
Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 3159-0040

Vol. 2 Issue 4, April - 2015

www.jmest.org

JMESTN42350641 768

Design Architecture for Faster Ram Controller
Using Internal Memory

Soumya Karnala
Department of Computer Science

University of Bridgeport
126 Park Avenue, Bridgeport, CT

skarnala@my.bridgeport.edu

Tarik El Taeib
Department of Computer Science

University of Bridgeport
126 Park Avenue, Bridgeport, CT

teltaieb@my.bridgeport.edu

Abstract—In this paper we are constructing a

faster RAM by using inbuilt memory instead of
external memory. In this era of fast processors
and processors with many types, there is a need
for more fast and much large memories. But the
speed of fetching data from memories is not able
to match up with speed of different processors.
So there is am for a requirement for faster
memory controller. The duty of the controller is to
balance the speeds of the processor on one side
and memory on the other. The controller is
expected to synchronize data transfer between the
processor and memory. To achieve this, the
controller has to accept the requests from the
processor side and convert them to a form of
suitable to the memory and execute the requests.
The processor has more speed compared with the
memory. It is impossible to make the processor
hold till each command is executed for it to give
the next command, so that the controller has
some kind of storage.

In this proposed research work the memory
controller has inbuilt memory, so that it can buffer
multiple requests while the processor continues
with other work. The memory we consider here is
DRAM. Memory controller will have the logic to
read and write to DRAM and also revive the
DRAM. The memory controller has both processor
interface logic, inbuilt memory and memory
interface logic. The controller at processor side
interface has to synchronize to the speed of the
processor whereas the memory side interface has
to run at the speed of memory. With this feature
the design which increase the overall efficiency of
the controller such as searching the internal
memory of the controller for the requested data
for the most recently used data instead of going to
RAM fetch it. For inbuilt memory of the controller
we are using FIFO. In this research work, the
requests are kept in the controller even after the
request has been serviced. The DRAM memory
elements are arranged in an array of rows and
columns. Search logic provides the logic for
searching in the FIFO. The entire system
construction will be architected using HDL
language and simulation, synthesis and FPGA
implementation will be done using various FPGA
based EDA Tools.

INTRODUCTION

The controller is expected to synchronize data
transfer between the processor and the memory. To
obtain this, the controller has to acquire the requests
from the processor side and convert them to a form
suitable to the memory and execute the requests. As
the processor is much faster than the memory, it is
impossible to make the processor halt till each
command is executed for it to give the coming next
command. So the controller has to have any type of
storage, so that it can buffer multiple requests while
the processor continues with other work the interface
at the processor side of the controller has to
synchronize to the speed of the processor whereas
the memory side interface has to run at the pace of
memory. To get this, we manage to operate the
controller with high frequency clock, but with wait
states for the memory side interface. As the
processor-memory performance gap creates a delay
in the execution of the requested commands, so if we
introduce a memory in order to speed up the
execution.

DESIGN

General Block Diagram:

This is a general block diagram of the control
which access the data transfer between processor
and the memory. This controller consists of three
major blocks. This are explained below.

Processor side interface:

This is a first block which helps the controller to
fetch the requests from the processor. After fetching
the requests, it gives them to controller in order to
execute the execution.

Controller: The controller contains three sub
blocks in it. It has storage, interface logic of both
processor and the memory.

Memory side interface:

Memory side interface gives the instructions which
are fetched from the controller logic. It executes the
requested commands and gives results.

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 3159-0040

Vol. 2 Issue 4, April - 2015

www.jmest.org

JMESTN42350641 769

General Block Diagram

Hardware Modules:

1. Processor Interface Module: This module
provides the necessary logic to handle the processor
requests.

2. Memory Interface Module: This module provides
the necessary logic to interface with the memory side
signals.

3. Circular FIFO: This unit is used to store the
requests coming from the processor. It acts as an
interface between the processor interface module and
memory interface module.

4. Search Unit: This module provides the logic for
searching within the FIFO.

Finite State Machine:

A finite-state machine (FSM) is a mathematical
abstraction sometimes used to design digital logic. It
has finite internal memory, an input feature and an
output feature, which is in the form of a user interface,
once the model is developed. The number of states
and names of the states depends on the different
possible states of the memory, e.g. if the memory is 3
bits long, there are 8 possible states i.e 2^k, where k
equals to the number of bits . The state that reads the
first symbol of the input sequence is called the start
state and the state which signifies the successful
operation of the machine is called the accept state.

