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Abstract—Software Reliability Growth Model is a 
mathematical model of how the software 
reliability improves as faults are detected and 
repaired. The performance of SRGM is judged by 
its ability to fit the software failure data. How 
good does a mathematical model fit to the data 
and reliability of software is presented in the 
current paper. The model under consideration is 
the, Rayleigh model. A Two step approach is 
used to estimate the model parameters by 
combination of Maximum Likelihood Estimation 
and regression. To assess the performance of the 
considered Software Reliability Growth Model, we 
have carried out the parameter estimation on the 
real software failure data sets. 

Keywords—Rayleigh model, Maximum 
Likelihood    Estimation,Least Squares 
Regression, SRGM, Goodness Of Fit 

I.  INTRODUCTION  

Software reliability is defined as the 
probability of failure-free software operation for a 
specified period of time in a specified environment[1].  
Software Reliability Growth Model (SRGM) is a 
mathematical model of how the software reliability 
improves as faults are detected and repaired [2]. 
Among all SRGMs developed so far a large family of 
stochastic reliability models based on a non-
homogeneous poisson process known as NHPP 
reliability models, has been widely used. Some of 
them depict exponential growth while others show S-
shaped growth depending on nature of growth 
phenomenon during testing. The success of 
mathematical modelling approach to reliability 
evaluation depends heavily upon quality of failure 
data collected.  

However, a problem is the model validation 
and selection. If the selected model does not fit the 
collected software testing data relatively well, we 
would expect a low prediction ability of this model and 
the decision makings based on the analysis of this 
model would be far from what is considered to be 
optimal decision [3]. The present paper presents a 
method for model validation. 

II. LITERATURE SURVEY 

A. NHPP Models 

The NHPP group of models provides an 
analytical framework for describing the software 
failure phenomenon during testing. They are proved 

to be quite successful in practical software reliability 
engineering [4]. They have been built upon various 
assumptions. If ‘t’ is a continuous random variable 

with probability density function: 1 2( , , , , )kf t    , 

and cumulative distribution function:  F t .where 

1 2, , , k   are k unknown constant parameters. The 

mathematical relationship between the pdf and cdf is 

given as:  ( ) 'f t F t . 

Let  N t  be the cumulative number of 

software failures by time ‘t’. A non-negative integer-

valued stochastic process  N t  is called a counting 

process, if  N t represents the total number of 

occurrences of an event in the time interval [0, t] and 
satisfies these two properties: 

1. If 1 2t t , then    1 2N t N t  

2. If 1 2t t , then    2 1N t N t is the number 

of occurrences of the event in the interval 

 1 2,t t . 

One of the most important counting 
processes is the Poisson process. A counting 

process,  N t , is said to be a Poisson process with 

intensity  if 

1. The initial condition is N(0) = 0 

2. The failure process, N(t), has independent 

increments 

3. The number of failures in any time interval of 

length s has a Poisson distribution with mean 

s , that is, 

    
 
!

nse s
P N t s N t n

n

 

   
 

Describing uncertainty about an infinite 
collection of random variables one for each value of ‘t’ 
is called a stochastic counting process denoted by 

  , 0N t t    . The process   , 0N t t   is assumed 

to follow a Poisson distribution with characteristic 

Mean Value Function 
 m t

, representing the 
expected number of software failures by time ‘t’. 
Different models can be obtained by using different 
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non decreasing  m t . The derivative of  m t  is called 

the failure intensity function  t . 

A Poisson process model for describing 
about the number of software failures in a given time 
(0, t) is given by the probability equation.  

 
( )[ ( )]

( ) , 0,1,2,...
!

m t ye m t
P N t y y

y



    

Where,  m t  is a finite valued non negative 

and non decreasing function of ' 't  called the mean 

value function. Such a probability model for  N t  is 

said to be an NHPP model. The mean value function 

 m t  is the characteristic of the NHPP model.  

The NHPP models are further classified into 
Finite and Infinite failure models. Let ‘a’ denote the 
expected number of faults that would be detected 
given infinite testing time in case of finite failure NHPP 
models. Then, the mean value function of the finite 

failure NHPP models can be written as: ( ) ( )m t aF t . 

The failure intensity function  t  is given by: 

   't aF t  [5].  

