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Abstract— This paper deal with the problem 
about active control of parametric resonance of 
pinned-pinned pipes conveying . the active 
controllers are designed in view of the parametric 
resonance. Piezoelectric ceramics are used as 
actuators and mode transducer in control. 

The core part of the paper is the design of 
controllers. First, on the basis of linear quadratic 
optimal control theory, the optimal controller is 
designed in accordance with the linear time 
invariant part of the system, because the 
stabilities of the pipes are mainly determined by 
their linear part and the speed of fluid varies in 

small  range. Second， on the basis of optimal 
controller. 

The validity of controllers is examined by 

numerical simulation． The result of the numerical 
simulation states that every controller has its 
characteristic respectively and is very effective to 
control the parametric resonance of the pipes and 

to resist parametric turbulence． In addition, the 
impact of the system parameters on performance 

of the controllers is discussed in this paper． 

Keywords— Smart structure, Pipe conveying 
fluid, Active control, Piezoelectric Actuator. 

1.INTRODUCTION . 

Pipes conveying flow, a flow conveying carrier, has 
widely applied for those engineering field which 
contains fuel supply pipes of Aerospace engines, 
inflow pipes of hydro turbine, and oil conveying flow of 
petrochemical enterprise. In addition, various type of 
pipes are generally utilized in large scale vehicles and 
constructional engineering. The proposed research 
indicates that fluid action could result in severe 
vibration of pipes system after disturbance. The 
vibrations could cause noise, pipeline breaks and fluid 
leakage when the vibration strength reaches a certain 
level and last longer. Therefore, the overseas studies 
have paid attention to the issue of pipes vibration 
control with effective active control methods.  
The structure which contains mass and elasticity 
could generate vibration easily during movements. For 
the sake of these issues, designers have composed 
many methods. Firstly, let inherent frequency away 
from excitation frequency, which makes inherent 
frequency calculation become core calculation content 
on early vibration analyses. Secondly, some vibration 
absorption and isolation devices are added on the 

structure. For instance, additional elastic damper 
installed on bridge, high tension cable, and high 
buildings; rotary vacuum cleaner installed on diesel 
engine principal axis; spring added between car 
wheels and body; elastic gasket used during 
instruments transportation. These devices use the 
combination effects of additional mass, spring or 
damper to absorb or isolate system vibrations without 
extra energy, which calls passive absorber. It is still a 
practical and effective vibration attenuation method at 
present, because it could restrains system narrow 
band vibration primly. While, with the development of 
novel technologies, a new type of vibration appeals 
which contains low inherent frequency and wide 
frequency domain. For this type of vibration, passive 
vibration damping is not applicable. Therefore, a navel 
control method called active control which integrates 
external energy as control force to restrain system 
vibration has been developed rapidly and widely 
utilized in several domains. To compare with passive 
control, active control has better flexibility and 
environmental adaptability, also can effectively control 
extra low frequency vibration and wide frequency 
vibration. Recently, the main adopted active control 
strategies include pole assignment control, optimal 
control, self-adaptation control, fuzzy control, and 
artificial neural network control et.al.   
At present, a large number of articles at home and 
abroad focus on pipes conveying fluid and flexible 
beam structure vibration control field. For example,  
[1]and [2] introduced independent mode space 
concept in optimal control and model reference self-
adaptation control, and adopt ceramic piezoelectric 
sheets as simulator to control cantilever pipes 
conveying fluid vibration under steady flow. [3] 
Conducted active control on nonlinear restrains 
cantilever pipes conveying fluid vibration under steady 
flow with ceramic piezoelectric sheets as simulator. [4] 
Conducted active control on fixed at both ends of 
pipes vibration under over critical velocity steady flow 
based on optimal independent mode space control 
method with ceramic piezoelectric sheets as 
simulator. [5] studied cantilever pipes conveying fluid 
vibration control under steady flow, and flexible 
cantilever beam vibration control. All of above articles 
used ceramic piezoelectric sheets as simulator.  
These articles showed ceramic piezoelectric sheets 
have been widely applied for control simulator and 
mode sensor design. Using ceramic piezoelectric 
sheets as mode sensor takes the advantage of direct 
piezoelectric effects of piezoelectric ceramic.  Direct 
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piezoelectric effects refer to some mediums 
deformations under force due to lack of symmetric 
centre, and caused surface electrification. On the 
contrary, adding exciting electric field will cause 
mechanical deformations, which calls inverse 
piezoelectric effects.  Based on this feature, ceramic 
piezoelectric sheets are designed as simulator. 
[6][7][8][9][10] Implemented active control for different 
system vibration problems via ceramic piezoelectric 
sheets.The most popular and dangerous vibration in 
engineering field is pulsating flow caused motions. 
Normally, pipes flow are supported by forcing from 
compressor or pump, while, due to the intermittent of 
this method, fluid will generate pulsating pressure, 
and forms pulsating flow. Research indicated that 
pinned both ends of pipes could lose stability caused 
by parameter resonance. Most of existing articles 
focused on pipes conveying fluid vibration control 
problem under steady flow. The pipes vibration control 
problems are still open. Therefore, the proposed 
research will focus on active control problems of 
pinned at both ends of pipes conveying fluid 
vibrations. 

