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Abstract—This paper discusses the structure of 
non-associative commutative algebra over real or 
complex numbers associated with genetics. .In 
particular we discuss the relation between  
genetic algebra and special train algebra. Genetic 
algebra and special train algebra are subclass of  
baric algebra (algebra which contains nontrivial 
homomorphism to its field). We obtain that each 
special train algebra is genetic but the converse is 
not true. Furthermore,with the condition that every 
principal powers of ideal (kernel homomorphismof 
baric) is also an  ideal of genetic algebra, we have 
equivalency between genetic algebra and special 
train algebra. 
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I. INTRODUCTION  

In1939, Etherington[1] introduced the algebra 

concepts of  genetics algebra as a commutative 

algebra, non-associative and finite dimensional over 

real or complex numbers. One of the concept 

introduced is baric algebra if it admits a nontrivial 

algebra homomorphism 𝜔  into the coefficient field., 

i.e.baric algebra is the algebra with a one-dimensional 

representation.One of the subclass of baric algebra is 

special train algebra. Furthermore, Schafer [4] in 1949 

introduced the concept of genetic algebra and showed 

that every special train algebra is the genetic algebra 

but not vice-versa. In 1971, Gonshor [2] defined the 

concept of genetic algebra more operational and 

showed that the definition given is equivalent to the 

definition of genetic algebra defined by Schafer. 

Moreover, Wörz-Busekkros [5] in 1980 introduced a 

more common genetic algebra, i.e genetic algebra 

over expansion of the Gonshor’s field. In this paper 

we wil luse the definition of genetic algebra based on 

the definition by Wörz-Busekkros. in [5], Wörz-

Busekkros have shown that each special train algebra 

is a genetic algebra, but genetic algebra not 

necessarily be a special train algebra because the 

principal powers of ideal (kernel homomorphism of 

baric) is not necessarily an ideal.Therefore, we will  

give a condition that make a genetic algebra 

becoming a special train algebra. 

II. GENETIC ALGEBRA 

Genetic algebra is a subclass of baric algebra. Hence, 

before defining the genetic algebra we define a baric 

algebra. 

 

Definition 1 Algebra A over of the field F (ℝ  or ℂ) is 

called baric algebra if it admits a non-trivial 

homomorphism𝜔: A→ F. The homomorphism 𝜔 is 

called the weight function (or baric function). 

The following is an example of algebra which is baric 

algebra and non baric algebra. 

Example 2 Let 𝐴 = 〈𝑎1, 𝑎2, 𝑎3〉ℝ is a3-dimensional 

commutative algebra with the multiplication table as 

follows: 

 a1 a

2 

a3 

a

1 

a1+a2 a

2 

a2 

a

2 

a2 a

2 

a2 

a

3 

a2 a

2 

a2

+ a3 

 

Define 𝜔1: A→ ℝ with 𝜔1(a1)=1 and 𝜔1(a2)= 𝜔1(a3)=0 

and define 𝜔2: A→ ℝ with 𝜔2(a3)=1 and 𝜔2(a1)= 

𝜔2(a2)=0. Obviously we have that 𝜔1≠ 𝜔2 and its easy 

to see  that 𝜔1, 𝜔2 was  a homomorphism.  
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Example 3 Let A algebra over the field ℝ, 𝜔: A→ ℝ is 

a homomorphism and multiplication on A is define as: 

𝑥𝑦 = 𝜔(𝑥)𝑦 − 𝑥𝜔(𝑦) 

For each 𝑥, 𝑦 ∈ 𝐴 , 𝜔(𝑥)𝜔(𝑦) = 𝜔(𝑥𝑦) = 𝜔(𝑥)𝜔(𝑦) −

𝜔(𝑥)𝜔(𝑦) = 0 . Since𝜔(𝑥), 𝜔(𝑦) ∈ ℝ  then  𝜔(𝑥) = 0 or 

𝜔(𝑦) = 0,but 𝜔(𝑥2) =  𝜔(𝑥) 𝜔(𝑥) = 0 then 𝜔(𝑥) = 0for 

each 𝑥 ∈ 𝐴 . As a consequence A is not a baric 

algebra because it only contain a trivial 

homomorphism  

𝜔: A→ ℝ.  

Based on this concept of baric algebra, Schafer [4] 

was defined the genetic algebra . In this paper we use 

the genetic algebra equivalent definition that is 

introduced by Gonshor [2] and was expanded 

byWörz-Busekkros [5]. 

