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Abstract—In this paper, we have applied brody 

growth function to describe the population 
dynamics of fishery without harvesting and then 
extended to the corresponding harvesting case. It 
is observed that the harvesting case of fishery too 
follows brody just similar to non – harvesting case 
except that the parameters are different. We have 
also considered a prey – predation problem with 
an assumption that predator population has little 
or no effect on the prey population and studied. 
For this purpose fishery both with and without 
harvesting are considered as prey and 
constructed the corresponding growth function to 
describe the predator population. The predator 
here considered is completely theoretical and not 
physically defined. The results show that the 
predator population size either converges to a 
finite non negative limit, i.e., either zero or positive 
or diverges to positive infinity while the fish 
population size follows brody function and grows 
to an upper asymptote  [𝒌𝑨 (𝒌 + 𝑬)⁄ ] . In the 
harvesting case we have shown that the prey 
converges to a lower asymptote while the 
predator either (i) converges to a lower positive 
asymptote or (ii) converges to zero early or (iii) 
diverges to positive infinity early depending on 
the three cases studied separately. Numerical 
simulation of the model, exploration of equilibrium 
points and stability analysis are also included. 

Keywords—Fish harvesting, Koya-Goshu, Prey 
–predator, Brody, Simulation, Stability analysis 

1. Introduction 

Fish and fishing provides a lot many numbers of 
benefits to human beings including food, employment, 
business opportunities and recreational activities. 
However, over fishing has the disadvantage of 
reducing fish stock and also reducing reproductive 
aged fish below sustainability. In the management of 
fishery it is desirable to develop a strategy so that an 
optimum harvesting rate of fishing is allowed while the 
fish population is maintained above the sustainable 
level [1]. 

The objective of fishery management must be to 
maintain balance between harvesting of fish and the 
implications of harvesting on ecology. The availability 
of fish population varies with place and time across 
the world, viz., below, above and at par with the 
sustainable levels due to environmental effects and / 

or manmade factors. The fish population reproduction 
rate, fishing or harvesting frequency and living 
conditions of the fish have a great impact on the 
dynamics of the fish population system. In fishery 
management, it is important to fish in such a way that 
a species is sustainable and without going extinct or 
without depleted [2-3]. 

Growth models have been widely studied and 
applied in many areas especially in plant and animal 
sciences [5-10]. A generalized mathematical model to 
describe the dynamics of biological growth is 
introduced in [7]. The model includes the commonly 
known growth functions such as Logistic, Richards, 
Von Bertalanffy and Brody. The model is very flexible 
in the sense that it can be used for model selection to 
address a wide range and varieties of growths. 
Moreover, in [9-10] some theoretical mathematical 
aspects of predator-prey problem have been 
introduced. The assumptions include “the interaction 
of a predation leads to a little or no effect on growth of 
the prey population”. Considering that the prey 
population grows following Logistic, Von Bertalanffy 
and Richards functions and the corresponding growth 
models describing the dynamics of predator 
population are constructed and studied [9–10]. Brody 
function is a special case of Richards’s growth model 

with the parameter 𝑚 taking a value one unit [7]. 

In the present study we considered the population 
dynamics of fishery. For this purpose harvesting 
models of fish population both with and without the 
presence of predator are considered. We introduce 
and study harvesting model of fishery resource with 
predator as an extension of [9 – 10] in the case of 
Brody. 

All the assumptions made and presented in [10] 
are taken in to consideration as it is in this study. We 
have considered here that the fish population grows 
following Brody function together with harvesting term 
and constructed the corresponding function that 
describes the predator population. Equilibrium points 
are found, stability analysis is performed and 
simulation study is conducted. Important conclusions 
have been drawn. 

The design of the study is divided into mainly two 
parts harvesting model of fishery with and without 
predator. 

In Section 2, we have presented a growth model to 
represent fish population without predator and the 
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results are derived and discussed. We have applied 
brody function to describe population dynamics of 
fishery and then constructed a model to represent the 
corresponding harvesting model. It turns out that the 
harvesting model to follow brody with a change in the 
parameters. The asymptotic value of harvesting model 
always lies below that of the non – harvesting model. 
Pictorial representations in support of this finding are 
also provided. 

In Section 3, stability analysis of harvesting fishery 
population model without predator is made. The only 

equilibrium point identified (𝑥, 𝑦) = ((𝑘𝐸 𝑘 + 𝐸⁄ ), 0) is 

stable. The asymptotic value of harvesting model lies 

in the open intervals (𝐴 2⁄ , 𝐴) or in (0, 𝐴 2⁄ ) depending 
on the parametric representation satisfies (𝐸 < 𝑘) 

or (𝐸 > 𝑘). Further, the asymptotic value converges 
exactly to  𝐴 2⁄  whenever 𝐸 = 𝑘 . 

In Section 4, numerical simulations of harvesting 
model without predator are presented. The 
simulations are made with varying initial values 20, 
30, 60 and 150 and considered parameters satisfying 

the relations 𝐸 < 𝑘, 𝐸 = 𝑘 and 𝐸 > 𝑘. 