2.SYSTEM DYNAMIC 

The equation of motion for the transverse vibration of 
the pipe is given as:Maintaining the Integrity of the 
Specifications: 

      (1+ 𝑎
𝜕

𝜕𝑡
)𝐸𝐼

𝜕4𝑦

𝜕𝑥4
+ {𝑀𝑈2 − 𝑇 + 𝐴�̅�(1 − 2𝜈𝛿) −

[(𝑀 +𝑚)𝑔 −𝑀�̇�](𝐿 − 𝑥)}
𝜕2𝑦

𝜕𝑥2
  

−[(1 + 𝑎
𝜕

𝜕𝑡
)
𝐸Ã

2𝐿
∫ (𝑦′)2
𝐿

0
𝑑𝑥]

𝜕2𝑦

𝜕𝑥2
+ (𝑀 +𝑚)

𝜕2𝑦

𝜕𝑡2
+

2𝑀𝑈
𝜕2𝑦

𝜕𝑥𝜕𝑡
+ (𝑀 +𝑚)𝑔

𝜕𝑦

𝜕𝑥
= 0                                       (2.1)                                                        

 

The material of pipes is viscoelastic, and corresponds 
with Kelvin-Voigt assumption which stress-strain 
satisfies: 

𝜎 = (1 + 𝑎 
𝜕

𝜕𝑎
)𝐸𝜀 

𝑀- fluid mass per unit length, 𝑈-fluid velocity, 𝑃-per 
unit area fluid pressure, 𝐴- flow cross section area 
𝑄 - shear force on pipe unit cross section; 𝑇 - axial 
force on pipe unit cross section; 𝑚- per unit length 
pipe mass. In order to obtain generalized motion 
differential equation, and avoid unit effects, the 
dimensionless is necessary for motion equation 
(2.15). Meantime, in order to simplify analyzing 
questions, dimensionless parameter is introduced and 
conducts changes to transform partial       differential 
equation (2.15) into dimensionless differential 
equation. Dimensionless parameters are: 

  𝜂 =
𝑦

𝐿
  , 𝜉 =

𝑥

𝐿
   ,   𝑔 ̅ =

𝑀+𝑚

𝐸𝐼
𝐿3𝑔   ,   

𝜏 = (
𝐸𝐼

𝑀+𝑚
)

1

2
 
𝑡

𝐿2
   , 𝛤 =

𝑇𝐿2

𝐸𝐼
, 𝛱 =

�̅�𝐴𝐿2

𝐸𝐼
    

  𝛾 =
Ã𝐿2

2𝐼
 , 𝑢 = (

𝑀

𝐸𝐼
)

1

2
𝐿𝑈  , 𝑀𝑟 = (

𝑀

𝑀+𝑚
)

1

2
  ,    

 𝛼 = (
𝐸𝐼

𝑀+𝑚
)

1

2
 
𝑎

𝐿2
                                                 (2.2)        

Plugging (2.2) into (2.1), the dimensionless differential 
equation is found: 

     𝜂(4) + 𝛼�̇�(4) + [𝑢2 − 𝛤 + 𝛱(1 − 2𝜈𝛿) +

(𝑀𝑟�̇� − 𝑔)(1 − 𝜉) −    − 𝛾 ∫ (𝜂
′)2

1

0
𝑑𝜉 −

2𝛼𝛾 ∫ 𝜂′
1

0
𝜂′̇𝑑𝜉] 𝜂′′ + �̈� + 2𝑀𝑟𝑢𝜂

′̇ + �̅�𝜂′ = 0       (2.3) 

In the equation, (  )′ refers 
𝜕(  )

𝜕𝜉
, (  )̇  refers 

𝜕(  )

𝜕𝜏
. 

Placing nonlinear part on the right side of equation, 
the dimensionless equation then is found: 

�̈� + 2𝑀𝑟𝑢0𝜂
′̇ + 𝛼�̇�(4) + 𝜂(4) + [𝑢0

2 − 𝛤 +𝛱(1 − 2𝜈𝛿) −
�̅�]𝜂′′ + �̅�𝜉𝜂′′ + �̅�𝜂′  

 =   +2𝛼𝛾𝜂′′ ∫ 𝜂′
1

0
𝜂′̇𝑑𝜉 + 𝛾𝜂′′ ∫ (𝜂′)2

1

0
𝑑𝜉                  (2.4)                                                                                

In order to simplify the analyses of motion differential 
equation, the dimensionless high order differential 
equation (2.4) is discretized and decrease order to a 
lower order differential equation via Ritz-Galerkin 
method. Supposing displacement 𝜂  as a function of 
variables 𝜉 and 𝜏, and its Ritz-Galerkin expression will 
be: 
                    𝜂(𝜉, 𝜏) = ∑ 𝜙𝑖(𝜉)𝑞𝑖(𝜏)

∞
𝑖=1                          (2.5)                                                           

 
   𝑞𝑖(𝜏)  is an generalized coordinate, 𝜙𝑖(𝜉)  is an 
comparison function which satisfies all the boundary 
conditions. Selecting the first two orders conducts 
researches, which is: 

   𝜂(𝜉, 𝜏) = ∑ 𝜙𝑖(𝜉)𝑞𝑖(𝜏)
2
𝑖=1 = 𝜙1(𝜉)𝑞1(𝜏) +

𝜙2(𝜉)𝑞2(𝜏)                                                       (2.6) 
 For pined at both ends of pipes, its vibration model 
function is: 

