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Abstract—Wavelet analysis has drawn a great 
attention from mathematical sciences in various 
disciplines. The subject of wavelet is to create a 
common link between mathematicians, physicists, 
and electrical engineers. Wavelets are 
mathematical functions that cut up data into 
different frequency components, and then study 
each component with a resolution matched to its 
scale. They have advantages over traditional 
Fourier methods in analyzing physical situations 
where the signal contains discontinuities and 
sharp spikes. Wavelets were developed 
independently in the fields of mathematics, 
quantum physics, electrical engineering, and 
seismic geology. Interchanges between these 
fields have led to many new wavelet applications 
such as image compression, turbulence, human 
vision, radar, and earthquake prediction. This 
paper introduces wavelets to the interested 
technical person outside of the digital signal 
processing field. It is described the history of 
wavelets beginning with Fourier, compare wavelet 
transforms with Fourier transforms, state 
properties and other special aspects of wavelets, 
and finish with some interesting applications such 
as image compression, musical tones, and de-
noising noisy data.  
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I.  INTRODUCTION  

The wavelet transform is an expansion that 
decomposes a given signal in a basis of orthogonal 
functions. In this sense, we can set a complete 
analogy with the Fourier Transform. While the Fourier 
Transform uses periodic, smooth and unlimited basis 
functions (i.e., sines and cosines), the wavelet 
transform uses non-periodic, non-smooth and finite 
support basis functions, allowing a much more 
meaningful representation through multi-resolution 
analysis.  
Wavelets are functions that satisfy certain 
mathematical requirements and are used in 
representing data or other functions. Approximation 
using superposition of functions has existed since the 
early 1800's, when Joseph Fourier discovered that he 

could superpose sines and cosines to represent other 
functions. However, in wavelet analysis, the scale that 
we use to look at data plays a special role. Wavelet 
algorithms process data at different scales or 
resolutions. If we look at a signal with a large 
"window," we would notice gross features. Similarly, if 
we look at a signal with a small "window," we would 
notice small features. More clearly, we can say that 
the result in wavelet analysis is to see both the forest 
and the trees.  This makes wavelets interesting and 
useful. For many decades, scientists have wanted 
more appropriate functions than the sines and cosines 
which comprise the bases of Fourier analysis, to 
approximate choppy signals. By their definition, these 
functions are non-local (and stretch out to infinity). 
They therefore do a very poor job in approximating 
sharp spikes. But with wavelet analysis, we can use 
approximating functions that are contained neatly in 
finite domains. Wavelets are well-suited for 
approximating data with sharp discontinuities. Other 
applied fields that are making use of wavelets include 
astronomy, acoustics, nuclear engineering, sub-band 
coding, signal and image processing, 
neurophysiology, music, magnetic resonance imaging, 
speech discrimination, optics, fractals, turbulence, 
earthquake-prediction, radar, human vision, and pure 
mathematics applications such as solving partial 
differential equations.  

II. FOURIER ANALYSIS 

A. Fourier transforms 

Fourier's representation of functions as a 
superposition of sines and cosines has become 
ubiquitous for both the analytic and numerical solution 
of differential equations and for the analysis and 
treatment of communication signals. Fourier and 
wavelet analysis have some very strong links.  

The Fourier transform's utility lies in its ability to 
analyze a signal in the time domain for its frequency 
content. The transform works by first translating a 
function in the time domain into a function in the 
frequency domain. The signal can then be analyzed 
for its frequency content because the Fourier 
coefficients of the transformed function represent the 
contribution of each sine and cosine function at each 
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frequency. An inverse Fourier transform does just 
what you'd expect; transform data from the frequency 
domain into the time domain.  
The Fourier transform decomposes a signal in 
complex exponential functions at different 
frequencies. The equations used in the decomposition 
and reconstruction part will be given below: 

( ) ( ) j tX x t e dt
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Where, t  stands for time, f 2 for frequency, x  

denotes the signal in the time domain and X  denotes 
the signal in the frequency domain (also known as the 
spectrum of the original signal).    
Projecting the signal on complex exponentials leads to 
good frequency analysis, but no time localization. The 
poor time localization is the main disadvantage of the 
Fourier transform, making it not suitable for all kind of 
applications.    

B. Wavelet Transform 

Based in the limitations of the Fourier Transform (poor 
time localization) Grossman and Morlet gave in 1984 
the formulation of the Continuous Wavelet Transform. 
Unlike, the Fourier transform that decomposes the 
signal into a basis of complex exponentials, the 
Wavelet Transform decomposes the signal over a set 
of dilated and translated wavelets [1]. 