 

Definition 4 Let A be a commutative algebra over F. 

A is called a  genetic algebra if algebra 𝐴𝐿 (A is 

Gonshor genetic over  L, L is suitable algebraic 

extension of F), admit a basis 𝑐0, 𝑐1, … , 𝑐𝑛, 𝑐0 ∈ 𝐴 

where the multiplication constants 𝜆𝑖𝑗𝑘defined by : 

𝑐𝑖𝑐𝑗 =∑𝜆𝑖𝑗𝑘𝑐𝑘

𝑛

𝑘=0

 

We have the following properties: 

(𝑖) 𝜆000 = 1, 

(𝑖𝑖) 𝜆0𝑗𝑘 = 0, 𝑘 < 𝑗, 

(𝑖𝑖𝑖) 𝜆𝑖𝑗𝑘 = 0, 𝑖, 𝑗 > 0, 𝑘 ≤ 𝑚𝑎𝑥(𝑖, 𝑗). 

The bases of A is called the canonical base. 

Furthermore,  𝜆000 = 1,  𝜆011, … ,  𝜆0𝑛𝑛 is called the train 

roots of A. 

Furthermore, a genetic algebra can be characterized 

by a chain of its ideal with some additional properties. 

Theorem 5 Let A algebra over F with dimension 

𝑚 + 1.The following assertions are  equivalent: 

(1) A genetic 

A had the ideal  𝜋 dimension m with 𝐴2 ⊈

𝜋 and  𝐴𝐿 chain of  the ideals: 

𝐴𝐿 > 𝜋𝐿 = 𝜋1 > ⋯ > 𝜋𝑚 > 𝜋𝑚+1 = 〈0〉 

Top of the field extension L of F in accordance with 

the 𝑑𝑖𝑚𝜋𝑖 = 𝑚 + 1 − 𝑖  𝑖 = 1, 2, … ,𝑚 and  𝜋𝑖𝜋𝑗 ⊆

𝜋𝑙 ,   𝑙 = 𝑚𝑎𝑥(𝑖, 𝑗) + 1, 𝑖, 𝑗 = 1, 2, … ,𝑚. 

Proof (⇒) Let A be a genetic algebra, thus A is a baric 

algebra. As a consequence A has a m-dimensional 

ideal 𝜋 = ker𝜔  and  𝐴2 ⊈ 𝜋. By definition , there are 

the expansion field L of F accordingly so that𝐴𝐿has 

canonical basis𝑐0, 𝑐1, … , 𝑐𝑚 . Put𝜋𝑖 = 〈𝑐𝑖 , 𝑐𝑖+1, … , 𝑐𝑚〉𝐿 , 

𝑖 = 1, 2, … ,𝑚thusdim𝜋𝑖 = 𝑚 + 1 − 𝑖  . Since A genetic 

then  𝑐𝑖𝑐𝑗 = ∑ 𝜆𝑖𝑗𝑘𝑐𝑘
𝑚
𝑘=0  applicable  𝜆𝑖𝑗𝑘 = 0, 𝑘 ≤

max(𝑖, 𝑗), 𝑖, 𝑗 > 0. 

Let max(𝑖, 𝑗) = 𝑖  then  𝑘 ≤ 𝑖 , consequently 𝑘 < 𝑖 + 1 =

𝑙 . Since     𝜋𝑖 = 〈𝑐𝑖 , 𝑐𝑖+1, … , 𝑐𝑚〉 and  𝜋𝑗 =

〈𝑐𝑗 , 𝑐𝑗+1, … , 𝑐𝑚〉,  then 𝜋𝑙 = 〈𝑐𝑖+1, 𝑐𝑖+2, … , 𝑐𝑚〉. Note that, 

𝑐𝑖𝑐𝑗 =∑𝜆𝑖𝑗𝑘𝑐𝑘

𝑚

𝑘=0

= 0, 𝑘 ≤ 𝑖 

Which means that 𝑐𝑖𝑐𝑗 ∈ 𝜋𝑙 , 𝑘 ≥ 𝑙. So, 𝜋𝑖𝜋𝑗 ⊆ 𝜋𝑙 ,   𝑙 =

max(𝑖, 𝑗) + 1, 𝑖, 𝑗 = 1, 2, … ,𝑚. 