                         𝜙𝑖 = √2 𝑠𝑖𝑛(𝜆𝑖𝜉), 𝑖 = 1,2                    (2.7)                                                           
𝜆1 and 𝜆2 are pipe's eigenvalues, 𝜆1 = 𝜋, 𝜆2 = 2𝜋 are 
for pinned at both ends of pipes (2.6) is changed into 

matrix type, supposing  𝛷 = {

𝜙1 
𝑑
𝑑
𝜙2

} , 𝑄 = {

𝑞1 
ℎ
𝑗
𝑞2

}, then 

                                         𝜂(𝜉, 𝜏) = 𝛷𝑇𝑄 = 𝑄𝑇𝛷              

Plugging (2.6) into (2.19), and supposing 

                     𝑇 = 𝛤 −𝛱(1 − 2𝜈𝛿), then: 

𝜙𝑇�̈� + 2𝑀𝑟𝑢0𝜙
′𝑇�̇� + 𝛼𝜙(4)𝑇�̇� + (𝑢0

2 − 𝑇 − �̅�)𝜙′′𝑇𝑄 +
�̅�𝜉𝜙′′𝑇𝑄 + �̅�𝜙′𝑇𝑄+ +𝜙(4)𝑇𝑄 =

+2𝛼𝛾 ∫ 𝑄𝑇𝜙′𝜙′𝑇�̇�
1
0 𝑑𝜉𝜙′′𝑇𝑄 +𝛾 ∫ 𝑄𝑇𝜙′𝜙′𝑇𝑄𝑑𝜉𝜙′′𝑇𝑄

1
0   

                                                                        (2.9) 

By multiplying 𝛷 = {

𝜙1 
𝑑
𝑑
𝜙2

}  with two sides of (2.9) and                        (2.9) 

                                                                                                                                                                                                                                                                                                                                                                            
then transform it into below type: 

𝛷𝛷𝑇�̈� + 2𝑀𝑟𝑢0𝛷𝛷
′𝑇�̇� + 𝛼𝛷𝛷(4)𝑇�̇� + (𝑢0

2 − 𝑇 −

�̅�)𝛷𝛷′′𝑇𝑄 + �̅�𝜉𝛷𝛷′′𝑇𝑄 ++�̅�𝛷𝛷′𝑇𝑄+𝛷𝛷(4)𝑇𝑄 =
2𝛼𝛾 ∫ 𝑄𝑇𝛷′𝛷′𝑇

�̇�
1

0
𝑑𝜉𝛷𝛷′′𝑇

𝑄 +

𝛾𝑄𝑇 ∫ 𝛷
′𝛷′𝑇

𝑄𝑑𝜉𝛷𝛷′′𝑇
𝑄

1

0
                                (2.10) 
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Conducting 𝜉 integral to (2.10) at interval [0, 1], and 

substitutions based on orthogonality of trigonometric 

function: 

∫ 𝜙𝜙𝑇𝑑𝜉
1

0
= 𝐼 ,    ∫ 𝜙𝜙′𝑇𝑑𝜉 = 𝐵 

1

0
, ∫ 𝜙′𝜙′𝑇𝑑𝜉

1

0
= −𝐶,

∫ 𝜙𝜙′′𝑇𝑑𝜉 = 𝐶
1

0
   

∫ 𝜉𝜙𝜙′′𝑇𝑑𝜉 = 𝐷 
1

0
∫ 𝜙𝜙(4)𝑇𝑑𝜉 = 𝛬 = (

𝜆1
4   

 𝜆2
4)

1

0
(2.11)                                               

Using equations of (2.11), the discretized equation 
after reduced order through (2.10) is showed below: 

𝐼�̈� + 2𝑀𝑟𝑢0𝐵�̇� + (𝑢0
2 − 𝑇 − �̅�)𝐶𝑄 + 𝛼𝛬�̇� + �̅�𝐷𝑄 +

�̅�𝐵𝑄+ 𝛬𝑄 = −2𝛼𝛾𝑄𝑇𝐶�̇�𝐶𝑄 − 𝛾𝑄𝑇𝐶𝑄𝐶𝑄             (2.12)                                                                               
Supposing E=B+D-C, then (2.12) will be further 
transformed into: 

𝐼�̈� + (2𝑀𝑟𝑢0𝐵 + 𝛼𝛬)�̇� + [(𝑢0
2 − 𝑇)𝐶 + 𝛬]𝑄 + 𝛼𝛬�̇� +

�̅�𝐸𝑄 = −2𝛼𝛾𝑄𝑇𝐶�̇�𝐶𝑄 − 𝛾𝑄𝑇𝐶𝑄𝐶𝑄                       (2.13)                        

                                                                                                   
In the equation, 

𝐵 = (
0 −𝑏
𝑏 0

)  ,    𝐶 = (
𝑐11  −𝑏
𝑏 𝑐22

) ,     

  𝐸 = (
−
1

2
𝑐11    𝑒

𝑒 −
1

2
𝑐22
)                                              

For pinned at both ends of pipes, it is calculated that: 

 𝑏 =
8

3
  ,      𝑐11 = −𝜋

2 ,    𝑐22 = −4𝜋
2 ,     𝑒 =

40

9
       (2.15)                                                  

