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Abstract—Tuberculosis disease is an airborne 

disease caused by the bacterium called 
mycobacterium tuberculosis. In this paper we 
have classified human population into four 
compartments and designed mathematical model 
to describe the dynamics of tuberculosis disease. 
The pathogen population in the polluted air is 
considered as still another compartment. Formula 
for reproduction number is constructed and 
equilibrium point analysis is made. Numerical 
simulation study is conducted using ode45 of 
MATLAB. The results and interpretations are 
included. 
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1. Introduction 

Every year infectious diseases cause more than 
thirteen millions of deaths worldwide and hence 
require serious attention to fight against them. Two 
thirds of these diseases occur among the children 
under five years of age. The top infectious diseases 
claiming the most human lives include human immune 
deficiency virus (HIV), Tuberculosis (TB) and malaria 
[5]. Some infectious diseases like tuberculosis are air-
borne while few others like cholera are water-borne. 
Variety types of TBs have been affecting human kind. 
Mycobacterium tuberculosis (MTB) is also an air-
borne disease caused by the bacterium called 
mycobacterium. The tuberculosis disease is 
characterized by many symptoms including weight 
loss, fever, night sweats, and loss of appetite [6]. The 
mycobacterium tuberculosis is carried by airborne 
particles called droplet nuclei which are in general of 1 
to 5 microns in diameter. The infectious droplet nuclei 
are generated and thrown into air while the persons of 
pulmonary or laryngeal TB disease cough, sneeze, 
shout, sing or even while they just talk [7]. Depending 
on composition of the environment these tiny particles 
can remain suspended in the air for several hours. 
Transmission occurs when a person inhales droplet 
nuclei containing mycobacterium tuberculosis, and the 
droplet nuclei traverse through the mouth or nasal 
passages, upper respiratory tract and bronchi to reach 
the alveoli of the lungs [6]. 

Tuberculosis most commonly affects the lungs 
yielding what is known as pulmonary active 

tuberculosis. Tuberculosis also can spread to other 
organs of human body such as bones etc. 
Tuberculosis meningitis, another type of tuberculosis, 
spreads to and affects human brain. Tuberculosis is a 
major cause of global mortality and morbidity 
especially in poor and developing countries where 
limited health care resources and weak health care 
systems are functioning. Over 80% of all tuberculosis 
patients live in 22 countries, most of them are in Sub-
Saharan African and Asian continents [1]. It is 
therefore important that adequate attention is paid and 
effective control measures are initiated so that the 
spread of such diseases is stopped. 

The purpose of the current study is to understand 
the dynamics of tuberculosis by (i) constructing a 
mathematical model, (ii) making stability analysis and 
(iii) performing simulation study. We will also make 
necessary recommendations based on the results of 
this study. We now list the stages of the disease. The 
total tuberculosis bacteria population found inside 
human body is divided mainly in to two categories viz., 
(i) intracellular bacteria which are found in lungs and 
(ii) extracellular bacteria which are found in other parts 
of human body outside the lungs. Intracellular bacteria 
or latent bacteria is considered as sleeping as they 
have been blocked by white blood cells while 
extracellular bacteria is considered as active as they 
are out of control of white blood cells. 

Latent tuberculosis is one stage of tuberculosis. 
During this stage mycobacterium tuberculosis 
bacterium is already alive in the human body but it is 
inactive. A person of this stage does not show any 
symptoms of the disease or does not fall sick. With 
the aid of the presently available medical tests 
diagnose of the disease is not possible. As long as the 
natural immunity defense system is stronger and 
keeps the bacteria under control the mycobacterium 
tuberculosis bacteria does not spread to other parts of 
the body and is remains sleep in the human lungs or 
in the latent stage. On the other hand active 
tuberculosis disease can be positively diagnosed by 
any of the medical tests including skin test, blood test, 
chest x-ray, sputum smear or culture. The active 
tuberculosis affected person usually feels sick and 
develops symptoms such as coughing for 2-3 weeks 
or more, fever, unexplained weight loss, night sweats, 
fatigue, blood in the sputum or coughed up mucus, 
loss of appetite and chest pain[4]. 
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We now brief the transmission factors of 
mycobacterium tuberculosis. The mycobacterium 
tuberculosis transmission depends on various factors 
that may include the following: (i) Susceptibility or 
immune status of a human. If an exposed individual 
has a weak immune system he or she will have high 
probability to develop active tuberculosis disease. (ii) 
Dens population areas. A person who lives in high 
population density area has more chances of getting 
infection than a person who lives in low population 
density area. (iii) Number of tubercle bacilli. 
Infectiousness of the person with tuberculosis disease 
is directly related to the number of tubercle bacilli that 
he or she expels into the air. Who expel many 
tubercle bacilli is more infectious than who expel few 
or no bacilli. (iv) Proximity, frequency, and duration of 
exposure. People who are exposed to the infection 
from short distances will have higher risk of 
transmission. People who are exposed to the infection 
for more number of times will have higher risk of 
transmission. People who are exposed to the infection 
for longer durations will have higher risk of 
transmission. (v) Environmental factors that enhance 
the probability that mycobacterium tuberculosis will be 
transmitted. These environmental factors include the 
following: (a) Concentration of infectious droplet 
nuclei. If there are more droplet nuclei in the air then 
there will be high probability of mycobacterium 
tuberculosis transmission. (b) Exposure in small 
enclosed spaces. If more people are confined to a 
small space like buses, small rooms, air ports, trains 
then they have got more chances of transmission. (c) 
No ventilation or no circulation of air. Rooms with less 
ventilation cause more transmission chances as 
infectious droplets have no way to go out. (d) 
Specimen handling. Improper specimen handling 
procedures generate infectious droplet nuclei. (e) Air 
flow from the room of infectious patient causes 
tuberculosis organisms to flow to other areas [4]. 