(⇐)Suppose (2) hold. Choose a basis{𝑐1, … , 𝑐𝑛}of𝜋1so 

that 𝑐𝑗 ∈ 𝜋𝑗  , 𝑐𝑗 ∈ 𝜋𝑗+1, 𝑗 = 1, 2, … ,𝑚 and 𝑐0 ∈ 𝐴,𝜔(𝑐0) =

1,   𝜔(𝑐𝑗) = 0. Since𝜔a weight homomorphism, then 

1 = 𝜔(𝑐0
2) = 𝜔(∑ 𝜆00𝑘𝑐𝑘

𝑚
𝑘=0 ) = 𝜆000𝜔(𝑐0) + ⋯+

𝜆00𝑚𝜔(𝑐𝑚). 

We obtain 𝜆000 = 1 .Furthermore, since  𝜋𝑗 =

〈𝑐𝑗 , 𝑐𝑗+1, … , 𝑐𝑚〉, 𝑗 = 1, 2, … ,𝑚 ideal of 𝐴𝐿 thus 𝑐0𝑐𝑗 =

∑ 𝜆0𝑗𝑘𝑐𝑘
𝑚
𝑘=0 ∈ 𝜋𝑗. Therefore, it should be𝜆0𝑗𝑘 = 0, 𝑘 < 𝑗. 

Furthermore, since 𝜋𝑖𝜋𝑗 ⊆ 𝜋𝑙 ,   𝑙 = max(𝑖, 𝑗) + 1, 𝑖, 𝑗 =

1, 2,… ,𝑚, then𝜆𝑖𝑗𝑘  = 0, 𝑘 ≤ max(𝑖, 𝑗).Thus,  it can be 

concluded that A is genetic.∎ 

Corollary 6 Let A be a genetic algebra top of L field 

extension of  F with weight homomorphism 𝜔 , 

then 𝜋 = 𝑘𝑒𝑟 𝜔 is nilpotent. 

Proof  By the Theorem 5,There area sequence of 

ideal: 

𝐴𝐿 > 𝜋𝐿 = 𝜋1 > ⋯ > 𝜋𝑚 > 𝜋𝑚+1 = 〈0〉 

Where L is a suitable extension field of F and 𝜋𝑖𝜋𝑗 ⊆

𝜋𝑙 ,   𝑙 = max(𝑖, 𝑗) + 1, 𝑖, 𝑗 = 1, 2, … ,𝑚. Since 𝜋 = 𝜋1 ∩

𝐴 then by induction on i it will be shown that the 

principal powers of  𝜋 satisfy the relation: 

𝜋𝑖 = 𝜋𝑖−1𝜋 ⊆ 𝜋𝑖−1𝜋1 ⊆ 𝜋𝑖. 

Fori = 1, trivial. For i = 2, 𝜋2 = 𝜋𝜋 ⊆ 𝜋1𝜋1 ⊆ 𝜋2 . 

Suppose properly for i = k, then we have relation𝜋𝑘 =

𝜋𝑘−1𝜋 ⊆ 𝜋𝑘−1𝜋1 ⊆ 𝜋𝑘 . Consequently, for i =k +1 we 

obtain: 

𝜋𝑘+1 = 𝜋𝑘𝜋 = (𝜋𝑘−1𝜋)𝜋 ⊆ (𝜋𝑘−1𝜋1)𝜋 ⊆ 𝜋𝑘𝜋 ⊆ 𝜋𝑘𝜋1 ⊆

𝜋𝑘+1. 

Thus 𝜋𝑚+1 ⊆ 𝜋𝑚+1 = 〈0〉, i.e. 𝜋nilpotent. ∎ 

http://www.jmest.org/
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III. SPECIAL TRAIN ALGEBRA 

We will further discuss a special train algebra and its 

properties related to the genetic algebra. 

Definition 7. Baric algebra A with homomorphism 

weight 𝜔 is called special train algebra if 𝜋 = ker 𝜔 is 

nilpotent and all principal powers 𝜋𝑖of A that defined 

by 𝜋1 = 𝜋, 𝜋𝑖 = 𝜋𝑖−1𝜋 for  𝑖 = 2,3, … , is ideal of A. 

One of the main characteristics of the special train 

algebra to be genetic algebraas stated in the following 

theorem. Our proof follows [5]. 

Theorem 8. Let A baric algebra over F with 

homomorphism weight 𝜔 . The following statementis 

equivalent: 

(1) A special train algebra. 