Plugging (2.15) into (2.13), after arrangements: 

 (
�̈�1
 
�̈�2

)+ (
𝛼𝜆1

4 −2𝑀𝑟𝑢0𝑏
  

2𝑀𝑟𝑢0𝑏 𝛼𝜆2
4

)(
�̇�1
 
�̇�2

)   +

  (

(𝑢0
2 − 𝑇 −

1

2
�̅�) 𝑐11 + 𝜆1

4   �̅�𝑒
  

�̅�𝑒 (𝑢0
2 − 𝑇 −

1

2
�̅�) 𝑐22 + 𝜆2

4
)  

(

𝑞1
 
𝑞2
) = − (

𝑄1
 
𝑄2

 )                                                   (2.16) 

𝑄 refer to pulsating nonlinear part, the specific 
expressions is: 

(
𝑄1
 
𝑄2

 ) = 2𝛼𝛾(𝑞1 𝑞2)(
𝑐11 0
  
0 𝑐22

)(
�̇�1
 
�̇�2

) 

(
𝑐11 0
  
0 𝑐22

)(

𝑞1
 
𝑞2
 ) + 𝛾(𝑞1 𝑞2)(

𝑐11 0
  
0 𝑐22

)   

(

𝑞1
 
𝑞2
 ) (

𝑐11 0
  
0 𝑐22

)(

𝑞1
 
𝑞2
 )                                         (2.17) 

Suppose, 

𝑎1 = −(𝑢0
2 − 𝑇 −

1

2
�̅�) 𝑐11 + 𝜆1

4
  

𝑎2 = −�̅�𝑒 ,   𝑎3 = −𝛼𝜆1
4,   𝑎4 = 2𝑀𝑟𝑢0𝑏         

𝑏2 == −(𝑢0
2 − 𝑇 −

1

2
�̅�) 𝑐22 + 𝜆2

4
  

𝑏4 = −𝛼𝜆2
4
  

and 

(

 
 
 

𝑥1
 
𝑥2
 
𝑥3
 
𝑥3)

 
 
 
=

(

 
 
 

𝑞1
 
𝑞2
 
�̇�1
 
�̇�2)

 
 
 

                                               (2.18) 

Thus, (2.13) can be change into first mode state 
differential equation, which is: 

(

 
 
 

𝑥1
 
𝑥2
 
𝑥3
 
𝑥3)

 
 
 
=

(

 
 
 
 

0
 
0
 
𝑎1
 
𝑎2

     

0
 
0
 
𝑎2
 
𝑏2

    

1
 
0
 
𝑎3
 

−𝑎4

    

0
 
1
 
𝑎4
 
𝑏4

 

)

 
 
 
 

+ − 

(

 
 
 
 

0
 
0
 
𝑄1
 
𝑄2)

 
 
 
 

            (2.19)                                                     

The system motion response simulation will base on 
this equation. 

3.SYSTEM DYNAMIC 

The pure linear control system is not exist because it 
is more or less nonlinear in real control system, while 
under certain conditions, it has not significant errors if 
some systems are managed with linear methods. The 
linear control system design is applicable for real 
projects. In this chapter, ceramics piezoelectric sheets 
are applied for designing control actuators. Controlled 
system functions are attained by adding control torque 
generated from piezoelectric sheets stretch of the 
original uncontrolled system. Based on the optimal 
control theories of second mode performance index, 
the optimal controller is designed aimed at the linear 
time-invariant of controlled system. Finally, date 
simulation methods are applied for evaluate the 
validation of controller. 

3.1Controlled system equations of motion  

Figure 3.1 shows the controlled system model of 
pipes conveying fluid.  

 

(2.18)  
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Figure 3.1pinned at both ends of pipes conveying fluid 
model 
Two piezoelectric sheets are sticked symmetrically on 
the left and right side of pipes, and located on the 
same layer with pipes axis. 𝑥𝑎  and 𝑥𝑏  are the 
distances of both ends of piezoelectric  sheets and the 
top of pipes respectively. Due to the stretches of 
piezoelectric sheets, pipes will be influenced by torque 
when applying voltage at two sides of piezoelectric 
sheets simultaneously. Torque equation is shown 
below: 

    𝑀𝑓 =
4𝜓𝐸𝐴𝑑𝑎[(𝑟+𝑡1)

3−𝑟3]𝑠𝑖𝑛𝜑

3(1+𝜓)𝑡1
𝑉 = 𝐶𝑚𝑉                       (3.1)                                                              

𝐸𝐼 and 𝐸𝐴𝐼𝐴 are the flexural stiffness of pipes and 
piezoelectric sheets respectively. 𝑟  is outside 
diameter. 𝑑𝑎  is piezoelectric constant .𝑡1  is the 
thickness of piezoelectric sheets. 𝜑 is the half angle 
envelop of piezoelectric sheets. V is controlled input 
voltage. The controlled system nonlinear equation of 
motion is generated by adding control torque into 
uncontrolled pipes equation of motion: 

(1 + 𝑎
𝜕

𝜕𝑡
)𝐸𝐼

𝜕4𝑦

𝜕𝑥4
+ {𝑀𝑈2 − 𝑇 + �̅�𝐴(1 − 2𝜈𝛿) −

[(𝑀 +𝑚)𝑔 −𝑀�̇�](𝐿 − 𝑥)}
𝜕2𝑦

𝜕𝑥2
−

[(1 + 𝑎
𝜕

𝜕𝑡
)
𝐸Ã

2𝐿
∫ (𝑦′)2
𝐿

0
𝑑𝑥]