Harvesting model of fishery in presence of predator 
is considered in Section 5. The classical assumptions 
of prey – predator model are considered relaxed. The 
case when the population sizes of both fishery and 
predator reach the same asymptote is studied. Other 
cases in which predator population converges either 
zero or positive constant or diverges to positive infinity 
are discussed. 

In Section 6, the stability analysis of fishery 
harvesting model with predator is considered. The 
conditions under which the only possible equilibrium 
point [𝑘𝐴 (𝑘 + 𝐸), 0⁄ ]  is stable or unstable are 
considered. 

Numerical simulations of harvesting fishery model 
with predator are considered in Section 7 and the 
paper ends in section 8 with concluding remarks. 

2. Harvesting model of fish population 
without predator 

Let us assume that the dynamics of a fish 
population in an environment is governed by the 
Brody equation 

𝑑𝑥 𝑑𝑡⁄ = 𝑘(𝐴 − 𝑥)  (1) 

Here in (1) the constant 𝑘 represents the growth 
rate and 𝐴 represents the natural carrying capacity or 
asymptotic growth of the fish population. Similarly, the 
corresponding Brody equation that includes both the 
growth and the harvesting rates of fish population can 
be expressed as 

𝑑𝑥 𝑑𝑡⁄ = 𝑘(𝐴 − 𝑥) − 𝐸𝑥  (2) 

Here in (2) the term (𝐸𝑥) is the harvested yield of 
fish per unit time and the parameter 𝐸 is a positive 
constant measuring the rate of harvest. Clearly, if 
𝐸 = 0 is set then the harvesting fishery model (2) 
reduces to that of the non-harvesting equation (1). In 

fact the harvesting model represented by (2) also 
follows a Brody function just similar to (1). This fact 
can be made evident explicitly by rearranging the 
harvesting model (2) 

as  𝑑𝑥 𝑑𝑡⁄ = (𝑘 + 𝐸){ [𝑘𝐴 (𝑘 + 𝐸)⁄ ] − 𝑥} . This is a 
Brody model with an absolute growth rate of fish 

population being (𝑘 + 𝐸) and asymptotic growth value 
of fish population being [𝑘𝐴 (𝑘 + 𝐸)⁄ ]. This shows that 
both the harvesting and non-harvesting models 
representing the dynamics of fish population are 
governed by Brody growths function. 

From the harvesting model (2) it can be observed 
that there is an equilibrium point. The equilibrium point 
is obtained on setting the left hand side of equation (2) 

equal to zero. Thus, we obtain {𝑘(𝐴 − 𝑥) − 𝐸𝑥} =
0 and which on solving gives the required point 
asx = [𝑘𝐴 (𝑘 + 𝐸)⁄ ]. This is a non trivial equilibrium 
point. It is clear that this nontrivial equilibrium point is 
the same as the asymptotic growth of harvesting 
model. The non-harvesting fishery population 
following Brody function as described in (1), for every 
set of parametric values, grows to an upper asymptote 

𝐴 over evaluation of time, 𝐴 being always a positive 
quantity. Similarly, the harvesting fishery population 
following Brody function as described in (2), for every 
set of parametric values, grows to an upper asymptote 
[𝑘𝐴 (𝑘 + 𝐸)⁄ ] over evaluation of time where 𝑘 , 𝐴 and 𝐸 
being always a positive quantities. It can be observed 
that the inequality [𝑘𝐴 (𝑘 + 𝐸)⁄ ] ≤ 𝐴 holds good for all 
the possible values of the parameters involved. This 
inequality may be interpreted as follows: the carrying 
capacity or asymptotic value of harvesting fish 
population will never be higher than that of non-
harvesting fish population. The interpretation is very 
sensible, reasonable and is as expected. Also the 
supported plots are provided. 

The modeling problem is required to deal with the 
growth dynamics of fish population. It has to maximize 
the harvesting yield with a constraint that the fish 
population in an environment is maintained at or 
above the sustainable level. That is, existence of the 
population has to be protected from collapse. Further, 
the model has the objective to fix the maximum 
harvesting rate that will never bring the population 
down from the sustainable level or collapse. Maximum 
sustainable yield (MSY) is the largest yield that can be 
taken away from a species stock without causing the 
population to collapse [1 – 4]. The maximum 

sustained yield (MSY) denoted by 𝑀(𝐸) is obtained as 
the product the harvesting rate 𝐸 and the non trivial 

equilibrium point 𝑥 = [𝑘𝐴 (𝑘 + 𝐸)⁄ ]. In other words, the 
maximum sustainable yielding of harvesting fishery 
population occurs at the non – trivial equilibrium point 
and the yielding amount is expressed in terms of the 
parameters 

𝑀𝑆𝑌 = 𝑀(𝐸) = 𝐸𝑥 = 𝐸[𝑘𝐴 (𝑘 + 𝐸)⁄ ]  (3) 