Depending on the number of states an input can
lead to, finite-state machines can be divided into two
categories: deterministic and nondeterministic. The
nondeterministic machine may have any number of
following states for a given input symbol or none at all,
whereas the deterministic machine has exactly one
following state for a symbol. An important property of
finite-state machines is that every nondeterministic

machine has a corresponding deterministic one that
accepts the same words. This is not true for
pushdown automata. Finite-state machines can solve
a large number of problems. The controller had two
state machines, one for the processor side interface
and one for the memory side interface, the memory
side state machine had 16 states whereas the
processor side interface had 4 states. The given
below figures shows the different states of the
execution.

Processor Side State Machine

Memory Side State Machine

Proposed Architecture:

Existing controller have two different FIFO one to
store the write requests and one to store the read
requests. As soon as the request is serviced it

Erface

Processor Interface Logic

Limited Storage Space

Memory Interface Logic

Processor Side Interface

Memory Side Interface

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 3159-0040

Vol. 2 Issue 4, April - 2015

www.jmest.org

JMESTN42350641 770

discards the corresponding data from the FIFO. But all
processors follow the principle of locality which is
described below. This paper tries to exploit this
behavior of the processors. So we have proposed a
method wherein the requests are stored in the
controller even after the request has been serviced.
This enables us to search the internal FIFO before
accessing the RAM, to check if the data already exists
in the internal memory. This reduces the turn-around
time for requests significantly if the data was found
internally.

Principle of locality:

Locality of reference, also known as the principle of
locality, it is the phenomenon of the same value or
related storage locations being frequently accessed.
There are 2 basic types of principle of locality, they
are - Temporal locality and spatial locality. Temporal
locality means the reuse of specific data and/or
resources within relatively small time durations. If at
one point in the time a particular memory location is
referenced, then the same location is referred for the
next time. In this case it is advisable to store a copy of
the referenced data in special small memory, which
can be accessed faster. Spatial locality refers to the
use of data elements within relatively close storage
locations. These two properties motivated us to use
internal search module in inbuilt memory (FIFO in our
case) inside the controller, so that memory can act as
a cache for faster data access. So a cache like
behavior in the controller which can be useful for
some embedded processors which don’t have in-built
cache. This increases the overall efficiency of the
controller.

If at one point in the time a particular memory
location is referenced, then it is likely that the same
location will be referenced again in the near future. In
this case it is advisable to store a copy of the
referenced data in special small memory, which can
be accessed faster.

Proposed Architecture

States and it’s Descriptions:

Processor side interface:

Signal
name

Description

Address

This is the multiplexed address bus to
the memory, SIZE IS 13 BIT, ROW

ADDRESS IS 10 BIT, and COLOUMN
ADDRESS IS 8 BIT.

Data
This bidirectional bus carries data to and

from the memory, SIZE IS 16 BIT

RAS
This is the Row Address Strobe signal to

the DRAM

CAS
This is the Column Address Strobe

signal to the DRAM

OE
This signal enables the DRAM data

output

Memory Side Interface:

Signal
name

Description

Address
In

This is the memory address input to the
controller, SIZE IS 18 BIT

Data In
This is the data input for the

corresponding memory address, SIZE IS
16 BIT

RD’
This is an active low signal to indicate

whether the operation is a read

WR’
This is an active low signal to indicate

whether the operation is a write

CLK clock input to the controller

Data out
The data which is read from the memory

is given back to the processor through this
port, SIZE IS 16 BIT

Read
data
Valid

This signal indicates to the processor that
the data on the bus is valid

FIFO
Full

This indicates that the internal FIFO is full
and the controller cannot accept any more

requests

Error An error operation occurred

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 3159-0040

Vol. 2 Issue 4, April - 2015

www.jmest.org

JMESTN42350641 771

Signal (RD’):

This is a Read control signal (Active Low). This
signal indicates that the selected I/O or memory
device is to be read and data are available on the data
bus.

Read bus cycle:

Read cycle

Write (WR’):

This is a write control signal (Active Low). This
signal indicates that the data on the data bus are to be
written into a selected memory or I/O location.

Write Bus Cycle:

Write Cycle

FIFO Full:

•When the write address register reaches the read
address register, the FIFO triggers the FULL signal.

•When the read address LSBs equal the write
address LSBs and the extra MSBs are different, the
FIFO is full.

Simulation:

The purpose of simulation is to verify that the
circuit works as desired. The Active-HDL simulator
provides two simulation engines.