We now list few prevention techniques of the 
tuberculosis disease. Tuberculosis disease can be 
prevented through practicing good habits and hygienic 
conditions: (i) Covering the mouth and noses when 
coughing or sneezing (ii) including adequate 
ventilation in the rooms (iii) improving conditions in the 
crowded areas and (iv) providing treatment to bring 
the infection under control as soon as detected. These 
practices are essential in reducing the spread of 
tuberculosis. 

We here add meanings of the technical words 
used in this paper. (i) Pathogen is an agent causing 
disease. (ii) Bacteria are a group of unicellular micro 
organisms. Bacteria are plural while bacterium is 
singular. (iii) Bacilli are a rod shaped bacteria. Bacillus 
is singular while bacilli are plural. (iv) Tubercle is a 
small rounded swelling in lungs. (v) Tuberculosis is a 
disease of lung tubercles caused by the bacillus. (vi) 
Tuberculin is a serum injected to diagnose TB. (vii) 
Tubercle bacillus is a bacterium causing tuberculosis 
disease. (viii) Myco is a prefix used in combining 
forms. Meaning is fungi. 

2. Mathematical model of tuberculosis 
disease 

Many mathematical models have been constructed 
to describe the dynamics of the tuberculosis disease. 
These models are built based on varied assumptions. 
The present mathematical model of tuberculosis 
disease is based on the following assumptions: 

(i) The total human population is divided into four 
compartments viz., susceptible (S), exposed (E), 
infected (I) and recovered (R). 

(ii) The infected human after recovery may get 
exposed to the disease once again. Here the recovery 
indicates recovery from the illness but not from the 
disease. Thus recovery compartment has some 
contribution to make to the exposed compartment. 
That is, people have chance to migrate from recovery 
compartment to exposed compartment. 

(iii) Treatment is given only to the people of 
infected compartment as they are already exposed to 
the disease and they show symptoms of the disease 
and the disease is diagnosed by medical tests. 

(iv) Treatment is not given to the people of 
exposed compartment as they are already exposed to 
the disease but do not show any symptom of the 
disease. The infection is in sleeping condition, but not 
active. 

(v) The effect of the environmental pathogen (P) 
on the spread of tuberculosis disease is considered 
and included in the model. The human infected with 
tuberculosis disease will pollute the air and in return 
the polluted air will infect susceptible humans. 

We illustrate our model assumptions through a flow 
chart. 

 

Figure 1 The flow chart of model assumptions 

The human host population 𝑁(𝑡) under study is 

divided into four classes at any time 𝑡 viz., 𝑆(𝑡), E(t), 
I(t)  and R(t)  denote respectively the number of 
individual in the susceptible, exposed, infected and 
temporarily recovered compartments. So that, 

N(t) = S(t) + E(t) + I(t) + R(t) . We further assume 
that all these functions are non – negative quantities. 
The concentration of mycobacterium tuberculosis 
present in the air at any time t is denoted by P(t) and 
is called as environmental pathogen population. Thus, 
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P(t)  denotes the number of small particles called 
mycobacterium tuberculosis bacilli. 

Susceptible human population The human 
population in the susceptible compartment is neither 
exposed nor infected by tuberculosis disease by now. 
But they are very sensitive, easily influenced, likely to 
be affected by or having the quality of receiving the 
disease in future. The human population of 
susceptible compartment increases with the 
recruitment of new people by both new births and 
immigration. The individuals are assumed to be 
recruited in to the susceptible compartment at a rate 

of Λ . The population size of susceptible compartment 
decreases as the humans migrate into the exposed 
class. The probability of susceptible people acquires 
TB as a result of contact with the mycobacterium 

tuberculosis population at a rate  λ =  [𝜖𝑃 (𝑐 + 𝑃)⁄ ] . 
The susceptible population decreases by natural 

death at a rate of  𝜇 . Thus, the rate of change of 
susceptible population is given by  (𝑑𝑆 𝑑𝑡⁄ )  =  Λ −
[(𝜆 𝐴⁄ ) +  𝜇] 𝑆. Anyone recovered from tuberculosis is 
believed to be liable, unresisting or unsafe for life from 
the tuberculosis disease and the person may be 
attacked once again. Hence, the individuals from the 
recovered compartment are not supposed to enter 
into susceptible class but into the exposed class. 

Exposed human population The people of 
exposed compartment are already infected latently, 
but not actively, by the mycobacterium. A human is 
infected latently means that the mycobacterium has 
already entered and present in the human body but 
the mycobacterium is (i) dormant (ii) lying inactive as if 
in sleep (iii) alive but not growing well (iv) inactive or 
(v) sleeping. In this model we have assumed that the 
latently infected individuals are not infectious as they 
do not to show any disease symptoms initially. Thus, 
the latently infected humans enter into exposed 
compartment. The latently infected humans are not 
capable of transmitting bacteria to other humans. The 
humans leaving from both the susceptible and 
recovered compartments will enter into exposed 
compartment. Thus, the population size of the 
exposed compartment increases when (i) a human of 
susceptible compartment gets latently infected by 
mycobacterium and (ii) a human recovers and comes 
out of the recovered compartment. The population 
size of the exposed compartment is decreased due to 
two reasons: (i) the individuals of this compartment 
when exposed to active tuberculosis disease will be 
shifted to infected compartment at a rate 𝛽 and (ii) due 

to natural death of humans at a rate 𝜇. Thus, the rate 
of change of human population in the exposed 

compartment can be constructed as  (𝑑𝐸 𝑑𝑡⁄ )  =
 (𝜆 𝐴⁄ )𝑆 +  𝜀𝑅 − (𝛽 +  𝜇)𝐸. Not all exposed individuals 
will develop the tuberculosis disease. Only about 10% 
of the exposed people become infected and feel sick 
with tuberculosis disease after about two or more 
years [2, 12 – 13]. 