We will use the parametric expression (3) for 
maximum sustainable yielding of fishery with 
harvesting for further analysis and simulation in this 
study. 

http://www.jmest.org/
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3. Stability analysis of harvesting fishery 
population model without predator 

The harvesting model of fishery is a first order 
ordinary deferential equation explicitly expressed in 
terms of the dependent variable, and that can be 
expressed as given in (2) as 𝑑𝑥 𝑑𝑡⁄ = 𝑘𝑥 [(𝐴 𝑥⁄ ) − 1] −
𝐸𝑥 ≡ 𝑓(𝑥) . The harvesting model has a non-trivial 
equilibrium point when the fishery population reaches 
its upper asymptotic value or equivalently the amount 

of  𝒙 =  [𝑘𝐴 (𝑘 + 𝐸)⁄ ] = [𝑘 (𝑘 + 𝐸)⁄ ]𝐴 . Note that the 
quantity [𝑘 (𝑘 + 𝐸)⁄ ] is always less than 1 in presence 
of harvesting  𝐸 ≠ 0 . Hence the quantity 
[𝑘 (𝑘 + 𝐸)⁄ ]𝐴 is always less than 𝐴 . This observation 
supports the argument that the asymptotic value of 
the fishery population with harvesting always lies 
below that without harvesting. 

Since f ′(x)  = −k − E = −(k + E) < 0  for all 
physically meaningful values of the parameters 

involved, i.e., k > 0 and  𝐸 > 0 . In particular, 
𝑓′([𝑘𝐴 (𝑘 + 𝐸)⁄ ]) = −(k + E) < 0 , which shows that 

the equilibrium point  𝑥 = [𝑘𝐴 (𝑘 + 𝐸)⁄ ]  is stable see 
Figure 1(a) . The phase diagram given in Figure 1(a) 

is obtained with the special case of 𝑘 = 𝐸 and in this 
special case the non trivial equilibrium point takes the 

value 𝑥 = 𝐴 2⁄ . This shows that the asymptotic growth 
of harvesting fishery population in case when 𝑘 =
𝐸 takes the value  𝐴 2⁄ . That means the asymptotic 
growth of fishery drops down from 𝐴 by half to 

 𝐴 2 ⁄ due to the harvesting with a rate equivalent to 
growth rate of fishery, i.e., 𝑘 = 𝐸 . 

Further, while keeping the asymptotic value for the 

population size of fishery without harvesting at 𝐴 , we 
can bring down the corresponding asymptotic value of 
population size of fishery with harvesting to any 

positive value below 𝐴 even closer to zero but not to 
zero by suitably setting a value for  𝐸 . That is, the 
asymptotic value of fishery without harvesting remains 

fixed at 𝐴 as shown in Figure 1(e) while that of fishery 
with harvest slides in the open 

interval  (0, 𝐴) depending on the values set for 𝐸 in 

comparison with the value given for 𝑘 as shown in 
Figures 1(c) and 1(d). If 𝑘 > > 𝐸 then the asymptote of 
harvest fishery reaches that of non-harvest fishery 

and similarly if 𝑘 < < 𝐸 then the asymptote of harvest 
fishery approaches zero. The phase diagram of the 
latter case when the parameters satisfy the 

relation 𝑘 < < 𝐸 is shown in Figure 1(b). 

 

Figure 1(a) Phase diagram of harvesting fishery 
without predator, the case of 𝑘 = 𝐸 upper asymptote 

is 𝐴 2⁄  

 

Figure 1(b) Phase diagram of harvesting fishery 

without predator, the case of 𝑘 < < 𝐸 ans the upper 
asymptote is in the open interval (0,  𝐴 2⁄ ) 

 

Figure 1(c) Phase diagram of harvesting fishery 

without predator, the cases of 𝐸 = 0 and 𝐸 = 𝑘 
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Figure 1(d) Phase diagram of harvesting fishery 
without predator, the cases of 𝐸 = 0 and 𝑘 < < 𝐸 

 

Figure 1(e) Phase diagram of harvesting fishery 
without predator, the case of 𝐸 = 0  and the upper 

asymptote is at 𝐴 

The fish population starting with an initial value 
grows following brody function as time progresses and 
ultimately reaches an upper asymptote 𝐴 in absence 

of harvesting and [𝑘𝐴 (𝑘 + 𝐸)⁄ ]  in presence of 
harvesting. But the quantity [𝑘𝐴 (𝑘 + 𝐸)⁄ ]  is always 
less than 𝐴 for all physically meaningful parametric 
values. Thus, it is expected to have upper asymptote 
of harvesting model lies below that of non – 
harvesting model. The plot 1(a) and 1(e) support this 
situation. 