 Event-Driven Simulation

 Cycle-Based Simulation

Simulation Result

MODULES:

RESET, and READY accept the externally initiated
signals as inputs. The READY signal is used to delay
the microprocessor READ or WRITE cycles until a
slow-responding peripheral is ready to send or accept
data. When this signal goes low, the microprocessor
waits for an integral number of clock cycles until it
goes high. Lastly, when the RESET IN signal goes
low, the program counter is set to zero, the buses are
tri-stated, and the MPU is reset and the RESET OUT
signal indicates that the MPU is being reset and used
to reset other devices.

To respond to the HOLD request, the 8085
Microprocessor has one signal, called HLDA (Hold
Acknowledge). It acknowledges the HOLD request.

I/O Ports Description

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 3159-0040

Vol. 2 Issue 4, April - 2015

www.jmest.org

JMESTN42350641 772

STATE DESCRIPTION:

S.N0 Port Name Mode Size Port Description

1 CLk In -
Entity function

synchronized for Rising
edge of the Clk

2 Rst In -
When asserted Entity is

initiliased to default
values

3 Ctrl Ena In - Enables of smc

4 Serovr In
1bit data which input to

smc

5 WrEna,RdEna Out - Output signals

6 SEna Out - Output signal

7 Sld Out - Output signal

8 Empty Out - Output signal

Port Description

5.1.2 FUNCTIONAL DESCRIPTION:

State machine control controls all the modulesof
architecture by clk,enable and rst signal on it.whens
rst is ‘0’ it is in idle state and for every rising edge of
clock all modules are enableded and controls
fifo,ram,ptos.

Simulation Result:

Simulation Behavior

RAM:

Functional Description:

Random-access memory (RAM) is a form of
computer data storage. A random-access memory
device allows data items to be read and written in
roughly the same amount of time regardless of the
order in which data items are accessed.

I/O Ports Description for RAM

State Description:

S.N0
Port

Name
Mode Size Port Description

1 Addr In [31:0] Address input signal

2 Csn In - Chip selection input signal

3 Rd In -
Read request signal of

memory

4 Din In [7:0]
8 bit data which input to top

module

5 Wr In -
Write request signal of

memory

6 Dout Out [7:0] Output signal

7 Dout Out [7:0]
8 bit data which is output

from FIFO

Port Description for RAM

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 3159-0040

Vol. 2 Issue 4, April - 2015

www.jmest.org

JMESTN42350641 773

Simulation Results:

Simulation Behavior for RAM

FIFO:

Functional Description:

FIFO [First in First Out] is a memory that stores
information. An information can be either written into
memory or read from memory. Here, we are using a
8X8 bit memory. The depth of the memory is 8 bit [i.e;
number of locations] and width of memory is 4 bit.
Let’s, explain this with an example when, uses it
according to her requirement. In the similar fashion
the FIFO works, where we store incoming 8bit data in
a memory, But to store data in a specific location we
are using write pointer as well as read pointer. These
are nothing but house address. The process consists
of two parts, one is write logic and other is read logic.
The process starts in this way, When reset is inserted
then the internal register i.e, Wrptr or Rdptr is cleared.
Then for every rising edge of clk whenever fifo enable
is one, wrEna and rdEna are one and zero
respectively, then we process the right logic. Where
data is written into memory and wrptr is incremented
parallel. When wrEna and rdEna are zero and one
respectively, we read the data from memory to output
(Dataout) using read pointer that specifies the
location.But as memory is fixed, more and more data
comes that leads to overlap of existing data. In order
to avoid this problem we are using FULL and EMPTY
signal, where full shows high when memory is full by
which we stop writing the data to begin reading the
data from memory. In the same way empty signal tells
whether memory is empty or not, by which we begin
reading the data from memory.

State Description:

S.N0 Port Name Mode Size Port Description

1 WrClk,RdCLk In -

Entity function
synchronized for Rising
edge of the Write Clk

and read Clk.

2 Rst In -
When asserted Entity is

initiliased to default
values

3 rdEna,wrEna In - Enables of FIFO

4 Datain In [7:0]
8 bit data which input to

FIFO

5 Dataout Out [7:0]
8 bit data which is
output from FIFO

6 Full Out -
Signal Status of memory

is full

7 Empty Out -
Signal Status of memory

is ready to read.

State Description for FIFO

First In, First Out, FIFO is a method of processing
data where the data first received is the first to be sent
out after processed.

