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I.  INTRODUCTION 

The n -the Weyl algebra nA  is an associative 

algebra (over a field k ) with n2  generators 

,,,1 nxx   n ,,1   subject to relations  

,=],[0,=],[=],[ , jijijiji xxx   

where baabba =],[  is commutator and ji ,  is the 

Kronecker delta. In this note we consider some further 
computations of the technique developed in [3] for 
finding polynomial identities on the subspace  

  },{1,,|=(1,1) njixA jin   

of the Weyl algebra nA . 

Let ms  be a skew-symmetric polynomial over an 

associative noncommutative algebra A   
 

,)(:=)...,,,( )((2)(1)21 m

m
S

mm XXXsgnXXXs 



 


 

where )(sgn  is the sign of a permutation. We say 

that ms  is a (standard) polynomial identity on A  if 

0=ms  for all AXX m ,,1  . 

Amitsur-Levitzki theorem [1] states that ns2  is a 

minimal polynomial identity on the matrix algebra, for 

any nn  matrices nAA 21 ,,  the identity 

0=),,( 212 nn AAs   always holds. It is known that 

this fact can be proved using Euler tours in digraphs 
[4, 2]. 

Approach using decompositions of digraphs has 
been addressed in [3] to study polynomial identities on 

the subspace 
(1,1)

nA  of the Weyl algebra. From [3] it is 

known that 0=2ns  is an indentity for 1,2,3=n  and it 

is not an identity for 4n . Here we summarize some 

computations for 4,5=n  as well as implementation 

aspects. 

II. MAIN PROPERTIES 

We use technique developed in [3], for more 
details we refer to that paper. 

Let G  be a digraph with n  vertices and (directed) 

edges ),,( 1 mee  . Consider any decomposition of G  

into edge-disjoint paths ,{= 1PP  ,2P  }..., kP  with 

sets of sources I  and sinks J ; every path iP  here is 

viewed as a permutation ...,,,( 21 ll  )il  which is the 

sequence of edges 
i
lll eee ...,,,

21
. 

For permutations 1 , 2 , ..., m , define the 

shuffle set ,,( 21 sh  ...,  )m  as the set of 

permutations on i

m

i 1=  such that the order of each 

i  is respected. Define  

)(:=)(
)...,,

2
,

1
(




sgnPE

k
PPPSh




 

Proposition 2.1.  The following formula holds for 

)(IEG ,  

)(=)(
:

PEIE
JIP

G 


 

where the sum is taken over all k-decompositions 
with sources I and sinks J.  

Connection to the Weyl algebra is established as 
follows. 

Theorem 2.1.[[3]]  Let 
(1,1)

21 ...,,, nm Awww   be 

monomials. Then  

j

Jj

i

Ii

G

I

mm xIEwwws 


)(=)...,,,( 21  

where the sum runs through all possible multisets 

of decomposition sources I  and digraph G  with n  

vertices has m  edges represented by mwww ...,,, 21  

(i.e. if 
l
j

l
il xw = , then there is an edge ( ll ji , ) in G ) 

III. COMPUTING THE SHUFFLE SUM 

 Fast computation of the shuffle sum in Proposition 
2.1 is established via the following formula. 

Lemma 3.1. Let ix  be (disjoint) permutations such 

that }{1,2,...,=
1=

nxi

m

i  and by ][ ix  denote the 

number of elements in ix . Define  
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Then  

,0,=)...,,,( 21 jandiarethereifxxxq m

oddbothxandxwithjithatsuch ji ][][  

;

,

)]!
2
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)...,,,(=)...,,,(
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1=
2121
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)...(=)...,,,( 2121 mm xxxsgnxxxwwhere 

;,,.. 1 mxxnspermutatioofionconcatenatforei   

....,,, 21 mxxxofnpermutatioanyforchangenotdoesq

 

Proof. First we prove that )...,,,( 21 mxxxw  does 

not change for any permutation of mxx ,,1   if no two 

ix  have odd length. If we swap 1x  and 2x , then the 

difference in a number of inversions is equal to 

]][[ 21 xx , which is even. By these swap operations we 

can obtain all permutations of mxxx ...,,, 21 . 