Infected human population The humans in the 
infected compartment are already infected by 

mycobacterium and are suffering from the 
tuberculosis disease. Further, these infected humans 
can influence the environment by spreading the 
mycobacterium. The population of infected 
compartment is increased by transferring humans 
from exposed compartment at a rate of 𝛽 when they 
develop the symptoms of tuberculosis disease. The 
population of infected compartment is decreased with 
three reasons: (i) The infected individuals when 
treated and recovered from the disease are 
transferred to recovered compartment at a rate of 𝛿 (ii) 

humans die with a natural death rate of  𝜇  and (iii) 
humans die with induced death due to tuberculosis 

disease at rate of 𝑑 . Thus, the rate of change of 
human population in the infected compartment can be 

constructed as (𝑑𝐼 𝑑𝑡⁄ )  =  𝛽𝐸 − (𝛿 +  𝜇 + 𝑑)𝐼. 

Recovered human population Here recovered 
means that the infected individual has recovered from 
the illness but not from the tuberculosis disease. Once 
if an individual is infected by the tuberculosis diseases 
he will never be completely cleared by the bacteria 
from their body system. Treatment is available just to 
(i) cure the sickness of infected individual (ii) control 
the spread of the bacterium inside the body of infected 
individuals. But there is no treatment to cure the 
tuberculosis disease completely. Treatment is not 
available to completely remove the mycobacterium 
from the infected human body but it converts active 
bacterium to latent bacterium. Thus, an infected 
human can be made recovered and then again 
exposed but never be a susceptible. The infected 
individuals undergo a long latency period after 
recovered which could last many years or even a 
lifetime [8]. The population size of the recovered 
compartment increases when the infected individuals 
are treated and transferred from infected compartment 
with a rate of 𝛿. The population is decreased due to 
two reasons: (i) The recovered humans migrate to 
exposed class at the rate 𝜀 and (ii) the individuals die 

with a natural death rate of 𝜇. Thus, the rate of change 
of human population in the infected compartment can 

be constructed as (𝑑𝑅 𝑑𝑡⁄ )  =  𝐼 − (𝜇 +  𝜀)𝑅. 

Pathogen population in the polluted air 
Pathogen population means the population of tubercle 
bacilli in the air. Infected persons with tuberculosis 
disease will expel tubercle bacilli into the air. 
Infectiousness is measured in terms of the rate of 
tubercle bacilli are released into the air [4]. Persons 
who expel more tubercle bacilli are more infectious 
than patients who expel fewer or no bacilli. If there are 
more droplet nuclei of tubercle bacilli in the air then 
there will be more probability of mycobacterium 
tuberculosis transmission to susceptible humans and 
hence the spread of the disease is also more. In the 
high dens population areas like in buses, airplanes, 
camps, markets, schools, hospitals and homes the air 
pressure is positive for tuberculosis disease 
transmission. The tuberculosis organisms flow with air 
to other areas and spread the disease to susceptible 
humans. The infected individuals contribute to the 
population size of tubercle bacilli in the air with 

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 3159-0040 

Vol. 2 Issue 5, May - 2015 

www.jmest.org 

JMESTN42350782 1215 

excretion at a rate of  𝛼 . The population size of 
tubercle bacilli in the polluted air is died out naturally 
at the rate of 𝜇0. Thus, the rate of change of pathogen 

population in the air can be constructed as (𝑑𝑃 𝑑𝑡⁄ )  =
 𝛼𝐼 − 𝜇0𝑃. 

Thus the system of non linear differential equations 
describing the dynamics of mycobacterium 
tuberculosis disease transmission model is given by 

(𝑑𝑆 𝑑𝑡⁄ )  =  Λ − [(𝜆 𝐴⁄ ) +  𝜇] 𝑆  1(a) 

(𝑑𝐸 𝑑𝑡⁄ )  =  (𝜆 𝐴⁄ )𝑆 +  𝜀𝑅 − (𝛽 +  𝜇)𝐸  1(b) 

(𝑑𝐼 𝑑𝑡⁄ )  =  𝛽𝐸 − (𝛿 +  𝜇 + 𝑑)𝐼  1(c) 

(𝑑𝑅 𝑑𝑡⁄ )  =  𝐼 − (𝜇 +  𝜀)𝑅  1(d) 

(𝑑𝑃 𝑑𝑡⁄ )  =  𝛼𝐼 − 𝜇0𝑃  1(e) 

Table 1 Notations and description of the model 
variables 

Symbol Description 

S(t) 
Human population size of susceptible 

compartment at time t 

𝐸(𝑡) 
Human population size of exposed 

compartment at time t 

𝐼(𝑡) 
Human population size of infected 

compartment at time t 

𝑅(𝑡) 
Human population size of recovered 

compartment at time t 

𝑃(𝑡) 
Mycobacterium population size in the air at 

time t 

𝑁𝐻(𝑡) 
Total human population size at time t. It is a 

constant. 

Table 2 Description of the model parameters 

Symbol Description 

Λ 
Recruitment rate of susceptible humans 

through natural birth and immigration 

𝛽 
Progression rate of humans from exposed 

compartment to infected compartment 

𝜖 
Exposure rate of human population to 

polluted air 

𝛿 
Progression rate of humans from infected 
compartment to recovered compartment 

𝜀 
Progression rate of humans from recovered 

compartment to exposed compartment.  