4. Numerical simulation of harvesting model 
of fish without predator 

In this section we consider numerical study of 
population dynamics of fishery with variable 

combinations of values of parameters 𝑘  and 𝐸 . This 
study is aimed to understand the comparison of the 
asymptotic values of fishery with and without 
harvesting. As stated earlier, the asymptotic value of 
fishery with harvesting slides between zero and 

𝐴 while that of fishery without harvesting remains fixed 
at  𝐴 . This fact is pictorially illustrated here in this 
section. 

For simplicity we consider four cases of the 

harvesting parameter 𝐸: (i) 𝐸 = 0, (ii) 𝐸 = (𝑘 2⁄ ) , (iii) 
𝐸 = 𝑘 and (iv) 𝐸 =  2𝑘 . It is clear that the assumption 

𝐸 = 0 leads to no harvest and the harvesting model 
described by (2) reduces to the non-harvesting Brody 
model given in equation (1). The other parameters are 
set fixed at as  𝐴 = 100, 𝑘 = 0.1 and  𝑥(0) = 20 . The 
pictorial representations are given in Figure 2. 

 

Figure 1 Numerical simulation of harvesting fishery 
model without predator, with initial value 20, growth 
rate  𝒌 = 𝟎. 𝟏 , carrying capacity 𝑨 = 𝟏𝟎𝟎 and the 
harvesting rate is varied from top to bottom according 
as 𝑬 = 𝟎, 𝟎. 𝟎𝟓, 𝟎. 𝟏 and 𝟎. 𝟐 

From both the phase diagrams given in Figure 1 
and the numerical solutions given in Figure 2 it can be 
observed as evident that all the solution curves of 
fishery with harvesting converge to the non-trivial 
equilibrium point or asymptotic growth value 
[𝑘𝐴 (𝑘 + 𝐸)⁄ ]  which lies in the open interval 
(0, 𝐴) while those of fishery without converge to the 

fixed value 𝐴. 

The Brody growth function assumes that the 
asymptotic growth value of a population is 
independent of the initial value considered. This fact 
can be verified through simulation study. For this 
purpose we solve the harvesting and non – harvesting 
models with different initial values and the results are 
given in Figure 3. Further, even if the initial population 
sizes are more than the asymptotic growth values all 
solution cures of both the harvesting and non – 
harvesting fishery sizes converge to their respective 
asymptotic growth values. 
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Figure 3(a) Numerical solution of harvesting and 
non – harvesting model without predator and with 

initial value  𝑥(0) = 30 , growth rate  k = 0.1 , carrying 

capacity A = 100  and varied harvesting rates E =
0, 0.05, 0.1 and 0.2 

 

Figure 3(b) Numerical solution of harvesting and 
non – harvesting model without predator and with 
initial value  𝑥(0) = 60 , growth rate  k = 0.1 , carrying 

capacity A = 100  and varied harvesting rates E =
0, 0.05, 0.1 and 0.2 

 

Figure 3(c) Numerical solution of harvesting and 
non – harvesting model without predator and with 

initial value 𝑥(0) = 150, growth rate k = 0.1 , carrying 

capacity A = 100  and varied harvesting rates E =
0, 0.05, 0.1 and 0.2 

 

Figure 3(d) Numerical solution of harvesting and 
non – harvesting model without predator and with 
initial value  𝑥(0) = 60 , growth rate  k = 0.1 , carrying 

capacity A = 100  and varied harvesting rates E =
0, 0.05, 0.1 and 2 

We observe from the results shown in Figure 2 and 

Figure 3 if (i) 𝒌 > 𝑬 , (ii) 𝒌 < 𝑬 and (iii) 𝒌 = 𝑬 then the 
harvesting fish population size converges respectively 
to an asymptotic value (i) laying in the open interval 

 (𝑨 𝟐, 𝑨)⁄ , (ii) laying in the open interval  (𝟎, 𝑨 𝟐)⁄  and 
(iii) exactly at 𝑨/𝟐. 

5. Harvesting model of fish population with 
predator 

We now consider a prey – predator model with 

fishery population as prey represented by 𝑥(𝑡)  and 
unknown predator population represented by 𝑦(𝑡). Let 
as also make an assumption that the interaction 
between the prey and predator populations leads to a 
little or no effect on the growth of the prey population. 
We further assume that the prey population growth 
follows Brody function together with the inclusion of a 
harvesting term as described earlier in (2). 

The first order linear differential equation (2) is 
easy to solve analytically using the method of 
separation of variables. Hence, the solution for 
harvesting model given in (2) is obtained as 

𝑥(𝑡) =  [𝐴 𝑘 (𝑘 + 𝐸)⁄ ][1 − 𝐵𝑒−(𝑘+𝐸)𝑡]  (4) 

Here in (4), the new parameter  𝐵 represents the 
parametric expression 𝐵 =  {1 − (𝐴0 𝐴⁄ )[1 +
(𝐸 𝑘⁄ )]} where 𝐴0 =  𝑥(0)  denotes the initial prey 
population size. The harvesting curve (4) has no point 
of inflection just similar to the corresponding non – 
harvesting curve given in (2), see [8]. 