(2) A genetic and all principal power of  ker 𝜔 is ideal 

of A. 

Before proving Theorem 8, we will discusse the left 

linear transformation of algebra A. 

Let 𝑐1, 𝑐2, … , 𝑐𝑛is F-basis of Awith the multiplication: 

𝑐𝑖𝑐𝑗 =∑𝛾𝑖𝑗𝑘

𝑛

𝑘=1

𝑐𝑘, 𝑖, 𝑗 = 1,… , 𝑛 

For each 𝑥 ∈ 𝐴 , left linear transformation  ℒ𝑥: 𝐴 ⟶

𝐴 with the association of  𝑐 ⟼ 𝑥𝑐 , 𝑐 ∈ 𝐴 and 𝑥 =

∑ 𝜀𝑖𝑐𝑖
𝑛
𝑖=1  is represented by the matrix: 

𝐿𝑥 =

(

 
 
 
 
∑𝜀𝑖

𝑛

𝑖=1

𝛾𝑖11 ⋯ ∑𝜀𝑖

𝑛

𝑖=1

𝛾𝑖𝑛1

⋮ ⋱ ⋮

∑𝜀𝑖

𝑛

𝑖=1

𝛾𝑖1𝑛 ⋯ ∑𝜀𝑖

𝑛

𝑖=1

𝛾𝑖𝑛𝑛
)

 
 
 
 

= (∑𝜀𝑖

𝑛

𝑖=1

𝛾𝑖𝑗𝑘)

𝑗,𝑘=1,…,𝑛

𝑇

 

Matrix corresponding to the linear transformation 

left ℒ𝑐1 , … , ℒ𝑐𝑛expressed by: 

𝒯1 = (𝛾1𝑗𝑘)
𝑇
, … , 𝒯𝑛 = (𝛾𝑛𝑗𝑘)

𝑇
 

Consequently 𝐿𝑥can be written as: 

𝐿𝑥 = ∑ 𝜀𝑖
𝑛
𝑖=1 𝒯𝑖. 

Example 9. Let A the genetic algebra over F, then 

𝐴𝐿has  a canonical basis 𝑐0, 𝑐1, … , 𝑐𝑚,  𝑐0 ∈ 𝐴with the 

multiplication tables  𝑐𝑖𝑐𝑗 = ∑ 𝜆𝑖𝑗𝑘
𝑛
𝑘=0 𝑐𝑘, 𝑖, 𝑗 =

0,… , 𝑛 and  𝜆000 = 1, 𝜆0𝑗𝑘 = 0, 𝑘 < 𝑗 and 𝜆𝑖𝑗𝑘 = 0, 𝑘 ≤

max(𝑖, 𝑗), 𝑖, 𝑗 > 0 . Provided that each ℒ𝑥 with 𝑥 =

∑ 𝜀𝑖𝑐𝑖
𝑛
𝑖=0 ∈ 𝐴 corresponds to the matrix: 

𝐿𝑥 =∑𝜀𝑖

𝑚

𝑖=0

𝒯𝑖 

where 

𝒯0 =





















mmmm 00100

011001

01








 

and 

𝒯𝑖

mi

mmiiimmi

iiiii

ii
,,1,

0

0

00

0

)1(0

)1()1(0

0


















































. 

Example 10. Let 𝐴 = 〈𝑐0, 𝑐1〉ℝ with 

themultiplicationtables: 

 𝑐0 𝑐1 

𝑐0 𝑐0 + 𝑐1 -2𝑐1 

𝑐1 -2𝑐1 -𝑐1 

 

Thus left transformation ℒ𝑐0 dan ℒ𝑐1 is represented by 

the matrix: 

𝐿𝑐0 = (
1 0
1 2

) and 𝐿𝑐1 = (
0 0
2 −1

). 