B. SRGM 

SRGMs are a statistical interpolation of defect 
detection data by mathematical functions [6]. They 
have been grouped into two classes of models-
Concave and S-shaped. The only way to verify and 
validate the software is by testing. This involves 
running the software and checking for unexpected 
behaviour of the software output [7]. SRGMs are used 
to estimate the reliability of a software product. In 
literature, we have several SRGMs developed to 
monitor the reliability growth during the testing phase 
of the software development. 

C. Model Description: Rayleigh 

In recent years the Weibull distribution [8] has 
become more popular as a reliability function. It is 
named after the Swedish scientist WaloddiWeibull.  
The Weibull distribution has a position of importance 
in the field of reliability and life testing because of its 
versatility in fitting time-to-failure distributions. Many 
researchers considered the distribution and worked 
on it. Some of them are [9], [10], [11]. The three 

parameters of the Weibull distribution are , 


and 


. Where   and 


 are known as the scale, shape 

parameters and 


 is known as the location 
parameter. These parameters are always positive. It 
is probably the most widely used family of failure 
distributions, mainly because by proper choice of its 
shape parameter β, it can be used as an Increasing 
Failure Rate for β > 1 , Decreasing Failure Rate for β 
< 1, or Constant Failure Rate for β = 1. The Weibull 

distribution is called Rayleigh distribution at 


= 2, 


 

= 0, and Exponential distribution at 


 = 1, 


 = 0. 

Software reliability is defined as the probability of 
failure-free software operation for specified period of 
time ‘t’ in a specified environment,  

D.        1 .i im t m t
R t e  

  (1)    

E.    D. Goodness-of-fit 

Model comparison and selection are the most 
common problems of statistical practice, with 
numerous procedures for choosing among a set of 
models proposed in the literature. Goodness-of-fit 
tests for this process have been proposed by [12]. 
The AIC is a measure of the relative quality of a 
statistical model, for a given set of data. As such, AIC 
provides a means for model selection. AIC deals with 
the tradeoff between the goodness of fit of the model 
and the complexity of the model. 

2* 2*AIC L k   (2)                                                                          

Where   ‘k’   is the  number of parameters in 
the statistical model, and  ‘L’ is the  maximized value 
of the likelihood function for the estimated model.   

Given a set of candidate models for the data, 
the preferred model is the one with the minimum AIC 
value. Hence AIC not only rewards goodness of fit, 
but also includes a penalty that is an increasing 
function of the number of estimated parameters. This 
penalty discourages over-fitting.  

 

III. TWO STEP APPROACH FOR PARAMETER 

ESTIMATION 

The main issue in the NHPP model is to 
determine an appropriate mean value function to 
denote the expected number of failures experienced 
up to a certain time point. Method of least squares 
(LSE) or maximum likelihood (MLE) has been 
suggested and widely used for estimation of 
parameters of mathematical models [13]. Non-linear 
regression is a method of finding a nonlinear model of 
the relationship between the dependent variable and 
a set of independent variables. Unlike traditional 
linear regression, which is restricted to estimating 
linear models, nonlinear regression can estimate 
models with arbitrary relationships between 
independent and dependent variables. The model 
proposed in this paper is a non-linear and it is difficult 
to find solution for nonlinear models using simple 
Least Square method. Therefore, the model has been 
transformed from non linear to linear. MLE and LSE 
techniques are used to estimate the model 
parameters [1], [4]. Sometimes, the likelihood 
equations are difficult to solve explicitly. In such 
cases, the parameters are estimated with some 
numerical iterative methods (Newton Raphson 
method). On the other hand, LSE, like MLE, applied 
for small sample sizes and may provide better 
estimates [14].  

http://www.jmest.org/
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A. Algorithm for a 2-step approach of parameter 
estimation and data as best fit. 

 Consider the Cumulative distribution function

( )F t  and equate to ip , i.e ( ) iF t p ,  
      

  
where 

1
i

i
p

n



 

 Express the equated equation ( ) iF t p as a 

linear form, y mx b  . 

 Find model parameters of mean value function

( )m t . Where  ( )m t aF t  

 The initial number of faults a


is estimated 

through MLE method. Since, it forms a 
closed solution. 

 The remaining parameters are estimated 
through LSE regression approach. 