𝑐 
Concentration of mycobacterium 

tuberculosis in air that yields 50% of 
chances of catching the tuberculosis disease 

𝐴 
Area in square meters occupied by human 

population 

𝜇 Natural death rate of human population 

𝛼 
Contribution of each infected human to the 

population of mycobacterium tuberculosis in 
the air 

𝑑 
Death rate of humans due to tuberculosis 

disease 

𝜇0 
Natural death rate of mycobacterium 
tuberculosis that presents in the air 

𝜆 
The probability of catching tuberculosis due 

to polluted air 

2.1 Invariant regions of the model 

On differentiating the system of equations (1) with 
respect to time and on summing up we get 𝑁𝐻

′(𝑡) =
 𝑆′(𝑡) + 𝐸′(𝑡) + 𝐼′(𝑡) + 𝑅′(𝑡) or equivalently  𝑁𝐻

′(𝑡) =
 Λ −  𝜇 𝑁𝐻 −  𝑑𝐼. In the present paper over head prime 
represents the derivative with respect to time. The 
death rate of humans due to tuberculosis disease is 

very small and even closer to zero 𝑑 ≈ 0. Thus, we 

have 𝑁𝐻
′(𝑡) ≤  Λ −  𝜇 𝑁𝐻. On integrating this inequality 

using Birkhoff and Role’s theorems we obtain the 

form  𝑁𝐻 ≤ {(𝛬 𝜇⁄ )  − [(𝛬 𝜇⁄ ) − 𝑁0] 𝑒
−𝜇𝑡} . Here we 

have used the condition that the initial human 

population size is given by  𝑁0 , that is 𝑁𝐻 (0) =  𝑁0 
at 𝑡 = 0. It can be observed that as t → ∞ the human 
population size 𝑁𝐻 approaches (𝛬 𝜇⁄ ) . Therefore, the 
feasible solution of human population enters the 

region Ω𝐻 = {(𝑆, 𝐸, 𝐼, 𝑅)∈  ℝ+ 
4 , 𝑁𝐻 ≤ (𝛬 𝜇⁄ )}. 

We now integrate the differential equation 
(𝑑𝑃 𝑑𝑡⁄ )  =  𝛼𝐼 − 𝜇0𝑃 given in (1e) to obtain temporal 
function describing pathogen population. (i) It sounds 
well to represent the pathogen population size of by 
𝑁𝑃 rather than by 𝑃  and (ii) it is straight forward to 

verify that  𝐼 ≤  𝑁𝐻 ≤ (𝛬 𝜇⁄ ) . In view of these two 
observations we can rewrite (1e) as (𝑑𝑁𝑃 𝑑𝑡⁄ )  =
 𝛼(𝛬 𝜇⁄ ) − 𝜇0𝑁𝑃  which is a first order ordinary linear 
differential equation having the particular 

solution  NP (t) ≤  (αΛ μ μ0⁄ ) − [(αΛ μ μ0⁄ ) − 𝑁0]e
−μ0t . 

Here we have assumed that the initial pathogen 

population is given by 𝑁𝑃(0) =  𝑁0. Further it can be 
observed that as t → ∞ the pathogen population size 

𝑁𝑃  satisfies the relation  0 ≤ 𝑁𝑃 ≤ (𝛼Λ 𝜇𝜇0⁄ ) . 
Therefore, the feasible region of the pathogen 

population can be represented by the set  Ω𝑃 =
{𝑁𝑃  ∈  ℝ+ ∶  𝑁𝑃 ≤ (𝛼Λ 𝜇𝜇0⁄ )}. 

Combining the feasible regions of both human 

population Ω𝐻 and pathogen population Ω𝑃 we obtain 
the feasible region of whole population considered in 

the present model Ω  as  Ω =  {(𝑆, 𝐸, 𝐼, 𝑅, 𝑃)∈
 ℝ+ 

5 : (𝑆, 𝐸, 𝐼, 𝑅, 𝑃) ≥ 0,𝑁𝐻 ≤ (Λ 𝜇⁄ ) 𝑎𝑛𝑑 𝑁𝑃 ≤
 (𝛼Λ 𝜇𝜇0⁄ ) } . Recall that 𝑁𝐻 = (𝑆 + 𝐸 +  𝐼 +
𝑅) and  𝑁𝑃 = 𝑃 represent the population sizes of 
humans and pathogens respectively. Further, it can 

be verified that Ω is positively invariable set induced 
by the system of equations (1). Hence the system (1) 
is biologically meaningful and mathematically well-

posed with in the domain given by the set Ω. Thus, it is 
feasible to consider the dynamics and flow of human 
and pathogen populations as described by the model 
(1) with in the set Ω. 

3. Stability analysis of the model 

In this section, we analyzed the model (1) in order 
to obtain (i) conditions for the existence and 
uniqueness of non-trivial equilibrium points (ii) the 
threshold condition for the asymptotic stability of 
equilibrium points and (iii) formula for the basic 

reproduction number represented by 𝑅0 . At 
equilibrium points the first order derivatives of the 
variables vanish and the tangents are horizontal or 
parallel to time axis. Thus, the equilibrium points of 
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the present model are obtained by setting the right-

hand sides of the system (1) to zero (𝑑𝑆 𝑑𝑡⁄ )  =
(𝑑𝐸 𝑑𝑡⁄ )  =  (𝑑𝐼 𝑑𝑡⁄ )  = (𝑑𝑅 𝑑𝑡⁄ ) = (𝑑𝑃 𝑑𝑡⁄ ) = 0 . The 
foregoing condition is a requirement for existence of 
equilibrium points. 