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 3159-0040

Vol. 2 Issue 4, April - 2015

www.jmest.org

JMESTN42350641 774

Simulation Results:

Simulation Results for FIFO

Seriliazer:

I/O Ports Description for Serializer

State Description:

s.no
Port

name
Mode Size Port description

1 SEna Input - Input select signal

2 Clk Input 1 bit Input system clock signal

3 Datain Input [7:0] Input data signal

4 Rst Input 1 bit On board reset signal

5 Sbit Out - Output signal

6 SLd Input - Input signal

7 SerOvr Out - Output Signal

State Description for Serializer

Functional Description:

This is used to convert the data from parallel form
to serial form. Here it is used to satisfy the basic
requirement of the vlsi technology (i.e) utilization of
less power and area with high speed. When bits are
delivered to the system serially the power and area
utilization reduces and speed of operation increases.
Hence parallel to serial converter is incorporated in
this project to deliver serialized data to the system .

Simulation Results:

Simulation Result for Serializer

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 3159-0040

Vol. 2 Issue 4, April - 2015

www.jmest.org

JMESTN42350641 775

Top Module:

I/O port description

Simulation Results:

simulation result for final output

Synthesis Report:
=====================================
* Final Report *
=====================================
Final Results
RTL Top Level Output File Name:

TOPMODULE.ngr
Top Level Output File Name : TOPMODULE
Output Format : NGC
Optimization Goal : Speed
Keep Hierarchy : NO
Design Statistics
IOs : 47
Cell Usage :
BELS : 589
GND `: 1
INV : 5

LUT1 : 62
LUT2 : 79
LUT3 : 83
LUT4 : 162
MUXCY :78
MUXF5 : 32
MUXF6 : 16
MUXF7 : 8
VCC : 1
XORCY : 62
FlipFlops/Latches : 228
FDC : 3
FDCE :79
FDE : 9
LD : 9
LDE :120
LDE_1 : 8

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 3159-0040

Vol. 2 Issue 4, April - 2015

www.jmest.org

JMESTN42350641 776

RAMS : 8
RAM16X1D :8
Clock Buffers : 1
BUFGP :1
IO Buffers : 17
IBUF : 16
OBUF : 1
=====================================
Device utilization summary:

Selected Device : 3s100evq100-5
Number of Slices: 220 out of 960 22%
Number of Slice Flip Flops: 228 out of 1920 11%
Number of 4 input LUTs: 407 out of 1920 21%
Number used as logic: 391
Number used as RAMs: 16
Number of IOs: 47
Number of bonded IOBs: 18 out of 66 27%
Number of GCLKs: 1 out of 24 4%

Partition Resource Summary:

No Partitions were found in this design.

The simulation and synthesis is carried out on
Xilinx ISE 8.2i, The synthesis has been successfully
completed on vertex 5 XC5VLX30 with speed grade -
1 produced following results.

Clock report: maximum combinational path delay
or Minimum clock period allowed is 25.658 ns.

5.7 Device utilization summary:

Slice Logic
Utilization

Used Available

Number Of Slice
Flip Flops

791 19,200

Number Of Slice
LUT’s

1,091 19,200

Number Used As
Logic

1,088 19,200

Number Using 06
Output Only

1,088

Number Used
Exclusive Route-

Thru
3

Number Of Route
–Thrus

3 38,400

Number Using 05
And 06

3

Slice Logic
Distribution

Number Of LUT-
Flop Pairs

1,207 19,200

IO Utilization

Number Of
Bonded IOB’s

88 220

Other Utilization

Table 5.5:Synthesis Report

CONCLUSION

We proposed a novel way i.e. cache like behavior
inside controller to improve its performance and hence
the bandwidth. We used FIFO to store the Read/Write
commands coming from processors/user side along
with corresponding write data and included a search
engine to search recently read/write data inside the
FIFO in order reduce the clock cycles of fetching data
from DRAM. The methodology provided good lab
results and synthesized well. This concept will be
useful mainly in embedded processors which may not
have cache in them and also do not access the
memory in blocks.

REFERENCES

1. B. Keeth and R. J. Baker, “DRAM Circuit
Design”, IEEE Press Series on Microelectronic
Systems”, New York, 2000

2. “Jedec standard: double data rate (ddr) sdram
specification”, (revision of jesd79b), jedec solid state
technology association, march 2003,

3. J. Hassoun, “Virtex Synthesizable High
Performance SDRAM Controller”, Xilinx (white
paper),may 7,1999

4. K. Palanisamy and R. Chiu, “High-
Performance DDR2 SDRAM Interface in Virtex-5
Devices”, xilinx, may 8,2008

5. A. Cosoroaba, “Memory Interfaces Made
Easy with Xilinx FPGAs and the Memory Interface
Generator”,xilinx,February 16, 2007

6. A. S. Sedra and K. C. Smith, “Microelectronic
Circuits”, Oxford Series in Electrical Engineering ,4th
edition.

http://www.jmest.org/

