n, x_{n-1}) + p_a(x_n, F(x_{n-1}))}{1 + d(x_n, x_{n-1}) p_a(x_n, F(x_{n-1}))}, \\ \frac{p_a(x_n, F(x_n) + p_a(x_n, F(x_{n-1}))}{1 + p_a(x_{n-1}, F(x_{n-1})) + p_a(x_n, F(x_{n-1}))}, \\ \frac{p_a(x_{n-1}, F(x_{n-1})) + p_a(x_n, F(x_{n-1}))}{1 + p_a(x_{n-1}, F(x_{n-1}) p_a(x_n, F(x_{n-1}))}, \\ \frac{d(x_n, x_{n-1}) d(x_n, x_n), (x_{n-1}, x_n) d(x_n, x_n), \\ \frac{d(x_n, x_{n-1}) d(x_n, x_n), (x_{n-1}, x_n) d(x_n, x_n)}{1 + d(x_n, x_n)}, \\ \frac{d(x_n, x_{n+1}) + (x_n, x_n)}{1 + d(x_n, x_{n-1}) d(x_n, x_n)}, \\ \frac{d(x_n, x_{n-1}) d(x_n, x_n), (x_{n-1}, x_n) d(x_n, x_n)}{1 + d(x_n, x_n)} \\ \end{bmatrix}$$

$$=K\varphi\left\{\frac{d(x_{n}, x_{n-1})}{1}, \frac{d(x_{n}, x_{n+1})}{1}, \frac{d(x_{n-1}, x_{n})}{1}\right\}$$

$$= K \left\{ d(x_{n}, x_{n-1}) \right\}$$

= $K(p_{\alpha}d(x_{n-1}, F(x_{n-1}) \le K \left[D_{\alpha} \left(F(x_{n-1}, F(x_{n-2})) \right) \right]$
 $\le K \left(Kd(x_{n-1}, x_{n-2}) \right) \dots K^{n} d(x_{0}, x_{1})$
 $\Rightarrow d(x_{n}, x_{n+m}) \le d(x_{n}, x_{n+1}) + \dots + d(x_{n+m-1}, x_{n+m})$
 $\le K^{n} d(x_{0}, x_{1}) + \dots + K^{n+m-1} d(x_{0}, x_{1})$
 $= \sum_{k=n}^{k=n+m-1} K^{k} d(x_{0}, x_{1})$

Since $\sum_{n=1}^{\infty} k^n d(x_0, x_1) < \infty$ it follows that there exists u

such that $d(x_n,\,x_{n+m}\,) < u \in X$. Therefore the sequence $\{x_n\}$ is a Cauchy sequence in X. So by completeness of X, $\{x_n\}$ converges to $x \in X$. By the help of lemma 1 and 2 we have

$$p_{\alpha}(x, F(x)) \le d(x, x_{n}) + p_{\alpha}(x_{n}, F(x))$$

$$\le d(x, x_{n}) + D_{\alpha}(F(x_{n-1}), F(x))$$

$$\le d(x, x_{n}) + K d(x_{n-1}, x)$$

Consequent ly, $p_{\alpha}(x, F(x)) = 0$, and by lemma 1

Clearly x_{α} is a fixed fuzzy point of the fuzzy mapping F over X. In particular if α = 1 then x is a fixed point of F.

Now we will generalize this theorem for common fixed point.

Theorem 2: Let $\alpha \in]0, 1]$ and (X, d) be a complete metric space. Let T and S be continuous fuzzy mappings from X into $W_{\alpha}(X)$ and F: $X \rightarrow W_{\alpha}(X)$ be a mapping such that

I.
$$F(X) \subset S(X) \cap T(X)$$

II.
$$\{S, F\}$$
 and $\{T, F\}$ are

R-weakly commuting mappings.