Proof of Theorem 8 (⇒) Let A is train algebra and 

𝜋 = ker𝜔 is nilpotent of index r and the principal 

powers 𝜋 = 𝜋1 are ideal of A. It will be shown that A 

have a canonical basis over a suitable extension field 

L of F. Let 𝑐0 ∈ 𝐴 with 𝜔(𝑐0) = 1. Furthermore, let 

𝑏1
(1)
, … , 𝑏𝑘1

(1)
, … . , 𝑏1

(𝑟)
, … , 𝑏𝑘𝑟

(𝑟)
 be basis of 𝜋1 so 

that 𝑏1
(1)
, … , 𝑏𝑘𝑙

(𝑙)
∈ 𝜋1 but not in 𝜋𝑙+1, 𝑙 = 1,… , 𝑟 −

1. Since 𝜋𝑙𝜋 ⊆ 𝜋𝑙+1 left 

transformation  ℒ
𝑏1
(𝑙) , … , ℒ

𝑏𝑘𝑙
(𝑙)  induces a trivial mapping 

on the factor space 𝜋𝑙/𝜋𝑙+1 , 𝑙 = 1,… , 𝑟 . By basis 

𝑐0, 𝑏1
(1)
, … , 𝑏𝑘𝑟

(𝑟)
, left transformation ℒ

𝑏1
(𝑙) , … , ℒ

𝑏𝑘𝑙
(𝑙)  is 

represented by a lower triangular matrices of the form: 
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



1

1k

lk

rk

rklk
1k1

 

↔ ℒ
𝑏𝑖
(𝑙) 





1

1k

lk

rk

rklk
1k1

 

 

↔ ℒ𝑐0 

 

0 
0    

 

0 0     

0 0 0  0  

* * * 0   

* * * *   

* * * * * 0 

 

 

 

Since 𝜋1, 𝜋2, … , 𝜋𝑟  are ideal of A, the left 

transformation ℒ𝑐0 is represented by a lower block 

triangular matrix: 

 

1 
     

 *   0  

     
 

   *   

 *     

     * 

 

 

 

Let L be an extension field of Fcontaining the splitting 

field of the characteristic polynomial of ℒ𝑐0 . We 

choose the bases: 

𝑐0
(𝑙)
+ 𝜋𝑙+1, … , 𝑐𝑘𝑙

(𝑙)
+ 𝜋𝑙+1 

of 𝜋𝑙/𝜋𝑙+1 , 𝑙 = 1,… , 𝑟 such that the linear 

mappingℒ
𝑐0
(𝑙) induced byℒ𝑐0 in 𝜋𝑙/𝜋𝑙+1are represented 

by lower triangular matrices. Consequently, 

𝑐0, 𝑐1
(1)
, … , 𝑐𝑘1

(1)
, … , 𝑐1

(𝑟)
, … , 𝑐𝑘𝑟

(𝑟)
 is a basis of  𝐴𝐿 with 

respect to ℒ𝑐0 with is represented by a lower triangular 

matrices and with respect to  which the linear 

transformation  ℒ
𝑏𝑖
(𝑙) , 𝑖 = 1,… , 𝑘1, 𝑙 = 1,… , 𝑟 that also 

represented by lower block triangular matrices. 

We will show that𝑐0, 𝑐1
(1)
, … , 𝑐𝑘1

(1)
, … , 𝑐1

(𝑟)
, … , 𝑐𝑘𝑟

(𝑟)
 form a 

canonic basis of 𝐴𝐿. With this aim we enumerate these 

basis elements in  the given order from 0 to m. The 

multiplication table of 𝐴𝐿with respect to this basisis: 

𝑐𝑖𝑐𝑗 = ∑ 𝜆𝑖𝑗𝑘𝑐𝑘
𝑛
𝑘=0 ,    𝑖, 𝑗 = 1,… ,𝑚. 

Since 𝜔 is algebra homomorphism, and 𝜔(𝑐0) = 1,

𝜔(𝑐𝑖) = 0 , then  𝜆000 = 1 . Since 𝑐0 ∈ 𝐴 related linear 

transformations  ℒ𝑐0 which represented by lower 

triangular matrices, then 𝜆0𝑗𝑘 = 0,   𝑘 < 𝑗. 

Furthermore, because each𝑐𝑖 , 𝑖 = 1,… ,𝑚 is a linear 

combination of 𝑏1, … , 𝑏𝑚  ,   𝑐𝑖 = ∑ 𝜎ℎ𝑖𝑏ℎ
𝑚
ℎ=1 .  For 𝑖, 𝑗 =

1,… ,𝑚 we have: 

𝑐𝑖𝑐𝑗 =∑𝜆𝑖𝑗𝑘𝑐𝑘

𝑛

𝑘=0

 

and also 

𝑐𝑖𝑐𝑗 =∑𝜎ℎ𝑖𝑏ℎ

𝑚

ℎ=1

𝑐𝑗 =∑𝜎ℎ𝑖ℒ𝑏ℎ

𝑚

ℎ=1

𝑐𝑗 

Let 𝑐𝑗 ∈ 𝜋
𝑙 ,but  𝑐𝑗 ∉ 𝜋

𝑙+1, thenℒ𝑏ℎ𝑐𝑗 ∈ 𝜋𝜋
𝑙 ⊆ 𝜋𝑙+1. If we 

compare the coefficients, we obtain𝜆𝑖𝑗𝑘 = 0,   𝑘 ≤ 𝑗 . 