The Disease free Equilibrium Point Let 𝑥0 =
(𝑆∗ , 𝐸∗, 𝐼∗ , 𝑅∗, 𝑃∗)  represents the disease free 
equilibrium point of the present model given by 
system (1). Disease free equilibrium points are steady 
state solutions of a mathematical model indicating that 
there is no disease. The compartmental classification 
of humans reveals that the "diseased" human 
population is distributed only in exposed and infected 
compartments. Hence, the absence of infection leads 
to emptiness of infected, exposed and pathogen 

compartments i.e., 𝐼∗ = 0, 𝐸∗  = 0  and  𝑃∗ = 0 . Also 
𝑃∗ = 0 leads to 𝜆 = 0 since the formula for 𝜆 is given 

by  𝜆 = [𝜖𝑃 (𝑐 + 𝑃)⁄ ] . On substituting these 
requirements for disease free equilibrium point in the 

system of equations (1) we obtain 𝑅∗ = 0 and  𝑆∗ =
 (Λ 𝜇⁄ ) . Therefore the mycobacterium tuberculosis 

disease free equilibrium point is given by  𝑥0 =
(𝑆∗ , 𝐸∗, 𝐼∗ , 𝑅∗, 𝑃∗) = ( (Λ 𝜇⁄ ), 0, 0, 0, 0). 

The Basic Reproduction Number A human, 
infectious with tuberculosis disease, is supposed to 
propagate the disease to susceptible individuals. 
These are called secondary infection cases. The basic 

reproduction number is denoted by 𝑅0 and is defined 
as the average number of secondary infection cases 
caused by infectious human during his or her entire 
period of infectiousness. The formula for reproduction 
number 𝑅0 can be constructed using the next 
generation operator method as described in [10]. It is 
an important parameter in epidemiology as it sets the 
threshold of a disease. The reproduction number is 
used for predicting the speed of propagation of the 
disease and to identify the control strategies. 
Presence or absence of the disease in a community 
depends on the size of the reproduction number. 

Suppose that there are n disease compartments 

and m non disease compartments, and let 𝑥 ∈  ℝ𝑛 
and 𝑦 ∈  ℝ𝑚  be the subpopulations of these 

compartments. Let (i) 𝑓𝑖(𝑥)  denotes the rate of 

appearance of new infection cases in 𝑖𝑡ℎ compartment 
(ii) 𝑣𝑖

+ denotes the transfer rate of individuals into 

𝑖𝑡ℎ compartment by all means (iii) 𝑣𝑖
−  denotes the 

transfer rate of individuals out from 𝑖𝑡ℎ compartment 
by all means and (iv) we also denote 𝑣𝑖 = 𝑣𝑖

− −  𝑣𝑖
+. 

Further, it is assumed that each of the three functions 
𝑓𝑖(𝑥),  𝑣𝑖

+ and 𝑣𝑖
− is continuously differentiable at least 

for two times with respect to their arguments. 

Let us now define two matrices 𝐹 and 𝑉 by 

𝐹 = [ 𝜕𝑓𝑖 (𝑥0) 𝜕𝑥𝑗⁄ ] and 𝑉 = [ 𝜕𝑣𝑖 (𝑥0) 𝜕𝑥𝑗⁄ ] respectively. 

Here the number of compartments denoted by 

𝑖 satisfies the condition 𝑖 ≥  1 while the number of 
infected compartments denoted by 𝑗 satisfies the 
condition 1 ≤  𝑗 ≤  𝑛. Then the matrix 𝐹𝑉−1 is referred 
to as the next generation matrix for the system of 
model equations at the disease free equilibrium point. 

Also the reproduction number is defined in terms of 

next generation matrix as  𝑅0 =  𝜌(𝐹𝑉−1) . Here  𝜌(𝐴) 
denotes the spectral radius or magnitude of the 
largest eigenvalue of matrix A. Also, (i) the matrix of 

the new infection terms denoted by 𝐹 and (ii) the non 
singular matrix of the remaining transfer terms 

denoted by 𝑉 are 𝑛 ×  𝑛 matrices, where 𝑛 is the 
number of infected compartments. The elements of 

the matrix 𝐹 are non-negative. The ( 𝑖 , 𝑗 ) element of 
the matrix 𝐹 represents the rate at which infected 

individuals transfer from 𝑗𝑡ℎ  compartment to 

𝑖𝑡ℎ compartment. 

Consider that an infected individual is transferred 

into a disease free compartment 𝑘. and the ( j , k ) 
entry of 𝑉−1 is the average time an infected individual 
spends in compartment j during its lifetime, assuming 
that the population remains near the DFE and barring 
re-infection. Hence, the (i , k ) entry of the product 
𝐹𝑉−1  is the expected number of new infections in 
compartment i produced by the infected individual 
originally introduced into compartment k. Using the 
next-generation approach and taking the infected 
compartments to be E, I and P from system of 

equations (1) gives  (𝑑𝐸 𝑑𝑡⁄ ) =  𝜆𝑆 +  𝜀𝑅 − (𝛽 +  𝜇)𝐸 , 
(𝑑𝐼 𝑑𝑡⁄ )  =  𝛽𝐸 − (𝛿 +  𝜇 + 𝑑)𝐼 and (𝑑𝑃 𝑑𝑡⁄ )  =  αI −
 μ0P . From these we define 𝑓𝑖 and 𝑣𝑖 as 

fi = [

ϵPS

A(c + P)
0
0

] vi = [

(β + μ)E
(δ + μ + d)I

μ0P − αI
] 