Let us prove next formulas by induction. We have 

i) 0=}){},({ baq  

ii) 1=})({aq  

iii) }),({=}),({ bawbaq  

We compute the recurrence relation assuming that 

iii xax = , i.e. ia  is the first element of ix . Therefore 

)...,,...,,,,(

)...,,...,,,,(=)...,,,(

21

21

1=

21

mii

mii

m

i

m

xxxxaq

xxxxawxxxq



 
 (1) 

 

1) There are some i  and j , such that ][ ix  and 

][ jx  are odd. Let us say that 1=i  and 2=j . If the 

first element is not from ix  or jx , then by induction 

their sign sum is 0, because they have at least two 
permutations with odd length. So from (1) we have  

))...,,,()(...,,,,(

))...,,,()(...,,,,(=)...,,,(

21212

2121121

mm

mmm

xxxqxxxaw

xxxqxxxawxxxq





 (2) 
 

][ 1x  is odd, then it is clear that ]
2

][
[=]

2

][
[ 11 xx 

, 

same as for 2x . Then  

 )...,,,(=)...,,,( 2121 mm xxxqxxxq   

We can say that 

)...,,,(=)...,,,,( 21211 mm xxxwxxxaw  , because 

111 = xax   and so difference in inversion count from 

)...( 21 nxxx  to )...( 212 nxxxa   is exactly ][ 1x  which is 

odd, therefore  

)...,,,,(=)...,,,,( 212211 mm xxxawxxxaw   

From (2), 0=)...,,,( 21 mxxxq  

2) There is only one permutation from 

]...,,,[ 21 mxxx  having odd number of elements and 

suppose it is 1x . If the first element is not taken from 

the 1x  then by induction hypothesis 

0=)...,,...,,,( 21 mi xxxxq  . Therefore, from equation 

(1) we have 
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3) There are no permutations of ]...,,,[ 21 mxxx  

having odd number of elements. As we showed 

before ...,,...,,,(=)...,,,( 2121 im xxxwxxxw   )mx  

since the difference in inversion count is even. Also 

1)
2

][
...

2
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 mjim

i

xxxx
 for 

some j . So equation (1) can be showed in thin form: 
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IV. IMPLEMENTATION AND RESULTS 

We generate all the digraphs with given number of 
vertices and edges. Only balanced digraphs are 
considered, i.e. where indegree and outdegree of each 
vertex are equal. Our implementation workes well up 
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to 5=n  and 13=m , where n  is number of 

vertices and m  is number of edges. In our 
computations we obtain the following experimental 
results:  

    • 4=n  and 8=n , ns  is not 0 for the following 

digraph 
[[1, 1], [1, 2], [1, 3], [2, 1], [2, 2], [3, 3], [3, 4], [4, 1]]; 

(here ],[ ji  is an edge ji   and hence ns  is 

considered on the operators jix  .) 

• 4=n  and 9=n , ns  is not 0 for the following 

digraph 
[[1, 1], [1, 2], [1, 3], [2, 1], [2, 2], [2, 3], [3, 1], [3, 4], 

[4, 2]];  

• 4=n  and 10=n , ns  is 0 for all digraphs;  

• 5=n  and 10=n , ns  is not 0 for the following 

digraph 
[[1, 1], [1, 2], [1, 3], [1, 4], [2, 1], [2, 2], [3, 1], [4, 4], 

[4, 5], [5, 1]];  

• 5=n  and 11=n , ns  is not 0 for the following 

digraph 
[[1, 1], [1, 2], [1, 3], [1, 4], [2, 1], [2, 2], [2, 3], [3, 1], 

[3, 5], [4, 1], [5, 2]];  

• 5=n  and 12=n , ns  is not 0 for the following 

digraph 
[[1, 1], [1, 2], [1, 3], [1, 4], [2, 1], [2, 2], [2, 3], [3, 1], 

[3, 2], [4, 4], [4, 5], [5, 1]];  

• 5=n  and 13=n , ns  is not 0 for the following 

digraph 
[[1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 1], [2, 2], [2, 4], 

[3, 1], [3, 2], [4, 1], [4, 3], [5, 1]]; 

In particular, 10s  is an identity for 4=n  and there 

is no identity ms  for 5=n  if 13m . 
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