Since A is commutative we have also𝜆𝑖𝑗𝑘 = 0,   𝑘 ≤ 𝑖. 

So for  𝑖, 𝑗 > 0 we found that 𝜆𝑖𝑗𝑘 = 0,   𝑘 ≤ max(𝑖, 𝑗) . 

As a consequence Ais  genetic. 

(⇐ ) Suppose (2) hold. By Corollary 6, ker𝜔 = 𝜋 is 

nilpotent. Furthermore, because the principal powers 

of𝜋 is ideal of A then A is a special train algebra. ∎ 

Corrolary 11. Each special train algebra is genetic.∎ 

There is a genetic algebra which is not a special train 

algebra, as follows  

Example 12. Let A algebra over ℝ with a 

basis{𝑐0, 𝑐1, … , 𝑐5} and the multiplication table: 

 𝑐0 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 

𝑐0 𝑐0 
1

2
𝑐1 

1

4
𝑐3 0 0 0 

𝑐1  1

4
𝑐2 

1

8
𝑐4 0 0 0 

𝑐2   1

16
𝑐5 0 0 0 

𝑐3    0 0 0 

𝑐4     0 0 

𝑐5      0 

 

Then {𝑐0, 𝑐1, … , 𝑐5} is canonic basis of A. Hence A is a 

genetic. Furthermore,clearly that A is also baric 

algebra where the weight homomorphism𝜔 defined 

by 𝜔(𝑐0) = 1 and 𝜔(𝑐𝑖) = 0, 𝑖 = 1, 2, 3, 4, 5. 

The principal powers of ker𝜔 = 𝜋 are.: 

𝜋 = 〈𝑐1, … , 𝑐5〉, 𝜋
2 = 〈𝑐2, 𝑐4, 𝑐5〉,  𝜋

3 = 〈𝑐4, 𝑐5〉,  𝜋
4 = 〈0〉. 

However,𝑐0𝑐2 =
1

4
𝑐3 ∉ 𝜋

2 . Thus 𝜋2 not an ideal of A 

and A is not aspecial train. 
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By experience in Example 12 above, we will give the 

condition to 𝜋𝑖 𝑡𝑜 𝑏𝑒  an ideal of A. 

Theorem 13. Let A is genetic with basis 𝑐0, … , 𝑐𝑚in A 

and multiplication 𝑐𝑖𝑐𝑗 = ∑ 𝜆𝑖𝑗𝑘𝑐𝑘
𝑛
𝑘=0 𝑎𝑛𝑑 𝜋  = ker 𝜔  

(𝜔 homomorphism weight), then 

(1) 𝜋𝑖 ideal of A if and only if 𝑐0𝜋
𝑖 ⊆ 𝜋𝑖, 𝑖 ∈ ℕ. 

(2) If the multiplication constants 𝜆𝑖𝑗𝑘 ≠ 0 for 

𝑘 = 𝑚𝑎𝑘𝑠(𝑖, 𝑗) + 1, 𝑖, 𝑗 > 0 , then 𝜋𝑖 =

〈𝑐𝑖 , … , 𝑐𝑚〉, 𝑖 = 1,… ,𝑚 and 𝜋𝑖is  ideal of  A. 

Proof (1) (⇒)𝐿𝑒𝑡 𝜋𝑖 ideal ofA, it is obvious that 𝑐0𝜋
𝑖 ⊆

𝜋𝑖, 𝑖 ∈ ℕ. 

(⇐) Let 𝑐0𝜋
𝑖 ⊆ 𝜋𝑖, 𝑖 ∈ ℕ. Using the induction on i  we 

will be shown 𝜋𝑖 is an ideal of A. For  𝑖 = 1 , 𝜋1 =

〈𝑐1, … , 𝑐𝑚〉 = ker𝜔. Thus𝜋1 is an ideal of A. Let for i=k 

,𝑘 ≥ 1 i.e. 𝜋𝑘  is an ideal of A. By definition  𝜋𝑘+1 =

𝜋𝑘𝜋 . Since 𝜋𝑘  is an ideal, then 𝑐𝑖𝜋
𝑘 ⊆ 𝜋𝑘  . 