III.
$$D_{\alpha}(Fx, Fy) \leq K[M(x, y)]$$

$$\forall x, y \in X \quad \text{with } x \neq y,$$

ſ

where M(x, y) is defined as

$$M(x, y) = K \phi \begin{cases} D_{\alpha}(Sx, Ty) \cdot D_{\alpha}(Fx, Ty), D_{\alpha}(Ty, Fy) \cdot D_{\alpha}(Fx, Ty), \frac{D_{\alpha}(Sx, Ty) + D_{\alpha}(Fx, Ty)}{1 + D_{\alpha}(Sx, Ty) D_{\alpha}(Fx, Ty)}, \\ \frac{D_{\alpha}(Sx, Fx) + D_{\alpha}(Fx, Ty)}{1 + D_{\alpha}(Sx, Fx) D_{\alpha}(Fx, Ty)} \end{cases}$$

Where K is non decreasing function

such that
$$K:[0,\infty) \to [0,\infty)$$
,

K(0) = 0 and $K(t) < t \ \forall t \in (0, \infty)$,

then $\exists x \in X$ such that x_a is common fixed fuzzy point

of S, T and F if and only if $x_0, x_1 \in X$

such that
$$\sum_{n=1}^{\infty} K^n d(x_0, x_1) < \infty$$
. In perticuler if $\alpha = 1$,

then x is common fixed point of S,T and F.

Proof: Let for $x_0 \in X$ there exists x_1 and x_2 such that $x_1 \in (S(x_1))_{\alpha} \subset (F(x_0))_{\alpha}$ And $x_2 \in (T(x_2))_{\alpha} \subset (F(x_1))_{\alpha}$.By induction one can

And $X_2 \in (T(X_2))_{\alpha} \subset (F(X_1))_{\alpha}$. By induction one car construct a sequence { x_n } in X such that

$$x_{2n+1} \in \left(Sx_{2n+1}\right)_{\alpha} \subset \left(F(x_{2n})_{\alpha}\right).$$

and $x_{2n+2} \in (Tx_{2n+2})_{\alpha} \subset (F(x_{2n+1})_{\alpha})_{\alpha}$. Since K is given to be non-decreasing. So $x_{\alpha} d(F(x)_{n+1}) \leq D_{\alpha}(F(x_{n-1}), F(x_n)) \leq K M(x_{n-1}, x_n)$

$$= K \phi \begin{cases} D_{\alpha}(Sx_{n-1}, Tx_{n}).D_{\alpha}(Fx_{n-1}, Tx_{n}), \\ D_{\alpha}(Tx_{n}, Fx_{n}), D_{\alpha}(Fx_{n-1}, Tx_{n}), \\ \frac{D_{\alpha}(Sx_{n-1}, Tx_{n}) + D_{\alpha}(Fx_{n-1}, Tx_{n}), \\ 1 + D_{\alpha}(Sx_{n-1}, Tx_{n})D_{\alpha}(Fx_{n-1}, Tx_{n}), \\ \frac{D_{\alpha}(Sx_{n-1}, Fx_{n-1}) + D_{\alpha}(Fx_{n-1}, Tx_{n})}{1 + D_{\alpha}(Sx_{n-1}, Fx_{n-1})D_{\alpha}(Fx_{n-1}, Tx_{n})} \end{cases}$$
$$= K \phi \begin{cases} d(x_{n-1}, x_{n}).d(x_{n}, x_{n}), d(x_{n}, x_{n-1}, Tx_{n}) \\ \frac{d(x_{n}, x_{n})}{1 + d(x_{n-1}, x_{n})d(x_{n}, x_{n})}, \\ \frac{d(x_{n-1}, x_{n}) + d(x_{n}, x_{n})}{1 + d(x_{n-1}, x_{n})d(x_{n}, x_{n})}, \\ \frac{d(x_{n-1}, x_{n}) + d(x_{n}, x_{n})}{1 + (x_{n-1}, x_{n})(x_{n}, x_{n})} \end{cases}$$

$$= K\left\{d(x_n, x_{n-1})\right\}$$

)

Since $\sum_{n=1}^{\infty} k^n d(x_0, x_1) < \infty$ it follows that there exists u

such that $d(x_n, x_{n+m}) < u \in X$. Therefore the sequence $\{x_n\}$ is a Cauchy sequence in X. So by completeness of X, $\{x_n\}$ converges to $x \in X$. And $(Sx_{2n+1})_{\alpha}$, (Tx_{2n+2}) also converges on X.

