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Abstract—In work describes the statements of 
problems on Eigen vibrations of the system with a 
finite number of degrees of freedom. Are 
considered oscillations of mechanical of systems 
consisting of absolutely rigid bodies, of 
interconnected, without massive viscoelastic 
elements? 
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Introduction. Questions of use of dynamical of 
viscoelastic of damping of systems with two degrees 
of freedom, with all the scrutiny of the problem [1,2], is 
rarely discussed in the scientific literature. However, 
the protection tasks an object as solid in two elastic 
supports have implications for engineering practice; 
because of the "beam" of the type widely enough are 
used in the transportation dynamics [3, 4, 5, 6]. 

Mechanical problem. Are considered the natural 
oscillations of mechanical of systems consisting of S 
Tel (SKK - hard, Se - of viscoelastic ;). System of 
bodies connected to each other and the base without 
a mass (or by massive) viscoelastic elements. The 
viscoelastic properties of the materials described by 
the integral ratios of the Boltzmann-Voltaire [1,4]. 
Some of the deformable elements may be resilient, in 
this case the kernel of heredity describing the 
rheological properties of the elements are identically 
zero. System in which the rheological properties of 
deformable elements are identical (core elements of 
heredity are equal) will be called dissipative 
homogeneous, and the system with different 
rheological characteristics of deformable elements - 
dissipative inhomogeneous [2]. 

The main objective of work - the study of 
dissipative (damping) properties of the system as a 
whole. With free vibration damping rate quantifies the 
dissipative properties of the system: the higher the 
speed, the higher dissipation of. To quantify the 
dissipative properties of the system offers two 
quantities: the minimum rate of decay of the natural 
oscillations and maximum amplitude of the resonant. 
Dissipative properties of the system are determined 
primarily damping properties of elements [2]. This is 
true for dissipative homogeneous systems, completely 
inapplicable to dissipative inhomogeneous system. 
Displays the notion of global damping coefficient. 

Global dissipative damping characteristics of the 
inhomogeneous system as a whole are determined 
not only (and not so much), the viscoelastic properties 
of elements of the system, how the interaction of 
different natural modes of oscillations, which is 
substantially determined by the structure, design, 
geometry, dimensions, by elastic links, the mutual 
arrangement of elements [4, 5, 6]. In this case the real 
part of the complex natural frequency is the frequency 
of damped oscillations, the imaginary - the coefficient 
a damping of the natural oscillations of the system. 

Statement of the problem and solution 
methods. In formulating the problem on their own and 
forced vibrations of the system uses the principle of 
virtual displacements, according to which the sum of 
all the works acting on the system of active forces, 
including the forces of inertia is zero [3]. Analyze of 
the dynamical coefficients for a dissipative 
inhomogeneous mechanical design CEA shown in 
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 t - Arbitrary function of time;  tRсj - The 

core relaxation. Further, applying the procedure of 
freezing [2], we replace the relation (5) is 
approximately of the form 
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and sine - Fourier transforms relaxation kernel 
material. As an example, assume a three-parameter 
the viscoelastic material relaxation kernel
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[2]. The technical challenge is to varying within a 
physically realizable stiffness of the deformable 
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element, its size and weight, to achieve the maximum 
reduction of the amplitude of resonant vibrations. For 
a system with a finite number of degrees of freedom 
the variational problem reduces to a system of linear 
equations of Lagrange type II with complex 
generalized rigidity: 

Nj
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where jka  - components of the real of a symmetric 

matrix of generalized masses; 
jkjk IRjk CCC  - The 

components of a complex of a symmetric matrix of 

generalized stiffness; kq  -аre complex generalized 

coordinates (components of displacement of the 
center of mass and the angles of rotation of the rigid 
bodies). A solution is sought in the form of; 

),exp( tiAq jj 
 

Where IR i   the 

complex natural frequency; jA - complex natural 

modes. The problem reduces to of a complex 
algebraic eigenvalue problem of the system, of 
equations species 

[𝑀]{𝑋̈} + [𝐶]{𝑋̇} + [𝐾]{𝑋} = {0}, 

Reduces to the solution of the characteristic 
equation 

𝑑𝑒𝑡[[𝑀]𝜆2 + [𝐶]𝜆 + [𝐾]] = 0, (2) 

With nonlinearly within a complex parameter. The 
characteristic equation of the system (2) is solved by 
Muller, as an initial approximation decided to close (2) 
conservative goals. Kernel relaxation taken in the form 
of 

𝑅(𝑡 − 𝜏) =
𝐴𝑒−𝛽(𝑡−𝜏)

(𝑡 − 𝜏)(1−𝛼)
. 