 Find the failure intensity function )(')( taFt   

 
Find likelihood function L

 

 Find the Log likelihood function log L. (Which 
comes to be –ve value.) 

 The distribution model with the highest –ve value 
is the best fit. 

 

B. ML (Maximum Likelihood) Estimation 

The idea behind maximum likelihood 
parameter estimation is to determine the parameters 
that maximize the probability of the sample data. The 
method of maximum likelihood is considered to be 
more robust and yields estimators with good statistical 
properties. In other words, MLE methods are versatile 
and apply to many models and to different types of 
data. Although the methodology for MLE is simple, 
the implementation is mathematically intense. Using 
today's computer power, however, mathematical 
complexity is not a big obstacle. If we conduct an 
experiment and obtain N independent observations, 

1 2, , , Nt t t . The likelihood function [15] may be given 

by the following product:  

 1 2 1 2 1 2

1

, , , | , , , ( ; , , , )
N

N k i k

i

L t t t f t     



     (3) 

 
Likelihood function by using λ(t) is:

 

1

( )n

n
m t

i

i

L e t




     (4) 

Log Likelihood function for ungrouped data [5]  
 

 
1

log log ( ) ( )
n

i n

i

L t m t


 
           

(5) 

 
The maximum likelihood estimators (MLE) of 

1 2, , , k   are obtained by maximizing L or  , 

where  is ln L . By maximizing , which is much 
easier to work with than L, the maximum likelihood 

estimators (MLE) of 1 2, , , k   are the 

simultaneous solutions of k equations such as:

 
0

j

 




, j=1,2,…,k.The parameters ‘a’ and ‘b’ 

are estimated as follows. The parameter ‘b’ is 
estimated by iterative Newton Raphson Method, 
which is substituted in finding ‘a’. 

 

C. LS (Least Square) estimation 

LSE is a popular technique and widely used 
in many fields for function fit and parameter 
estimation [16]. The least squares method finds 
values of the parameters such that the sum of the 
squares of the difference between the fitting function 
and the experimental data is minimized. Least 
squares linear regression is a method for predicting 
the value of a dependent variable Y, based on the 
value of an independent variable X. 
 
The Least Squares Regression Line 

Linear regression finds the straight line, called 
the least squares regression line that best represents 
observations in a bivariate data set. Given a random 
sample of observations, the population regression line 

is estimated by: ŷ bx a  . where ,‘a’ is a constant, 

‘b’ is the regression coefficient and ‘x’ is the value of 

the independent variable, and ‘ ŷ ’ is the predicted 

value of the dependent variable. The least square 
method defines the estimate of these parameters as 
the values which minimize the sum of the squares 
between the measurements and the model. Which 
amounts to minimizing the expression: 

 
2

ˆ
i i

i

E Y Y 
. 

Taking the derivative of E with respect to ‘a’ 
and ‘b’ and equating them to zero gives the following 
set of equations (called the normal equations): 

 

2 2 2 0i i

E
Na b X Y

a


   


  , and  

 

22 2 2 0i i i i

E
b X a X Y X

b


   


    

 
The solutions of ‘a’ and ‘b’ are obtained by 

solving the above equations. Where,     
 

a Y bX   and   (6) 

  

 
2

i i

i

Y Y X X
b

X X

 







.  (7) 
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IV. ILLUSTRATION. 

A. Procedure to find parameter ‘a’ using MLE. 

The likelihood function of Rayleigh is given 

as, 

2( )
21

2 ( )

1

log 2
btn na e

bt

i

i

LogL e ab t e
 

    



 
  

  
  (8) 

Taking the natural logarithm on both sides, 
The Log Likelihood function is given as:         

22 ( )2 ( )

1

log(2 ) [1 ]n

n
btbt

i

i

LogL ab t e a e




   (9) 

Taking the Partial derivative with respect to ‘a’ 
and equating to ‘0’.               

 

 
2

1 nbt

n
a

e



 
  

   (10) 

   
Taking the Partial derivative with respect to ‘b’ 

and equating to‘0’. 
 

 

  

2

2

2
2

1

2. . . .2
( ) 2 0

1

n

n

btn
n

i
bt

i

n b t en
g b b t

b e






    



 (11) 

 
Taking the partial derivative again with 

respect to ‘b’ and equating to ‘0’. 
 