𝜕2𝑦

𝜕𝑥2
+ (𝑀 +𝑚)𝑔

𝜕𝑦

𝜕𝑥
=

𝜕

𝜕𝑥
{𝐶𝑚𝑉[𝛿(𝑥, 𝑥𝑎) − 𝛿(𝑥, 𝑥𝑏)]}                                       (3.2)                                                                                                        

𝛿 is Dirac delta function. 
Based on Eq. (2.2), dimensionless variables are 
defined as follows: 

                 𝜉𝑎 =
𝑥𝑎

𝐿
         𝜉𝑏 =

𝑥𝑏

𝐿
     𝑣 =

𝐿𝐶𝑚

𝐸𝐼
𝑉                 (3.3)                                                                

Same method as section 2 is adopted for 
dimensionless Eq. (3.2). It is attained by discretization 
using Galerkin Function. 

                       �̇� = 𝐴𝑋 + 𝐵𝑣 + 𝐹(𝑋, 𝜏)                          (3.4)                                                                        

Where 

          𝑋 = (𝑥1, 𝑥2, 𝑥3, 𝑥4)
𝑇  , 𝐵 = (0,0, 𝐵3, 𝐵4)

𝑇  

                      𝐹(𝑋, 𝜏) = (0,0,−𝑄1, −𝑄2)   

               𝐴 =

(

 
 
 

0

 
0

 
𝑎1
 

𝑎2

     

0

 
0

 
𝑎2
 

𝑏2

    

1

 
0

 
𝑎3
 

−𝑎4

    

0

 
1

 
𝑎4
 

𝑏4

 

)

 
 
 

  

 
      𝐵3 = 𝜑1

′ ( 𝜉𝑏) − 𝜑1
′ ( 𝜉𝑎) , 𝐵4 = 𝜑2

′ ( 𝜉𝑏) − 𝜑2
′ ( 𝜉𝑎) 

In this equation, The expression of  𝑎𝑖  (𝑖 = 1,2,3,4),  
𝑏𝑖(𝑖 = 2,4), 𝑄𝑖 (𝑖 = 1,2) are equivalent to Eq. (2.18). 

 
3.2 Optimal controller design 

The proposed research of pipes conveying fluid 
pulsating flow is a time-varying nonlinear system. 
Because it has small disturbance in real objects, thus, 
the system stability is determined by the linear parts. 
Furthermore, it also shows small time-varying range of 
system parameters. Hence, the controller is able to be 
designed according to the system linear time-
invariant, and following an evaluation of control effects 
of system vibrations. 

The linear time-invariant of Eq.(3.4) is 

                                 �̇� = 𝐴𝑋 + 𝐵𝑣                         (3.5)                                                                          
System output variables is displacement of the top of 
pipes, which is   
                                 𝑦 = 𝜂(𝜉) = 𝐶𝑋                       (3.6)                                                                        
Where   𝐶 = [𝜑1(𝜉), 𝜑2(𝜉), 0,0] 
Equation of state of linear time-invariant system is  

                      {
�̇� = 𝐴𝑋 + 𝐵𝑣

 
𝑦 = 𝐶𝑋

                            (3.7)                                                                                      

Supposing the second objective function is 

                      𝐽 = ∫ (𝑋𝑇𝑄𝑋 + 𝑣𝑇𝑅𝑣)𝑑𝑡
∞

0
                  (3.8)                                                                     

In this equation, 𝑄 is a positive definite or semidefinite 
symmetric real matrix. 𝑅 is positive number. The first 
integral of objective function J trends toward a 
minimum. It means that the system requires a 
minimum accumulated error while state variables 
away from equilibrium point.  When the second 
integral reaches a minimum represents that the 
consumed control energy is a minimum during the 
control process. 𝑄 and 𝑅 are weight matrix and weight 
coefficient which are used to determine the ratio of 
state variables and control variables in the 
performance index. It is concluded that the control 
inputs are relevant to 𝑄 and 𝑅. 

The aim of second mode optimal control is 
searching the law 𝑣  of optimal control that make a 
minimum of second mode objective function 𝐽 . The 
law of optimal control can be inferred through principle 
of minimum with Hamiltonian function. 

    𝐻(𝑋, 𝜆, 𝑡) =
1

2
(𝑋𝑇𝑄𝑋 + 𝑣𝑇𝑅𝑣) + 𝜆𝑇(𝐴𝑋 + 𝐵𝑣)     (3.9)                                                

 Principle of minimum requires optimal control and 
state variation locus to satisfy below three equations, 
which is 
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{
 
 

 
 �̇� =

𝜕𝐻

𝜕𝜆
 

−�̇� =
𝜕𝐻

𝜕𝑋
 

𝜕𝐻

𝜕𝑣
= 0
 

                                              (3.10)                                                       

Through matrix and differential of vector, Eq. (3.11) 
can be changed to 

                

{
 
 

 
 
�̇� = 𝐴𝑋 + 𝐵𝑣

 
−�̇� = 𝑄𝑋 + 𝐴𝑇𝜆

 
𝑣∗ = −𝑅−1𝐵𝑇𝜆 

                                  (3.11)                                                

In above Equations, 𝑣  is the optimal control input 
when integral final value time is 𝑇 in  𝐽. For reaching 
optimal control via linear response method, it is 
generally expected that 𝜆  is represented as linear 
function of  𝑋. 