Since $\{S,F\}$ and $\{T,F\}$ are R-weakly

commuting mappings.So

 $p_{\alpha}(x, F(x)) \le d(x, x_{n}) + p_{\alpha}(x_{n}, F(x))$ $\le d(x, x_{n}) + D_{\alpha}(F(x_{n-1}), F(x))$

 $\leq d(x, x_n) + K d(x_{n-1}, x)$

Consequently, $p_{\alpha}(x, F(x)) = 0$,

and by *lemma* 1 $x_{\alpha} \subset F(x)$

Clearly x_{α} is a common fixed fuzzy point of the fuzzy mapping F, S and T over X. In particular if $\alpha = 1$ then x is a common fixed point of F, S and T.

References

[1] I. Beg and A. Azam,"Fixed points of asymptotically regular multivalued mappings" J. Austral. Math. Soc. (series-A), 53(1992), 313-326.

[2] R. K. Bose and R. N. Mukherjee, "Common fixed points of multi valued mappings", Tamkang. J. Math. Soc. 215 (1976), 241-251.

[3] R. K Bose and D. Sahani, "Fuzzy mappings and fixed point theorems", Fuzzy Sets and Systems, 21 (1987), 53-58.

[4] D. Butnariu, "Fixed points for Fuzzy mappings", Fuzzy Sets and Systems,7 (1982), 191-207.

[5] D. Butnariu, "A Fixed point theorem and applications to Fuzzy games", Revue Roumaine Math. Pure Appl. 24 (10)(1979),1424-1432.

[6] D. Butnariu, "An existence theorem for possible solutions of a two-person Fuzzy Game", Bull. Math. Soc.Sci. Math., R. S. Roumaine 23 (71) (1) (1979), 29-35.

[7] S.S.Chang and N.J.Huang, "Fixed point theorems for generalized fuzzy mappings", Acta of Engineering Math, 2(1984),135-137. [8] S.S. Chang, "Fixed point theorems for fuzzy mappings", Kexue Tongbao, 14 (1984), 833-836.
[9] A, Chitra, "A note on the fixed points of fuzzy maps on partially ordered topological spaces", Fuzzy

Sets and Systems 19 (1986), 305-308. [10] S. Heilpern, "Fuzzy mappings and fixed point theorems", J. Math. Anal. Appl. 83 (1981), 566-569. [11] W.A. Kirk and D. Downing, "fixed point theorems for set-valued mappings in metric and Banach spaces", Math. Japonica, 22(1977), 99-112

[12] B.S. Lee and S.J. Cho, "Common fixed point theorems for sequence of fuzzy mappings", Fuzzy Sets and Systems, (1993),

[13] B.S. Lee, S.J. Cho, G.M. Lee and D.S. Kim, "Generalized common fixed point theorems for a sequence of fuzzy mappings", Internat.J.Math. and Math.Sci.Vol.17 No.3 (1994) 437-440.

[14] M. Marudai and P.S. Srinivasan, "Some remarks on Heilperns, generalization of Nadlers, Fixed point theorems", J. Fuzzy Math. Vol.12,(1) (2004),137-145.
[15] S. B. Nadler, "Multi valued contraction mappings", Pacific J. Math. 30(1969), 475-488.

[16] J.Y. Park and J.U. Jeong, "Fixed point theorems for fuzzy mappings", Fuzzy Sets and Systems, 87 (1997), 111-116.

[17] G. Rajendran and G. Balasubramanian, Fuzzy contraction mapping theorem for fuzzy metric spaces, Bull. Calcutta Math. Soc.94(6)(2002) 453-458.

[18] T. Som and R. N. Mukherjee, "Some fixed point theorems for fuzzy mappings", Fuzzy Sets and Systems, 33 (1989), 213-219.

[19] P. Vijayraju and M. Marudai, "Fixed point theorems for fuzzy mappings", fuzzy Sets and Systems 135, 3(2003), 401-408.

[20] P. Vijayraju and R. mohanraj, "Fixed point theorems for pair of Fuzzy mappings", The Journal of fuzzy Mathematics Vol.15, No.1, (2007) 43-51.

[21] L. A. Zadeh, "Probability measures of fuzzy events", J. Math. Anal. Appl. 23 (1968), 421-427..