Cosine sine s - the images of this nucleus 
expressed by the formulas 
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Somewhere gamma functions. Consider the 
natural oscillations of the system with two degrees of 
freedom (Fig. 1). The following parameters [2]:

 
1;1;1,0;05,0;048,0 1  MCA  , 

The instantaneous rigidity varies. We consider two 
mechanical systems. In a first embodiment all 
elements of viscoelastic 

𝑅1 = 𝑅2 = 𝑅3 =
𝐴𝑒𝑥𝑝(−𝛽𝑡)

𝑡1−𝑎
, 𝐴 = 0.048,

𝛽 = 0.05, 𝛼 = 0.1. 

The calculation results are shown in Fig. 2a. The 
dependence of the natural frequencies of С2 

is the same as in the case of a homogeneous 
system, the corresponding curves are identical up to 
5%. As for the damping coefficients, their behavior 

changes radically: the dependence what С2 
becomes no monotonic. Particular interest is the 
minimum value of the damping factor at fixed stiffness 
С2: 

𝛿 = min
𝑘
{−𝜔𝐼𝑘}. 

Magnitude 𝛿 determines the damping properties of 

the system. In the case of of a homogeneous system 
value С2 (we call it the global damping factor) is 
entirely determined by the imaginary part of the 
complex modulus lowest natural frequency. In case of 
a heterogeneous of the system as a global damping 
factor depending on the magnitude С2 act as the 
imaginary parts of the first and second natural 
frequencies. "Turn the Tables" occurs when the value 
of the characteristic value С2, when real parts of the 
first and second natural frequencies are most similar. 
Global damping factor at the specified characteristic 
value С2 has a pronounced maximum. This 
circumstance is, in our opinion, the new mechanical 
effect, which can be formulated as: fluctuations in their 
own forms of inhomogeneous viscoelastic of the 
system with close frequencies mutually cancel each 
other. The instantaneous rigidity С2 is the geometric 
parameter determines the size, rather than the 
physical properties of the material. The main feature 
of the observed effect is the qualitative dependence of 
the dissipative properties of the system from its 
geometric parameters. Thus, the results obtained for 
the dissipative inhomogeneous viscoelastic structures 
are fully consistent with the decisions of the problem 
of free damped oscillations and confirm the sharp 
increase in the intensity of the dissipative processes in 
the approximation of the fundamental frequencies in 
inhomogeneous viscoelastic systems. The role of 
theology reduces both vibration damping, and to 
mutually enhance the interaction of oscillations of 
different modes, which significantly increases the 
dissipative properties of the system as a whole. This 
effect of the interaction of different forms of 
continuous motion of bodies is of fundamental outlook 
for the synthesis of optimal on dissipative properties 
and material engineering inhomogeneous dissipative 
structures, building products, damping materials and 
composites of various vibration isolation systems and 
devices. To elucidate the physical nature of the 
observed effect, we write the equation of motion of a 
system with n  degrees of freedom in the normal 

coordinates of the elastic system. In the case of a 

homogeneous system all the relaxation kernel ijR  
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same: RRij  , so that the matrix of generalized 

complex stiffness is positive definite real matrix 
multiplication by a complex scalar: 

   ]1[ R

s
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c

ijij iCC  
 

In the normal coordinates of the elastic problem 
system (1) takes the form 

   312
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Where   - complex natural frequency of the 

elastic system; n  - Generalized force corresponding 

to n  - normal coordinate. The system (3) 

disintegrated into n individual equations. This means 
that the motion of a mechanical of a viscoelastic 
system represents a superposition independent 
normal oscillation damping, and forced to have finite 
resonance amplitude. The basic properties of 
conservative systems - the ability to drive oscillations 
of a normal coordinate without exciting the other - 
completely preserved in the case of a homogeneous 
viscoelastic system. 

 

Fig.1. Design scheme. 

The situation changes radically in the case of 
dissipative of an inhomogeneous system. Here 
generalized complex stiffness represents the sum of 
two matrices - real and complex that generally 
speaking, are not similar. 

Three symmetrical not like generalized matrices 
(matrix of generalized mass, the real and imaginary 
parts of the matrix of generalized stiffness) not cause 

the EQSs kC  to diagonal form of a non-singular 

transformation. Therefore in the case of an 
inhomogeneous system of Lagrange's equation under 
normal kordinitah the elastic system has the form 
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Where 
s

nj

c

nj  ,  -non-negative definite real matrix. 

 

 

Fig.2. Dependence on of complex frequencies 

The system (4) consists of N interconnected 
equations. Mechanical coupling, this means you 
cannot swing a separate excitation of normal 
coordinates. 

Every movement of the inhomogeneous system is 
a superposition of several interacting vibrations 
normal coordinates, and the interaction of various 
normal coordinates, the most intense at close Eigen 
frequencies leads to an intensification of the 
dissipative processes in the system. 
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