                                       𝜆 = 𝑃𝑋                           (3.12)                                                                                 

Conducting differential on both side, and plugging 
(3.10) and (3.11) 

                  �̇� + 𝑃𝐴 − 𝑃𝑅−1𝐵𝑇𝑃 = −𝑄 − 𝐴𝑇𝑃        (3.13)                                                              

Above is Riccati equation. when T➞∞, it is reduced to  

                   𝐴𝑇𝑃 + 𝑃𝐴 − 𝑃𝑅−1𝐵𝑇𝑃 + 𝑄 = 0          (3.14)                                                                

The solution of equation P is positive definite constant 
matrix. Plugging Eq. (3.12) into v of Eq. (3.9), then the 
optimal control inputs is 

                           𝑣 = 𝑣∗ = −𝑅−1𝐵𝑇𝑃𝑋                 (3.15)                                                                       

Supposing linear response matrix is 

                                𝐾 = −𝑅−1𝐵𝑇𝑃                      (3.16)                                                                       

Optimal control input can be wrote as 

                                    𝑣 = −𝐾𝑋                          (3.17)                                                                                                            

It is certified by Lyapunov theorem that current linear 
control system is asymptotic stability. By taking 
Lyapunov function S 

                                   𝑆 = 𝑋𝑇𝑃𝑋                          (3.18)                                                                       

Taking the derivative of Eq. (3.18) 

�̇� =
𝑑

𝑑𝑡
(𝑋𝑇𝑃𝑋) = �̇�𝑇𝑃𝑋 + 𝑋𝑇𝑃𝑋 = (𝐴𝑋 + 𝐵𝑣)𝑇𝑃𝑋 +

𝑋𝑇𝑃(𝐴𝑋 + 𝐵𝑣)                                                      (3.19) 

Plugging Eq. (3.14) and Eq. (3.15) into above 
equation, 

                  �̇� = −𝑋𝑇𝑃𝐵𝑅−1𝐵𝑇𝑃𝑋 − 𝑋𝑇𝑄𝑋            (3.20)                                                            

Modifying Eq. (3.2) and then plugging Eq.(3.15) into 
this equation, 

                    �̇� = −(𝑣𝑇𝑅𝑣 + 𝑋𝑇𝑄𝑋)                       (3.21)                                                        

When R and Q are positive definite, S is negative 
definite. It can be seen that the system is asymptotic 
stability. After control input expression of system is 
established, the optimal value of relevant parameters 
is further conducted, which can be found from Eq. 
(3.19) and Eq. (3.21). 

                
𝑑

𝑑𝑡
(𝑋𝑇𝑃𝑋) = −(𝑣𝑇𝑅𝑣 + 𝑋𝑇𝑄𝑋)             (3.22)                                                              

Therefore, objective function,    

𝐽 = −∫
𝑑

𝑑𝑡
(𝑋𝑇𝑃𝑋)𝑑𝑡

∞

0
= −𝑋𝑇(∞)𝑃𝑋(∞) + 𝑋𝑇(0)𝑃𝑋(0)                                                             

                                                                             (3.23) 

 Where 
 
→∞  , 𝑋(∞)

 
→0 , 𝐽 = 𝑋𝑇(0)𝑃𝑋(0)         (3.24)                                                                                                                         

In data simulation, above equation will be applied for 
understanding the impacts of piezoelectric sheets 
length and position on system control effects. 

3.3 Mode sensor design 

For controller based positive control system, it is 
necessary to calculate the state variables of system 
thereby obtaining system control inputs. In general, 
there are two methods to get the state variables of 
system, which includes using state viewer and mode 
sensor. State viewer that is rely on the system output 
refactors state variables of system through nominal 
model, but it is only applicable for linear system. 
Therefor, in this section, a method which using 
positive piezoelectric effects of ceramics piezoelectric 
sheets described in [28] is adopted to design mode 
sensor. The positive piezoelectric effect refers to 
some mediums which will cause deformations under 
the action of force duo to lack of symmetric center 
inside, and it arouse medium surface with an electrical 
charge. On the contrary, applying excitation electric 
field, medium to generate mechanical deformation, 
called the inverse piezoelectric effect. 

Because of the features of the inverse piezoelectric 
effect, ceramic piezoelectric sheets are applicable as 
control actuators. In this proposed system, two 
ceramic piezoelectric sheets are placed on the pipe's 
surface as sensor, because system requires the first 
two mode weights. Piezoelectric sheets width is b. 
Piezoelectric constant is 𝑑𝑎 . Length are 𝐿1  and 𝐿2 
respectively. Then the output quality of electric charge 
of piezoelectric sheets is 

            𝑊𝑖(𝜏) = 𝑏𝑑𝑎 ∫ 𝜀𝑖(𝜉, 𝜏)𝑑𝜉
 

𝐿𝑖
 , (𝑖 = 1,2)        (3.25)                                                     

In this equation, integrating range is dimensionless 
length range of piezoelectric sheets. 𝜀(𝜉, 𝜏)  is 
piezoelectric sheets strain, 