Further, it is assumed that the predator population 
declines naturally in absence of prey and grows with a 
rate proportional to a function of both x and y in 
presence of prey. Thus, the rate of change of predator 
population with respect to time t is given by 

http://www.jmest.org/
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𝑑𝑦

𝑑𝑡
= −𝑣𝑦 + 𝑠𝑥  (5) 

Here in (5), the parameters v and s are positive 
constants representing natural death and growth due 
to the presence of prey rates of predator respectively. 
Here our objective is to construct the predator model 
corresponding to the harvesting fishery or prey model 
given in (4). After substituting (4) in (5), the 
corresponding predator population growth function is 
derived in a straight forward manner and given in (6). 
The complete derivation of (6) from (4) and (5) is 
given in Appendix. 

𝑦(𝑡) = 𝑦𝑜𝑒{[𝐴𝑠𝑘 (𝑘+𝐸)⁄ ]−𝑣}𝑡. 𝑒−{ [𝐴𝑠𝑘 (𝑘+𝐸)2⁄ ] [1−𝐵𝑒−(𝑘+𝐸)𝑡]}. 

𝑒  {[𝐴𝑠𝑘 (𝑘+𝐸)2⁄ ](𝐴0 𝐴⁄ )[1+(𝐸 𝑘⁄ )]}   (6) 

On keen observation of predator growth function 
(6), it can be interpreted that the asymptotic predator 
growth converges to a non – negative value, positive 
or zero, or diverges to infinity on the positive side. 
These three cases essentially depend on the values 

assigned to the expression {[𝐴𝑠 𝑘 (𝑘 + 𝐸)⁄ ] − 𝑣}  viz., 
zero, negative or positive. These three cases are 
discussed in the following: 

Case I In this case the model parameters satisfy 
the condition 𝐴𝑠[𝑘 (𝑘 + 𝐸)⁄ ] = 𝑣. Thus, in this case the 
predator population growth model described in (6) 
takes the form 𝑦(𝑡) = 𝑦0 

𝑒−{ [𝐴𝑠𝑘 (𝑘+𝐸)2⁄ ] [1−𝐵𝑒−(𝑘+𝐸)𝑡]} * 𝑒  {[𝐴𝑠𝑘 (𝑘+𝐸)2⁄ ](𝐴0 𝐴⁄ )[1+(𝐸 𝑘⁄ )]}  
and its asymptotic growth can be computed easily and 
is given by a non – zero positive quantity  𝑦(∞) =

𝑦0𝑒− [𝐴𝑠𝑘 (𝑘+𝐸)2⁄ ] [1−(𝐴0 𝐴⁄ )[1+(𝐸 𝑘⁄ )]]. It can be interpreted 
that the predator population size decays to a lower 
asymptotic value or grows to an upper asymptotic 
value as given by the quantity 𝑦(∞) , while the prey 
population grows following brody function and reaches 
the upper asymptotic value  {𝐴(𝑘 (𝑘 + 𝐸)⁄ )} . 
Furthermore, in this case there is a situation when the 
asymptotic values of the populations viz., prey and 
predator, converge to same size if birth rate of 
predator satisfies the condition 

𝑠 = [(𝑘 + 𝐸)2 𝑘𝐴⁄ ] [ 
log 𝑦0 − log{𝐴 𝑘 (𝑘 + 𝐸)⁄ }

1 − [𝐴0  ⁄ {𝐴 𝑘 (𝑘 + 𝐸)⁄ }]
] 

Results of the simulation study of Case I are given 
in Figure 4. 

Case II In this case the model parameters satisfy 
the condition  𝐴𝑠[𝑘 (𝑘 + 𝐸)⁄ ] < 𝑣 . The predator 
population decays irrespective of the initial size set to 
any value and converges to zero while the prey 
population remains to follows Brody growth model and 
approaches an upper asymptotic 
value [𝐴(𝑘 (𝑘 + 𝐸)⁄ )]. Results of the simulation study 
of Case II are given Figure 5. 

Case III In this case the model parameters satisfy 
the condition  𝐴𝑠[𝑘 (𝑘 + 𝐸)⁄ ] > 𝑣 . The predator 
population declines for some time and then grows 
higher and higher without bound and diverges to 
infinity on the positive side while the prey population 
follows brody model and grows to a finite positive 

upper asymptotic value [𝐴(𝑘 (𝑘 + 𝐸)⁄ )]. Results of the 
simulation study of Case III are given Figure 6. 

6. Stability analysis of fishery harvesting 
model with predator 

The equilibrium point of prey – predator model is 
obtained from equations (2) and (5) by equating right 
hand sides of the equations to zero and solving them 
simultaneously. The result shows that the single 
equilibrium point of the system is given 

by ((𝐴𝑘 (𝑘 + 𝐸)⁄ ), 0). 

The Jacobean matrix of the system at any arbitrary 
point (𝑥, 𝑦)  can be constructed as  𝐽(𝑥, 𝑦) =

 [
−(𝑘 + 𝐸) 0

𝑦𝑠 −𝑣 + 𝑠𝑥
]. 