This difference confers to the wavelet transform the 
advantage of performing a multiresolution analysis, 

meaning that it processes different frequencies in a 
different way. By using this technique, the time 
resolution is increased when we analyze a high 
frequency portion of the signal, and the frequency 
localization is increased when analyzing a low-
frequency part of the same signal[2][3]. This type of 
analysis is suitable for signals that have both low-
frequency components with long time duration and 
high-frequency components with short time duration, 
which is the case of most signals. If we consider a 

function (signal) )(2 RLx and for analysis we use 

the mother wavelet )(t , with its scaled and 

translated versions of 
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Now, we can write the wavelet transform of )(tx  at 

time u  and scale s as: 
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By looking at the equation above we can conclude 
that the Wavelet Transform can be seen as a 
convolution between the signal to be analyzed and the 

reverse function, 









s

t

s
ts 

1
)(  derived from 

the Mother Wavelet. 

III. COMPARISON OF WAVELET TRANSFORM WITH 

FOURIER TRANSFORM 

The fast Fourier transform (FFT) and the discrete 
wavelet transform (DWT) are both linear operations 

that generate a data structure that contains n2log  

segments of various lengths, usually filling and 

transforming it into a different data vector of length 
n2

.  

The mathematical properties of the matrices involved 
in the transforms are similar as well. The inverse 
transform matrix for both the FFT and the DWT is the 
transpose of the original. As a result, both transforms 
can be viewed as a rotation in function space to a 
different domain. For the FFT, this new domain 
contains basis functions that are sines and cosines. 
For the wavelet transform, this new domain contains 
more complicated basis functions called wavelets, 
mother wavelets, or analyzing wavelets.  

Both transforms have another similarity. The basic 
functions are localized in frequency, making 
mathematical tools such as power spectra (how much 
power is contained in a frequency interval) and 
scalegrams useful at picking out frequencies and 
calculating power distributions.  

The most interesting dissimilarity between these two 
kinds of transforms is that individual wavelet functions 
are localized in space. Fourier sine and cosine 
functions are not. This localization feature, along with 
wavelets' localization of frequency, makes many 
functions and operators using wavelets "sparse" when 
transformed into the wavelet domain. This 
sparseness, in turn, results in a number of useful 
applications such as data compression, detecting 
features in images, and removing noise from time 
series. 

IV. APPLICATION IN THE IMAGE PROCESSING 

In diverse fields from planetary science to molecular 
spectroscopy, scientists are faced with the problem of 
recovering a true signal from incomplete, indirect or 
noisy data. Wavelets can help to solve this problem, 
through a technique called wavelet shrinkage and 
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thresholding methods that David Donoho has worked 
on for several years [5]. 

The technique works in the following way. When you 
decompose a data set using wavelets, you use filters 
that act as averaging filters and others that produce 
details [6]. Some of the resulting wavelet coefficients 
correspond to details in the data set. If the details are 
small, they might be omitted without substantially 
affecting the main features of the data set. The idea of 
thresholding, then, is to set to zero all coefficients that 
are less than a particular threshold. These coefficients 
are used in an inverse wavelet transformation to 
reconstruct the data set.  

The basic wavelet denoising problem consists in, 
goven an input noisy image, dividing all its wavelet 
coefficients into relevant (if greater than a critical 
value) or irrelevant (if less than a critical value) and 
then process the coefficients from each one of these 
groups by certain specific rules. 

Filtering and convolution are applied to achieve the 
signal decomposition in classical wavelet transform. In 
1986, Meyer and Mallat found that the orthonormal 
wavelet decomposition and reconstruction can be 
implemented in the multi-resolution signal analysis 
framework. Multi-resolution analysis is now a standard 
method for constructing the orthonormal wavelet 
bases. 

In this paper we will give an application of image 
denoising using wavelet analysis. This is done using 
“wavelet tool” in MATLAB. We used Simulink in 
MATLAB to transform an image with .jpg or .tiff format 
(in our case it is in the format .jpg) to a signal and then 
we can process over this signal. 

Below we will give an example of an image which is 
saved in a folder in the .jpg format and then we loaded 
this image in MATLAB where now it is saved as a 
matrix. The better the quality of the image larger is the 
size of the matrix. Below is given the original image 
and then the matrixes that correspond for this image 
Fig. 1, [7][8]. 