                      𝜀𝑖(𝜉, 𝜏) = −𝑦𝑖𝜂
′′(𝜉, 𝜏)                      (3.26)                                                                      

 

𝑋(0) = 𝑋𝑂  
 

 

𝜆(𝑇) = 0  

 

𝑋(0) = 𝑋𝑂  
 

 

𝜆(𝑇) = 0  
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𝑦𝑖 is 𝑦 coordinate of piezoelectric sheets middle-level. 
Making first order derivative for time in Eq. (3.25), the 
output electricity is: 

                          𝐼𝑖 = 𝑏𝑑𝑎 ∫ 𝜀�̇�(𝜉, 𝜏)𝑑𝜉
 

𝐿𝑖
                   (3.27)                                                                      

According to the Ritz-Galerkin equation in last 
chapter, mode truncation equation is acquired as 
follows: 

               𝜂(𝜉, 𝜏) = ∑ 𝜙𝑗(𝜉)𝑋𝑗
∞
𝑗=1  ,    (𝑗 = 1,2)         (3.28)                                                

Plugging Eq.(3.27) and Eq.(3.29) into Eq.(3.26), 

  𝑊𝑖(𝜏) = 𝑏𝑑𝑎 ∑ [∫ 𝑦𝑖𝜙𝑗
′′(𝜉)𝑑𝜉

 

𝐿𝑖
]2

𝑗=1 𝑥𝑗  ,    (𝑗 = 1,2)   (3.29)                                         

It also can be wrote in matrix, which is: 

                      [
𝑊1(𝜏)
 

𝑊2(𝜏)
] = −𝑏𝑑𝑎𝜀

 [

𝑥1
 
𝑥2

]                    (3.30)                                                         

Where 

 𝜀 = [

𝜀11 𝜀12
  
𝜀21 𝜀22

] , 𝜀𝑖𝑗 = ∫ 𝑦𝑖𝜙𝑗
′′(𝜉)𝑑𝜉

 

𝐿𝑖
 , (𝑖, 𝑗 = 1,2)   (3.31)                                                

Non-singular matrix 𝜀 can be generated by placing the 
position of sensor appropriately, and mode 
displacement value is defined below: 

                        [

𝑥1
 
𝑥2

] = −
1

𝑏𝑑𝑎
𝜀−1𝑊                        (3.32)                                                      

Mode speed value is calculated by making derivation 
of time in above equation: 

                     [

𝑥3
 
𝑥4

] = [
�̇�1
 
�̇�2

] = −
1

𝑏𝑑𝑎
𝜀−1𝐼                  (3.33)                                                

It is emphasized that in above mentioned closed-loop 
system, mode displacement and speed from mode 
sensor are observed value rather then real value. 
There are some higher modes which are not taken 
into account, because in real project, it will be filtered 
by mode filter. 

4.Numerical Simulation 

In order to test the result of former designed 
controller, Numerical Simulation is developed in this 
section.   

Eq. (3.15) and (3.17) are substituted to (3.4), then the 
original controlled system can be described as 
following: 

�̇� = (𝐴 − 𝑅−1𝐵𝐵𝑇𝑃)𝑋 + 𝐹(𝑋, 𝜏) = 𝐴𝑐𝑋 + 𝐹(𝑋, 𝜏)  (3.34) 

                                                                        

Among these, 

𝐴𝑐 =

(

 
 
 
 

0
 
0
 
𝑎𝑐1
 
𝑎𝑐2

     

0
 
0
 
𝑎𝑐2
 
𝑏𝑐2

    

1
 
0
 
𝑎𝑐3
 

−𝑎𝑐4

    

0
 
1
 
𝑎𝑐4
 
𝑏𝑐4

 

)

 
 
 
 

,𝑃 =

(

 
 
 
 

𝑃11
 
𝑃21
 
𝑃31
 
𝑃41

      

𝑃12
 
𝑃22
 
𝑃32
 
𝑃42

     

𝑃13
 
𝑃23
 
𝑃33
 
𝑃43

     

𝑃14
 
𝑃24
 
𝑃34
 
𝑃44

 

)

 
 
 
 

 

𝑎𝑐1 = 𝑎1 − 𝑅
−1𝐵3(𝐵3𝑃31 +𝐵4𝑃41) , 𝑎𝑐2

= 𝑎2 −𝑅
−1𝐵3(𝐵3𝑃32 +𝐵4𝑃42)  

𝑎𝑐3 = 𝑎3 −𝑅
−1𝐵3(𝐵3𝑃33 + 𝐵4𝑃43) , 𝑎𝑐4

= 𝑎4 −𝑅
−1𝐵3(𝐵3𝑃34 + 𝐵4𝑃44) 

𝑏𝑐1 = 𝑏1 −𝑅
−1𝐵3(𝐵3𝑃31 + 𝐵4𝑃41) , 𝑏𝑐2

= 𝑏2 −𝑅
−1𝐵3(𝐵3𝑃32 + 𝐵4𝑃42) 

𝑏𝑐3 = 𝑏3 −𝑅
−1𝐵3(𝐵3𝑃33 + 𝐵4𝑃43) , 𝑏𝑐4

= 𝑏4 −𝑅
−1𝐵3(𝐵3𝑃34 + 𝐵4𝑃44) 