The Jacobean matrix at the single equilibrium point 
is given by 

𝐽([𝐴(𝑘 (𝑘 + 𝐸)⁄ )] ,0) =

 [
−(𝑘 + 𝐸) 0

0 −𝑣 + (𝐴𝑠𝑘 (𝑘 + 𝐸)⁄ ) 
] and its eigenvalues 

are computed as 𝜆1 = −(𝑘 + 𝐸)  and  𝜆2 = −𝑣 +
(𝐴𝑠𝑘 (𝑘 + 𝐸)⁄ )  . Here note that the first eigenvalue 
𝜆1 is always negative since −(𝑘 + 𝐸) < 0 as (𝑘 + 𝐸) >
0 while the second eigenvalue 𝜆2 can be negative or 
zero or positive. Hence, here arise three sets of signs 
of the eigenvalues which are studied in the following 
three cases: 

Case (i) Let 𝜆2 = −𝑣 + [𝐴𝑠(𝑘 (𝑘 + 𝐸)⁄ )] = 0. In this 

case the first eigenvalue 𝜆1 is negative while the 
second eigenvalue𝜆2 is zero. Hence, the equilibrium 
point ([𝐴(𝑘 (𝑘 + 𝐸)⁄ )], 0) is stable. 

Case (ii) let 𝜆2 = −𝑣 + [𝐴𝑠(𝑘 (𝑘 + 𝐸)⁄ )] < 0. In this 
case both the eigenvalues 𝜆1 and 𝜆2 are negative. 

Hence, the equilibrium point ([𝐴(𝑘 (𝑘 + 𝐸)⁄ )], 0)  is 
stable. 

Case (iii) let 𝜆2 = −𝑣 + [𝐴𝑠(𝑘 (𝑘 + 𝐸)⁄ )] > 0. In this 
case the first eigenvalue 𝜆1 is negative while the 
second eigenvalue 𝜆2 is positive. Hence, the 

equilibrium point ([𝐴(𝑘 (𝑘 + 𝐸)⁄ )], 0) is unstable. 

7. Numerical solutions of harvesting model 
of fish with predator 

Here we consider the numerical simulation of fish 
harvesting model (6). For simplicity we will consider 
the three cases I, II and III separately. In each 
simulation we have one prey curve and four predator 

curves corresponding to  𝐸 = 0 , 𝐸 = 𝑘 2⁄  , 𝐸 = 𝑘  and 
𝐸 = 2𝑘 . In each case the results are obtained by 
specifying the prey and predator parameters as 

follows: Prey parameters are  𝐴 = 100 , 𝐴0 = 𝑥(0) =
20 and  𝑘 = 0.1 . The initial size of predator is set 
according as  𝑦0 = 1.5𝐴 . The other parameters  𝐸 , 

𝑠 and 𝑣 are considered to be varied case wise as 
follows: 

Case I [𝑨𝒔(𝒌 (𝒌 + 𝑬)⁄ )] = 𝒗. In this case, we now 
consider the numerical simulation study of 
comparative population growths of prey and predator 
as follows: 
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(i) For  𝐸 = 0 : s=0.0005 & v=0.05; s=0.0022 & 
v=0.22; s=0.01& v=1; s=10^-10 & v=10^-8. 
(ii) For𝐸 = 𝑘 2⁄ : s=0.0011 & v=0.0755; s=0.011 & 

v=0.733; s=0.015 & v=1; s= 10^-8 & v=7 ×10^-7. 
(iii) For E=k: s=0.0075 & v=0.375; s=0.018 & 

v=0.9; s=0.02 & v=1; s= 10^-8 & v=5 ×10^-7. 
(iv) For E=2k: s=0.035 & v=1.1667; s=0.06 & v=2; 

s=0.08 & v=2.67; s= 10^-8 & v=3.33 ×10^-7. 

 
Figure 4(a) Numerical simulation fishery 

harvesting model in presence of predator, the case I 

with 𝐸 = 0 

 
Figure 4(b) Numerical simulation fishery 

harvesting model in presence of predator, the case I 
with 𝐸 = 0.05 

 
Figure 4(c) Numerical simulation fishery 

harvesting model in presence of predator, the case I 

with 𝐸 = 0.1 

 

Figure 4(d) Numerical simulation fishery 
harvesting model in presence of predator, the case I 

with 𝐸 = 0.2 

From the numerical simulation study presented in 
the Figures (4) it can be concluded that asymptotic 
population sizes of both the prey and predator 
decrease as the harvesting rate increases. 