 
Figure 1. Original image 

>> [m,n,k]=size(A) 
m = 2776 
n = 1971 
k =  3 

subplot(131); imagesc(A(:,:,1)); title('R'); 
subplot(132); imagesc(A(:,:,2)); title('G'); 
subplot(133); imagesc(A(:,:,3)); title('B'); 

The function rgb2gray(RGB) converts the true color 
image RGB (Red Blu Green) to the grayscale intensity 
image Figure 2 and Figure 3. The rgb2gray function 
converts RGB images to grayscale by eliminating the 
hue and saturation information while retaining the 
luminance. 

 
Figure 2. RBG image  

>> colormap grey; 

 
Figure 3. RGB image converted to greyscale image 

 
B = double(A); 

B(:,:,3) = 3*B(:,:,3); 
B = uint8(B); 
imshow(B); 

 
Figure 4.  

Wiener deconvolution can be useful when the point-
spread function and noise level are known or can be 
estimated. 

>> A=imread('amisi.jpg'); 
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>> LEN=21; 
>> THETA=11; 
>> PSF=fspecial('motion',LEN,THETA); 

>> blurred=imfilter(A,PSF,'conv','circular'); 
>> imshow(blurred) 

Now, we will simulate a blurred image that might get 
from camera motion. This is done creating a point-
spread function, PSF, corresponding to the linear 

motion across 31 pixels (LEN=31), at an angle of 11 
degrees (THETA=11). To simulate the blur, convolve 

the filter with the image using imfilter. 
 

 
Figure 5. a) Original Image; b) Simulated blur image 

Now, we will have to restore the Blurred Image. 

The simplest syntax for deconvwnr is deconvwnr(A, 
PSF, NSR), where A is the blurred image, PSF is the 
point-spread function, and NSR is the noise-power-to-

signal-power ratio. The blurred image formed in the 
Figure 5. b) has no noise, so we'll use 0 for NSR. 

>> wnr1=deconvwnr(blurred, PSF,0); 

>> imshow(wnr1) 

 
Figure 6. Blurred image without noise 

noise_mean = 0; 
noise_var = 0.0001; 

blurred_noisy = imnoise(blurred, 'gaussian', ... 
                        noise_mean, noise_var); 

imshow(blurred_noisy) 

 
Figure 7. Blurred noisy image 

In our first restoration attempt, we'll tell deconvwnr 
that there is no noise (NSR = 0). When NSR = 0, the 
Wiener restoration filter is equivalent to an ideal 
inverse filter. The ideal inverse filter can be extremely 
sensitive to noise in the input image, as the next 
image shows:  

 

Figure 8. Restored blurred noisy image. 1
st
 attempt 
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The noise was amplified by the inverse filter to such a 
degree that only the barest hint of the girl's shape is 
visible. 

In our second attempt we supply an estimate of the 
noise-power-to-signal-power ratio. 

signal_var = var(I(:)); 
wnr3 = deconvwnr(blurred_noisy, PSF, noise_var / 
signal_var); 
imshow(wnr3) 

 

If we pass a uint8 image to imfilter, it will quantize the 
output in order to return another uint8 image. 

>>blurred_quantized = imfilter(I, PSF, 'conv', 'circular'); 
>>class(blurred_quantized) 
 
Again, we'll try first telling deconvwnr that there is no noise. 
>>wnr4 = deconvwnr(blurred_quantized, PSF, 0); 
>>imshow(wnr4) 
>>title('Restoration of blurred, quantized image using NSR = 0'); 

 

Figure 9. Restored the blurred, quantized image 

Next, we supply an NSR estimate to deconvwnr. 

 
Figure 10. Restored blurred image 

 
>>uniform_quantization_var = (1/256)^2 / 12; 
>>signal_var = var(im2double(I(:))); 
>>wnr5 = deconvwnr(blurred_quantized, PSF, ... 
    uniform_quantization_var / signal_var); 
>>imshow(wnr5) 
>>title('Restoration of Blurred, Quantized Image Using Computed 
NSR'); 

 

CONCLUSIONS 

Image denoising is a required preprocessing step in 
several applications in image processing and pattern 
recognition. Therefore, estimating a signal that is 
degraded by noise has been of interests to a wide 
community of researchers. The goal of image 
denoising is to remove the noise as much as possible, 
while retaining important features, such as edges and 
fine details. Traditional image denoising have been 
based on linear filtering, where most usual choices 
are Winner filtering. 

Application with both simulated and real image data 
provided good results. The obtained results indicated 
a significant improvement in the denoising 
performance, showing the effectiveness of wavelet 
transform used in this application. 

Future works may include the use and investigation of 
more wavelet decomposition levels, other kinds of 
wavelet transforms, as well as the filtering of other 
kinds of noise.   
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