Finding the partial differentiation with respect to E, 
I, P and evaluating at the disease free point gives the 
Jacobian matrices 

F = [
0 0 ϵΛ cAμ⁄
0 0 0
0 0 0

] , V = [

β + μ 0 0
−β δ + μ + d 0
0 −α μ0

] 

Then we have to find the inverse of the Jacobian 
matrix of V, which is given by 

V−1 =

[
 
 
 
 
 
 

1

β + μ
0 0

β

(δ + μ + d)(β + μ)

1

(δ + μ + d)
0

αβ

(δ + μ + d)(β + μ)μ0

α

(δ + μ + d)μ0

1

μ0]
 
 
 
 
 
 

 

We now compute the product of both matrices F 

and 𝑉−1 which gives 

FV−1

= [

αϵβΛ

cAμ(δ + μ + d)(β + μ)μ0

αϵΛ

cAμ(δ + μ + d)μ0

ϵΛ

cAμμ0

0 0 0
0 0 0

] 

The eigenvalues of 𝐹𝑉−1  for the equation G = 

|𝐹𝑉−1 −  𝐼𝜆| = 0 (where I is identity matrix) are given 
by. 

λ1 = 
αϵΛβ

Acμ(β+μ)(δ+ μ+d)μ0
 and 𝜆2 = 𝜆3 = 0 
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The dominant eigenvalue is the basic reproduction 

number, 𝑅0 of the model. In this case, it is clearly seen 
to be 𝜆1. Thus, the reproduction number is given by 

 𝑅0 = 
𝛼𝜖Λ𝛽

𝐴𝑐𝜇(𝛽 + 𝜇)(𝛿 +  𝜇 + 𝑑)𝜇0
 

The ratio 
𝛽

(𝛽+𝜇)
 is the fraction individuals that 

progress from E to I 

Local Stability of the Disease-free Equilibrium 
Point The local stability of the disease-free 

equilibrium point 𝑥0 = ( Λ 𝜇⁄  , 0, 0, 0, 0)  can be 
discussed by examining the linearization form of the 

system (1) at the given steady state 𝑥0. This is done 
by computing the Jacobian matrix of the model (1). 

The Jacobian matrix is computed by differentiating 
each equation in the system with respect to the state 
variables S, E, I, R and P. The system is then re-
defined as 

𝑓1(𝑆, 𝐸, 𝐼, 𝑅, 𝑃) =  Λ − (
𝜆

𝐴
+  𝜇)𝑆 

𝑓2(𝑆, 𝐸, 𝐼, 𝑅, 𝑃) =  𝜆𝑆 +  𝜀𝑅 − (𝛽 +  𝜇)𝐸 

𝑓3(𝑆, 𝐸, 𝐼, 𝑅, 𝑃) =  𝛽𝐸 − (𝛿 +  𝜇 + 𝑑)𝐼 

𝑓4(𝑆, 𝐸, 𝐼, 𝑅, 𝑃) =  𝛿𝐼 − (𝜇 +  𝜀)𝑅 

𝑓5(𝑆, 𝐸, 𝐼, 𝑅, 𝑃) =  𝛼𝐼 − 𝜇0𝑃 

 

Where 𝜆 =  
𝜖𝑃

(𝑐+𝑃)
 The Jacobian of the system is then given by 

𝐽 =  

[
 
 
 
 
−(𝜖𝑃 𝐴(𝑐 + 𝑃)⁄ + 𝜇) 0 0 0 − 𝜖𝑃 𝐴(𝑐 + 𝑃)⁄ + 𝜖𝑃𝑆 𝐴(𝑐 + 𝑃)2⁄

𝜖𝑃 𝐴(𝑐 + 𝑃)⁄ −(𝛽 + 𝜇) 0 𝜀 𝜖𝑃 𝐴(𝑐 + 𝑃)⁄ + 𝜖𝑃𝑆 𝐴(𝑐 + 𝑃)2⁄

0 𝛽 −(𝛿 + 𝜇 + 𝑑) 0 0
0 0 𝛿 −(𝜇 + 𝜀) 0
0 0 𝛼 0 −𝜇0 ]

 
 
 
 

  (2) 

Evaluating equation (2) at the DFE, when 𝑆 =  
Λ

𝜇
, 𝐸 = 0, 𝐼 = 0, 𝑅 = 0 and 𝑃 = 0 we have 

𝐽(𝑥0) =  

[
 
 
 
 
−𝜇 0 0 0 − 𝜖Λ 𝑐𝐴𝜇⁄

0 −(𝛽 + 𝜇) 0 𝜀 𝜖Λ 𝑐𝐴𝜇⁄

0 𝛽 −(𝛿 + 𝜇 + 𝑑) 0 0
0 0 𝛿 −(𝜇 + 𝜀) 0
0 0 𝛼 0 −𝜇0 ]

 
 
 
 

  (3) 

The disease-free equilibrium point, 𝑥0, is said to be locally asymptotically stable if the real parts of the found 
eigenvalues are all negative, otherwise it is said to be unstable. Consider the matrix (3) and let k be the eigenvalue. 
Then we have 

|𝐽(𝑥0) – k I| = 0, where I is a 5×5 identity matrix. Thus, we have 

|𝐽(𝑥0)| =
|

|

−𝜇 − 𝜅 0 0 0 − 𝜖Λ 𝑐𝐴𝜇⁄

0 −(𝛽 + 𝜇) − 𝜅 0 𝜀 𝜖Λ 𝑐𝐴𝜇⁄

0 𝛽 −(𝛿 + 𝜇 + 𝑑) − 𝜅 0 0

0 0 𝛿 −(𝜇 + 𝜀) − 𝜅 0
0 0 𝛼 0 −𝜇0 − 𝜅

|

|
  (4) 