Case II [𝑨𝒔(𝒌 (𝒌 + 𝑬)⁄ )] < 𝑣. In this case, we now 
consider the numerical simulation study of 
comparative population growths of prey and predator 
as follows: 

(i) For E=0: s=0.0005 & v=0.099; s=0.00032 & 
v=0.09; s=0.01 & v=1.5; s=0.001 & v=0.2. 
(ii) For E=k/2: s=0.0005 & v=0.1; s=0.00032 & 

v=0.15; s=0.015 & v=1.3; s=0.001 & v=0.3. 
(iii) For E=k: s=0.005 & v=0.3; s=0.0032 & 
v=0.25; s=0.02 & v=1.2; s=0.001 & v=0.3. 
(iv) For E=2k: s=0.005 & v=0.25; s=0.003 & 
v=0.2; s=0.03 & v=1.25; s=0.001 & v=0.3. 

 

Figure 5(a) Numerical simulation fishery 
harvesting model in presence of predator, the case II 

with 𝐸 = 0 
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Figure 5(b) Numerical simulation fishery 
harvesting model in presence of predator, the case II 

with 𝐸 = 0.05 

 

Figure 5(c) Numerical simulation fishery 
harvesting model in presence of predator, the case II 
with 𝐸 = 0.1 

 

Figure 5(d) Numerical simulation fishery 
harvesting model in presence of predator, the case II 

with 𝐸 = 0.2 

From the numerical simulation study presented in 
the Figures (5) it can be concluded that asymptotic 
population sizes of the prey converges to lower 

positive values while that of the predator converges to 
zero faster with the increase the harvesting rates. 

Case III [𝑨𝒔(𝒌 (𝒌 + 𝑬)⁄ )] > 𝑣. In this case, we now 
consider the numerical simulation study of 
comparative population growths of prey and predator 
as follows: 

(i) For E=0: s=0.001 & v=0.085; s=0.001 & 
v=0.088; s=0.001 & v=0.09; s=0.001 & v=0.08. 
(ii) For E=k/2: s=0.001 & v=0.061; s=0.001 & 

v=0.062; s=0.001 & v=0.063; s=0.001 & v=0.06. 
(iii) For E=k: s=0.002 & v=0.095; s=0.002 & 
v=0.0956; s=0.002 & v=0.0959; s=0.002 & v=0.094. 
(iv) For E=2k: s=0.003 & v=0.096; s=0.003 & 
v=0.0965; s=0.003 & v=0.097; s=0.003 & v=0.095. 

 

Figure 6(a) Numerical simulation fishery 
harvesting model in presence of predator, the case III 

with 𝐸 = 0 

 

Figure 6(b) Numerical simulation fishery 
harvesting model in presence of predator, the case III 
with 𝐸 = 0.05 
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Figure 6(c) Numerical simulation fishery 
harvesting model in presence of predator, the case III 

with 𝐸 = 0.1 

 

Figure 6(d) Numerical simulation fishery 
harvesting model in presence of predator, the case III 
with 𝐸 = 0.2 

From the numerical simulation study presented in 
the Figures (6) it can be concluded that asymptotic 
population sizes of the prey converges to lower 
positive values while that of the predator diverges to 
infinity on the positive side faster with the increase the 
harvesting rates 

Further, in case III the predator population 
decreases for some time and then increases and 
ultimately diverges to positive infinity as shown in 
Figure 6. The minimum point of the cure is donated by 
𝑡𝑚𝑖𝑛  and has the expression 

𝑡𝑚𝑖𝑛 =  [
1

𝑘+𝐸
] log [

{1−(𝐴0(𝑘+𝐸) 𝑘𝐴⁄ )}

{1−(𝑣(𝑘+𝐸) 𝑘𝑠𝐴⁄ )}
] . 

8. Conclusions 

Population dynamics of fish with and without 
harvesting and with and without predator have been 
considered and studied. It is assumed that the fish 
population without harvesting grows following brody 

model with growth parameter 𝑘 and asymptotic 
growth  𝐴 . Interestingly it is found that the 
corresponding harvesting model also follows brody 

function with absolute growth parameter (𝑘 + 𝐸) and 

asymptotic growth [𝐴(𝑘 (𝑘 + 𝐸)⁄ )]. In both the case of 
harvesting and non – harvesting all the solution 
curves of fish population converge to the asymptotic 
growth 𝑥 = [ 𝐴 𝑘 (𝑘 + 𝐸)⁄ ]. In case the harvesting rate 

𝐸 is much more greater than the growth rate  𝑘 that 
is,  𝑘 < < 𝐸 , then the asymptotic growth of fish 
approaches closer to zero but remains as a non – 
zero positive value. 

The harvesting case of prey with predator is also 
studied based on the assumption that the interaction 
of a predation leads to a little or no effect on growth of 
the prey population. The predator models 
corresponding to harvesting fishery is derived and 
analyzed. The simulation studies and further analysis 
of the models show that the predator population grows 
and either converges to a positive finite limit or zero or 
diverges to positive infinity, while the prey population 
grows following brody curve and reaches the upper 
asymptote  [𝐴(𝑘 (𝑘 + 𝐸)⁄ )] . There is a situation at 
which both the prey populations and predator 
populations converge to the same size. There is also 
a situation where the predator population declines for 
some time and then starts to increase and diverges to 
infinity without bound. Moreover, in both cases of fish 
harvesting with and without predator equilibrium 
points are identified, which are stable only under 
some specific conditions. In general, the analytic and 
simulation studies have revealed some insights to the 
problem addressed in this paper so that the models 
obtained can be applied to the real-world situations. 