 

  
 

  

22

2
2

2 2
2 2

22
1

2 .1
'( ) 2 2 2

1 1

nn

n
n

btbtn
n

i n
bt bti

b t ee
g b n t nt

b e e



 

 
  

     
   

 



 (12) 

 

B. LS Estimation 

Procedure to find parameter ‘b’ using regression 
approach. 

 The cumulative distribution function of 

Rayleigh is,  

2

1
ix

F t e 

 
 
   . The c.d.f is 

equated to ip . Where, 
1

i

i
p

n



. 

 
The equation ( ) iF t p is expressed as a 

linear form, .i iY C X D  . Where, 

  log log 1i iY p   ;  2.logi iX x

and 2logD  
 

22

i i

i

X Y nY X
C

X nX

 







;          D Y C X

 

  ;           

D

Ce







 

Where,
 ‘

1
 ’ is nothing but the parameter ‘b’ 

estimated through regression approach. 

 

TABLE I.  ESTIMATION OF PARAMETERS AND LOG LIKELIHOOD 

FOR, LYU DATA. 

n= 30 

 = 7.830927 

b


= 0.127698 

a


= 24.086392 

 nm t = 
20.362905 

Log L = -11.047502 

 

TABLE II.  PARAMETERS ESTIMATED THROUGH MLE AND 

REGRESSION 

Data Set 
(no of 
observations) 

Parameters 

MLE 

 

Regression 

b


 

a


 b


 
Xie (30) 30.051592 0.003416 0.008178 

NTDS (26) 28.851930 0.011827 0.031848 

AT&T (22) 23.719656 0.004824 0.003074 

SONATA (30) 31.961497 0.000912 0.000345 

IBM (15) 19.164356 0.00711 0.003402 

The parameters in the table 2 are estimated 

in two ways. The parameter a


 is estimated through 

MLE only. Where as, the parameter b


 is estimated 

once using MLE and and the other one using 
regression approach. 

 

V. METHOD OF PERFORMANCE ANALYSIS 

The performance of SRGM is judged by its 
ability to fit the software failure data. The term 
goodness of fit denotes the question of “How good 
does a mathematical model fit to the data?”.Inorder 
to validate the model under study and to assess its 
performance, experiments on a set of actual software 
failure data have been performed. The considered 
model fits more to the data set whose Log Likelihood 
is most negative. The application of the considered 
distribution function and its log likelihood on different 
data sets collected from real world failure data using 
both the approaches is given as below. 

TABLE III. LOG LIKELIHOOD ON DIFFERENT DATA SETS. 

Data Set 
(no of 
observations) 

Log L 
(MLE) 

Log L 
(Two step) 

AIC 
(Two step) 

R(25/t) 
(Two 
step) 

Xie (30) 
-
131.125396 

-
128.663198 

261.326397 0.170701 

NTDS (26) -90.462571 -72.342582 148.685165 0.993564 

AT&T (22) 
-
113.484963 

-
121.244882 

246.489764 0.269103 

SONATA (30) 
-
157.979313 

-
233.444039 

470.888079 0.977816 

IBM (15) -63.122147 -72.829640 149.659279 0.502120 
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The Log Likelihood of the MLE approach on 
data sets Xie and NTDS are more negative when 
compared to the Log Likelihood of the Two step 
approach. Where as , for the data sets of AT&T, 
SONATA and IBM are more negative in the two step 
approach when compared to the MLE approach. We 
prefer to use two step approach when compared to 
the pure MLE approach to find the reliability of the 
models over the considered data sets. Since, in 
many of the cases two step approach is exhibiting 
most negative log likelihood. 
 

VI. CONCLUSION 

To validate the proposed approach, the 
parameter estimation is carried out on the data sets 
collected from [1], [17], [5], [18]. Parameters of the 
model are estimated by MLE and the linear 
regression least squares method using cumulative 
failure data against time. Out of the data sets that 
were considered, the model under consideration best 
fits the data of SONATA using two step approach. 
Since, it is having the highest negative value for the 
log likelihood. The reliability of the model using two 
step method for various data sets are given in table 
3. The reliability of the model over NTDS data after  

 
 
25 units of time is high among the data sets 

which were considered. 
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