As the first column corresponding to the total human populations contain only the diagonal term, these diagonal 

term form one eigenvalues of the Jacobian (−𝜇 −  𝑘) = 0 and that implies 𝜅1 = −𝜇. The other four eigenvalues are 
the roots of the characteristic equation of the matrix formed by excluding the first row and first column of the 
Jacobian (4), we obtain the matrix 

|𝐽∗(𝑥))| = ||

−(𝛽 + 𝜇 + 𝜅) 0 𝜀 𝜖Λ 𝑐𝐴𝜇⁄

𝛽 −(𝛿 + 𝜇 + 𝑑 + 𝜅) 0 0
0 𝛿 −(𝜇 + 𝜀 + 𝜅) 0
0 𝛼 0 −(𝜇0 + 𝜅)

||  (5) 

The corresponding characteristic equation is 

(𝛽 +  𝜇 + 𝜅)(𝛿 + 𝜇 + 𝑑 + 𝜅)(𝜇 + 𝜀 + 𝜅)(𝜇0 + 𝜅)

− 𝜀𝛿𝛽(𝜇0 + 𝜅) −
𝜖𝛼𝛽Λ

𝐴𝑐𝜇
(𝜇 + 𝜀 + 𝜅) = 0 

Or equivalently, 

 𝐴1𝜅
4 + 𝐵1𝜅

3 + 𝐶1𝜅
2 + 𝐷1𝜅 + 𝑁1 = 0  (6) 

Here in (6) we have used the notations  𝐴1 = 1 , 

𝐵1 = 3𝜇 + 𝜀 + 𝜇0 + 𝛽 + 𝛿 + 𝑑 , 𝐶1 = 𝜇0(3𝜇 + 𝜀 + 𝜇0 +
𝛽 + 𝛿 + 𝑑) + (𝜇 + 𝜀)(𝛽 + 2𝜇 + 𝛿 + 𝑑) + (𝛽 + 𝜇)(𝜇 +
𝛿 + 𝑑 , 𝐷1 = (𝜇 + 𝜀)[𝜇0(𝛽 + 2𝜇 + 𝛿 + 𝑑) + (𝛽 + 𝜇)(𝜇 +
𝛿 + 𝑑)] + (𝛽 + 𝜇)(𝜇 + 𝛿 + 𝑑)𝜇0 − 𝜀𝛿𝛽 − 𝜖𝛼𝛽Λ 𝑐𝐴𝜇⁄  and 
𝑁1 = (𝜇 + 𝜀)[(𝛽 + 2𝜇 + 𝛿 + 𝑑)𝜇0 − 𝜖𝛼𝛽Λ 𝑐𝐴𝜇]⁄ −
𝜀𝛿𝛽𝜇0. Due to the complexity in determining the signs 
of the remaining eigenvalues, we employ Routh-
Hurwitz conditions for stability. The Routh-Hurwitz 
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conditions to ensure that all roots of (6) have negative 

real parts are 𝐴1 > 0, 𝐶1 > 0,𝐷1 > 0 and 𝐴1𝐵1𝐶1 >
𝐶1

2 + 𝐴1𝐷1 clearly 𝐴1, 𝐵1 and 𝐶1 are positive. For 𝐷1 to 

be positive, set (𝜇 + 𝜀)[𝜇0(𝛽 + 2𝜇 + 𝛿 + 𝑑) +
(𝛽 + 𝜇)(𝜇 + 𝛿 + 𝑑)] + (𝛽 + 𝜇)(𝜇 + 𝛿 + 𝑑)𝜇0 − 𝜀𝛿𝛽 −
𝜖𝛼𝛽Λ 𝑐𝐴𝜇⁄ > 0 . This shows that 𝑅0 < 0 
and 𝜀𝛿𝛽 (𝛽 + 𝜇)(𝜇 + 𝛿 + 𝑑)𝜇0⁄ < 0. 

For 𝑁1  to be positive, set (𝜇 + 𝜀)[(𝛽 + 2𝜇 + 𝛿 +
𝑑)𝜇0 − 𝜖𝛼𝛽Λ 𝑐𝐴𝜇]⁄ − 𝜀𝛿𝛽𝜇0 > 0. This simplifies to 

1 = 𝛼𝜖𝛽Λ ⁄ 𝑐𝐴𝜇 (𝛽 + 𝜇)(𝛿 + 𝜇 + 𝑑) 𝜇_(0 ) − (𝜀𝛿𝛽𝜇_0)
⁄ ((𝜇 + 𝜀)(𝛽 + 𝜇)(𝛿 + 𝜇 + 𝑑) 𝜇_0 ) > 0 

This leads to 

1 − 𝑅0 − 𝜀𝛿𝛽 (𝜇 + 𝜀)(𝛽 + 𝜇)(𝛿 + 𝜇 + 𝑑)⁄ > 0 . This 

implies both 𝑅0 < 0  and 
𝜀𝛿𝛽 (𝜇 + 𝜀)(𝛽 + 𝜇)(𝛿 + 𝜇 + 𝑑)⁄ < 0  which is true. 
Hence, by Routh – Hurwitz criterion, all the 

eigenvalues have negative real parts, if  𝑅0 < 0 , 
thereby making 𝑥0 locally asymptotically stable and 𝑥0 

is unstable for  𝑅0 > 0 and hence 𝑅0 < 0. 

It is expected that, if R0 < 1, then no TB epidemic 

can develop in the population, and if  R0 > 1 , a TB 
epidemic can develop and become endemic in the 
population. 