Dedication The first author Kinfe Hailemariam 
Hntsa dedicates his contribution to the fond memory 
of his father (Late) priest Hailemariam Hntsa. 
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Appendix 

Derivation of predator model given that prey 
(fish) follows Brody model with the inclusion of 
harvesting 

Consider the predator equation given in (5) as 
[𝑑𝑦 𝑑𝑡⁄ ] = −𝑣𝑦 + 𝑠𝑥𝑦 which can be rearranged as 
[𝑑𝑦 𝑦⁄ ] = [−𝑣 + 𝑠𝑥]𝑑𝑡  and the latter on integration 

results in  log 𝑦 = −𝑣𝑡 + 𝑠 ∫ 𝑥 𝑑𝑡 . To evaluate the 

integral in the second term on the left hand side of the 

fore going equation we now substitute for 𝑥(𝑡) the 
brody function with the inclusion of harvesting fish 
(prey) growth given in (4). Thus, on substituting (4) in 
(5), we get 

log 𝑦 = −𝑣𝑡 + 𝑠[𝐴(𝑘 (𝑘 + 𝐸)⁄ )] ∫[1 − 𝐵𝑒−(𝑘+𝐸)𝑡] 𝑑𝑡  

(i) 

To evaluate the integral in (i) let us introduce a new 

variable 𝑤 as 𝑤 = 1 − 𝐵𝑒−(𝑘−𝐸)𝑡  and thus we obtain 

𝑑𝑤 = −(𝑘 + 𝐸)𝐵𝑒−(𝑘+𝐸)𝑡𝑑𝑡 = −(𝑘 + 𝐸)(𝑤 − 1)𝑑𝑡  or 

equivalently  𝑑𝑡 = −[1 (𝑘 + 𝐸)(𝑤 − 1)⁄ ] 𝑑 . Now, on 
substituting 𝑤  and 𝑑𝑤  the equation (i) takes the 
following form 

log 𝑦 = −𝑣𝑡 − [𝑠𝑘𝐴 (𝑘 + 𝐸)2⁄ ] ∫ 𝑤 (𝑤 − 1)⁄ 𝑑𝑤 

= −𝑣𝑡 − [𝑠𝑘𝐴 (𝑘 + 𝐸)2⁄ ] ∫[1 + (1 𝑤 − 1⁄ )]𝑑𝑤 

= −𝑣𝑡 − [𝑠𝑘𝐴 (𝑘 + 𝐸)2⁄ ][𝑤 + log|𝑤 − 1|] + log 𝐷 

= −𝑣𝑡 − [𝑠𝑘𝐴 (𝑘 + 𝐸)2⁄ ][1 − 𝐵𝑒−(𝑘−𝐸)𝑡 +

log(𝐵𝑒−(𝑘+𝐸)𝑡)] + log 𝐷 (ii) 

On taking antilogarithms on both sides, the 
equation (ii) takes the form 

𝑦 = 𝐷𝑒−𝑣𝑡𝑒−[𝑠𝑘𝑎 (𝑘+𝐸)2⁄ ][1−𝐵𝑒−(𝑘−𝐸)𝑡+log 𝐵−(𝑘+𝐸)𝑡] (iii) 

The parameter 𝐷  in (iii) denotes an integral 
constant and is determined by using the initial 
condition. The substitution of the initial condition on 
predation 𝑦(0) = 𝑦0  in (iii) and after some 
simplification steps we get 

𝐷 = 𝑦0𝑒[𝑠𝑘𝐴 (𝑘+𝐸)2⁄ ][1−𝐵+log 𝐵] (iv) 

Up on substituting (iv) in (iii) we obtain 

𝑦(𝑡) = 𝑦0𝑒[𝑠𝑘𝐴 (𝑘+𝐸)2⁄ ][1−𝐵+log 𝐵] 

𝑒−𝑣𝑡𝑒−[𝑠𝑘𝐴 (𝑘+𝐸)2⁄ ][1−𝐵𝑒−(𝑘−𝐸)𝑡+log 𝐵−(𝑘+𝐸)𝑡] 

Or equivalently 

𝑦(𝑡) = 𝑦0𝑒[(𝑠𝑘𝐴 (𝑘+𝐸)⁄ )−𝑣]𝑡 

𝑒−[𝑠𝑘𝐴 (𝑘+𝐸)2⁄ ][1−𝐵𝑒−(𝑘−𝐸)𝑡] 

𝑒[𝑠𝑘𝐴 (𝑘+𝐸)2⁄ ][𝐴0 (𝑘𝐴 (𝑘+𝐸)⁄ )⁄ ] (v) 

Therefore (v) is the required solution representing 
population growth of the predator. 
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