The expression of ai (i=l,2,3,4), bi (i=2,4), F(X,r), B3 
and B4 are equivalence to Equation (3.4) and Eq. 
(3.25) can be wrote as shown below: 

�̇� = (𝐴 − 𝐵𝐾)𝑋 + 𝐹(𝑋, 𝜏) 

After that, numerical simulation is conducted based on 
Eq. (3.25) and the structure of controlled system  

Figure 3.2 Structure of controlled system 

The initial value of system state is 𝑥1(0) =
0.01, 𝑥2(0) = 𝑥3(0)𝑥4 = (0) 

4.1.piezoelectric chip length 

Figure 4.1 showed the interaction between 
piezoelectric chip length and objective function J, with 
weights Q=I(I is unit matrix) , R=0.1, the distance 
between the top of piezoelectric sheets and pipes 
conveying fluid 𝜉𝑎 = 0. 
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Figure 4.1 The objective function of pipes conveying 
fluid with the changes of piezoelectric sheets. 

 
For pinned at both ends of pipes conveying fluid, the 
objective function J reaches a maximum when 
piezoelectric chip length Δξ=0.1, and a minimum 
when piezoelectric chip length Δξ=1. Figure 4.2  
showed the relation among piezoelectric chip length, 
displacement response η and control input v. In 
comparison, at piezoelectric chip length Δξ = 0.6, 
pinned pipes conveying fluid systems tend to stability 
shortly and need less control inputs and small peak 
voltage. These are consistent with the result of 
objective function curve analysis. 

 
Figure 4.2(a) Displacement response curve of pipes 

conveying fluid at different piezoelectric chip length. 

 
Figure 4.2 (b) Control input curves of pipes conveying 

fluid at different piezoelectric chip length. 

4.2. Impact of the position of the piezoelectric 

Figure 4.3 indicates the impact of the position of the 

piezoelectric on the objective function J with weights 

matrix Q=I, R=0.1; For pinned at both ends of pipes 

conveying fluid, piezoelectric chip length Δξ=0.2 is 

selected For pinned at both ends of pipes conveying 

fluid, J reaches a maximum when piezoelectric chip 

position 𝜉𝑎 = 0.8, and a minimum when piezoelectric 

chip position 𝜉𝑎 = 0.402 .. Figure 4.4 showed the 

impact of piezoelectric chip position to displacement 

response 𝜂  and control input 𝑣. 

Figure 4.3 Objective function of pipe conveying fluid at 

different piezoelectric chip position. 

 
Figure 4.4 (a) Displacement response curve of pipe 

conveying fluid at different piezoelectric chip position. 

 
Figure 4.4 (b) Control input curve of pipe conveying fluid 

at different piezoelectric chip position. 
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In comparison, the control effect of pinned at both 
ends of pipes is basically the same as control input 
when 𝜉𝑎  = 0.3  and 0.403, peak voltage is smaller 
when 𝜉𝑎  = 0.3 . These are in accordance with the 
result of objective function curve analysis 

 

4.3. Selection of weighted value 

According to Eq. (3.9), control system performance 

are highly dependent on selection of weight matrix Q 

and weight coefficient R .Control input and effect are 

able to be changed by adjusting Q and R. Figure 4.5 

and 4.6 demonstrate the impacts of weight to the 

control effect and input of pinned at both ends of 

pipes. Suppose 𝑄 =  𝑞𝐼 , 𝛥𝜉 = 0.2, 𝜉𝑎  = 0.3  

 
Figure 4.5 (a) The impact of control effect by weight matrix 

Q of pipes conveying fluid. 

 
Figure 4.5 (b) The impact of control input by weight matrix 

Q pipes conveying fluid. 

 

Figure 4.6 (a) The impact of control effect by weight 

matrix R of pipes conveying fluid. 

 
Figure 4.6 (b) The impact of control input by weight matrix 

R pipes conveying fluid. 

Obviously, this system has achieved good control 
effect when R=0.1, Q=10I. Research indicates that the 
control input of system will increase if increasing 
weight matrix Q or decreasing weight coefficient R. 
While, it does not mean that   the more control input, 
the better control effect. Actually, an optimal value is 
existed around weight value R=0.1, Q=10I. 

This optimal value is not necessary in system control 
because this system has already had the ability to 
achieve a good control effects before reaching the 
best weight value, also at this time the control inputs 
and peak voltage are much smaller then selecting 
optimal value. In addition, it can be seen that weight 
matrix Q and weight coefficient R have the same 
impacts. 

4.4 Effect of flow velocity 

In controller design, u0=1.88 is designed for pinned 
and at both ends of pipes. Figure 4.7 demonstrate the 
control effects of average velocity at the first mode 
resonance of pinned at both ends of pipes, and we 
noted that the control system performance are highly 
dependent on flow velocity , its can reach good effect 
when average velocity increasing between 0 and 
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critical velocity (pinned at both ends of pipes 
𝑢𝑐𝑟=π).when the flow velocity increase ,the coriolis 
force and damping will increasing ,this lead to 
increasing the performance of the controller system. 

 

Figure 4.7(a) Displacement response curve of pipes 

conveying fluid at different flow velocity. 

 
Figure 4.7 (b) Control input curves of pipes conveying 

fluid different flow velocity. 
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