4. Numerical Simulations 

Numerical Simulations of the dynamic model were 
carried out by MATLAB function ode45, using the 
Runge-Kutta of order four. The set of parameter 
values in table we were used to investigate the effect 
of habitat area in the control of the spread of TB. This 
parameter values whose sources are mainly from 
literature as well as assumptions. Five hypothetical 
cases were considered and in each case, the 
probability that individuals who are exposed to the 
diseases will progress to infectious class depends on 
the level of immunity individual has. It is prominent to 
note here that when TB patient are separated from 
non-infected people and kept in a wider area, it is 
assumed that they will have herd immunity i.e. the 
level of immunity in a population which prevents 
epidemics. The parameter values are listed in a 
tabular form. The following initial conditions have been 
considered and used S[0]= 1600 ; E[0]= 1500; I[0]= 

150 ; R[0]= 140 ; P[0]= 100 at time 𝑡0 = 0 and 𝑡𝑓 = 10. 

Table 3: The parameter values 

Parameter 
Case 

1 
Case 

2 
Case 

3 
Case 4 

Case 
5 

Reference 

Λ 200 200 200 200 200 estimated 

𝜇 0.02 0.02 0.02 0.02 0.02 calculated 

𝛽 0.352 0.352 0.352 0.3523 0.352 estimated 

𝛿 1.24 1.24 1.24 1.24 1.24 calculated 

𝜀 0.98 0.98 0.98 0.98 0.98 estimated 

d 0.365 0.365 0.365 0.365 0.365 [2] 

𝛼 0.4 0.4 0.4 0.4 0.4 estimated 

𝜖 0.2 0.2 0.2 0.2 0.2 estimated 

𝜇0 0.98 0.98 0.98 0.98 0.98 estimated 

c 20 20 20 20 20 estimated 

A 0.20 0.90 2 20 200 [2] 

The numerical results have been done to show the 
dynamics of the disease in the population when there 
are no interventions. 

 

Figure 2 Reproduction ratio 𝑅0 = 118.4610 and 
force of contact rate λ = 0.1798 at area = 0.2 square 
kilometer 

Figure 3 The Reproduction ratio 𝑅0 = 26.4082 and 
force of contact rate λ = 0.760 at area = 0.9 square 
kilometer 

 

Figure 4 Reproduction ratio 𝑅0= 11.8839 and force 
of contact rate λ = 0.1697 at area of = 2 square 
kilometer 
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Figure 5 Reproduction ratio 𝑅0= 1.1884 and force 
of contact rate λ = 0.1519 at area of = 20 square 
kilometer. 

 

Figure 6 Reproduction ratio R 0 = 0.1188 and 
force of contact rate λ = 0.1479 at area of = 200 
square kilometer. 

The effect of variation of the size of the area 
occupied, A on the different epidemiological classes: 
This effect is studied using A = 0.2 square kilometers, 
0.9 square kilometers, 2 square kilometers, 20 square 
kilometers, 200 square kilometers. We observe in 
Fig.2-6, that when the size of the area occupied, A is 
reduced from 2 square kilometers to 0.2 square 
kilometers thereby increasing the population density, 
the population will first increase because of the 
recruitment rate (through birth and immigration). It will 
there after decline because of the increased disease 
incidence. There are more infections resulting from 
the close contact due to high population density. 
Figure 2-4 shows that for a smaller area size, A = 0.2, 
A = 0.9 and A = 2 square kilometers hence higher 
population density, there is a higher rate of infection 
and increase in population size of the exposed 
individuals shall b e faster than in all the other cases. 
This is as a result of increased infection rate due to a 
higher contact rate of the susceptible with the 
infectious individuals. It means that the likelihood of 
new infections is high and this may lead to a wiping 
out of the total susceptible population. When area is 

increased to say 20 square kilometers or 200 square 
kilometers, there is a slight deviation in the population 
sizes in the two cases, implying that there is a 
threshold area size. However, in both cases, we 
observe that the number of susceptible will increase 
because of the reduced disease incidence due to 
lower population density (when the area is bigger s 
ay, A = 20 square kilometers or 200 square 
kilometers), the number of exposed individuals 
declining, though slowly and infected individuals 
approaches to the zero. 

5. Conclusions 

In our model we considered to gain more insight 
into the effect of Habitat area on dynamic spread of 
TB. This Habitat area plays a crucial role in the control 
of spread of TB virus in the environment. It is 
observed from the results above that the higher the 
Habitat area, the lower will b e spread of this TB virus 
and the higher will b e the recovery rate. From the 
stability analysis results, we have shown that the 
disease-free equilibrium point is asymptotically stable 
while the endemic equilibrium point is unstable. 
Whether the disease becomes persistent or dies out 
depends on the magnitude of the basic reproductive 
number 𝑅0 . We found that if the basic reproduction 

ratio 𝑅0 ≤ 1 then each solution limits to the disease-
free equilibrium. In other words, every infectious 
individual will cause less than one secondary infection 
and hence the disease will die. If 𝑅0 > 1, then there 
exists a unique endemic equilibrium which is globally 
asymptotically stable among all states for which the 
disease is present; Tuberculosis infection and re-
infection are always existent in a community due to 
respiratory contact between the susceptible 
individuals and the recovered. Numerical experiments 
suggest that a country must detect and treat TB over 
a long course because TB transients can be very 
long. However, if keep TB infected individuals 
separately from the community, and giving treatment 
in hospitals, this could significantly reduce TB 

mortality and incidence and thus lowers 𝑅0. Adequate 
ventilation, infected people cover their mouth and 
nose when coughing or sneezing and improving 
crowded conditions are essential in decreasing the 
spread of tuberculosis. 
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