Consequently, 𝑐𝑖𝜋
𝑘+1 = 𝑐𝑖𝜋

𝑘𝜋 ⊆ 𝜋𝑘𝜋 = 𝜋𝑘+1 . Thus, 

𝜋𝑘+1 is an ideal of A. ∎ 

(2) We will show by induction on i that 𝜋𝑖 =

〈𝑐𝑖 , … , 𝑐𝑚〉, 𝑖 = 1,… ,𝑚 and 𝜋𝑖an ideal of A. For  𝑖 = 1, 

𝜋1 = 〈𝑐1, … , 𝑐𝑚〉 = ker𝜔. Thus 𝜋1 is an ideal of A. Let 

for i ≥ 1, 𝜋𝑖 = 〈𝑐𝑖 , … , 𝑐𝑚〉 , 𝜋𝑖  is an ideal of A. By 

definition 𝜋𝑖+1 = 𝜋𝑖𝜋 . Take 𝑐𝑖 ∈ 𝜋
𝑖and  𝑐𝑗 ∈ 𝜋 then for 

𝑖, 𝑗 > 0: 

𝑐𝑖𝑐𝑗 = 𝜆𝑖𝑗0𝑐0 + 𝜆𝑖𝑗1𝑐1 +⋯+ 𝜆𝑖𝑗𝑖𝑐𝑖 + 𝜆𝑖𝑗(𝑖+1)𝑐(𝑖+1) +⋯

+ 𝜆𝑖𝑗𝑚𝑐𝑚 

Since A genetic, then  𝜆𝑖𝑗𝑝 = 0 for 𝑝 ≤ 𝑚𝑎𝑘𝑠 (𝑖, 𝑗) . 

Let 𝑚𝑎𝑘𝑠 (𝑖, 𝑗) = 𝑖 hence: 

𝑐𝑖𝑐𝑗 = 𝜆𝑖𝑗(𝑖+1)𝑐(𝑖+1) +⋯+ 𝜆𝑖𝑗𝑚𝑐𝑚 

𝑐(𝑖+1)𝑐𝑗 = 𝜆(𝑖+1)𝑗(𝑖+2)𝑐(𝑖+2) +⋯+ 𝜆(𝑖+1)𝑖𝑚𝑐𝑚 

⋮ 

𝑐(𝑚−1)𝑐𝑗 = 𝜆(𝑚−1)𝑗𝑚𝑐𝑚 

𝑐𝑚𝑐𝑗 = 0 

Thus acquired, 𝜋𝑖+1 = 〈𝑐(𝑖+1), … , 𝑐𝑚〉 . 

Consequently, 𝑐𝑖𝜋
𝑖+1 ⊆ 𝜋𝑖+1, 𝑖 > 0. 

Furthermore, 

𝑐0𝑐(𝑖+1) = 𝜆0(𝑖+1)(𝑖+1)𝑐(𝑖+1) +⋯+ 𝜆𝑖𝑗𝑚𝑐𝑚 ∈ 𝜋
𝑖+1 

𝑐0𝑐(𝑖+2) = 𝜆0(𝑖+2)𝑗(𝑖+2)𝑐(𝑖+2) +⋯+ 𝜆(𝑖+1)𝑖𝑚𝑐𝑚 ∈ 𝜋
𝑖+1 

⋮ 

𝑐0𝑐(𝑚−1) = 𝜆0(𝑚−1)(𝑚−1)𝑐(𝑚−1) ∈ 𝜋
𝑖+1 

𝑐0𝑐𝑚 = 𝜆0𝑚𝑚𝑐𝑚 ∈ 𝜋
𝑖+1 

 

Thus 𝑐0𝜋
𝑖+1 ⊆ 𝜋𝑖+1. Therefore,𝜋𝑖+1 is an ideal of A.∎ 

IV. CONCLUSIONS 

Based on the discussion, it is generally found that 

special train algebra is a genetic algebra. 

Furthermore,with the ideal condition (kernel 

homomorphism of weight) such that each principal 

powers are ideal, then we have that the genetic 

algebra is special train algebra. 
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