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Abstract—For a given positive integer n, we
determine all linear Chern number inequalities
satisfied by any complete intersection surface of
general type of order n. Similar results are
obtained in the general case. As a corollary, we
improve the inequalities satisfied by the Chern-
invariants of a surface of general type.
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l. INTRODUCTION

This paper is motivated by the results established
in [1] in the case of smooth complete intersection

threefolds with ample canonical bundle. Let Clz, X be

the Chern-invariants of a surface of general type,
Bogomolov Miyauka-Yau inequalities [2] say that

Cf,;(>0, CfSQ;(.

As these inequalities are, one may naturally asks if
there exist more sharpened inequalities. This is
possible because ULF Persson [3] listed those
complete intersections whose Chern-numbers are
fairly small, gave the geography of them and
established the following result.

Theorem 1.1: If X is a complete intersection
surface of general type, then ¢2(X)<8x(0,)

However, this inequality can be slightly sharpened,
although the coefficient 8 is the best possible. Our plan
is, first, to determine for each natural number n, the
convex hull in R? generated by Chern- invariants

(Cf, ) of complete intersection surfaces of general

type of order n . Secondly, we deduce the whole
convex hull of all complete intersection surfaces (CIS)

of general type. A CIS X in P™is defined by n
hypersurfaces of degrees d,,---,d with d, >2 for
each 1<i<n. The Chermn-invariants of X are
uniquely determined by the tuple (d,,---,d,) and we
use the notation

P(n;dy,-+,d;)=(c;, 7)
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for Chern-invariants of X. We know that X is of
n
general type if and only if Z >N+ 3.
i-1

Set

i ={P(n;d1""'dn)|di Zz'zn:di >n+3},
Q=610 - (11 2).Q - (1422

18
and for n>4

(n*-5n+8)2"° +3n +1)

=((n*-5n+9)2" +1:
Q.=(( ) i

Let C, be the convex hull of P,. We obtain the
following theorem.

Theorem 1.2: C_is an unbounded domain with
infinitely many faces defined as follow.

1. C1 is given by all the points in P, which form

its upper bound, and the half-line [P(S)Ql)

defined by
oLl 2
6 6

which is the lower bound.

2. C,is delimited by segments of lines defined
by points P(2,k) with k >4, P(3,3) and the

halt-line [P(3,3)Q,) defined by
48y —7x—-225=0.

3. C; is given by points P(2,2,k) withk >3,
which form its upper bound, and the half-line
[P(2,2,3)Q,) its lower bound defined by

36y —5x-192=0.
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4. Forn>4, C, is defined as follows:
a) The upper bound is given by:
i. P(2,2,2,k), k>2ifn=4,
i P(2,2,2,2,k), k>2ifn=5,
iii. the line defined by
6y —Xx+(n*—9n+12)2" % =0,
if n>6.

b) The lower bound s
[P(2, 2,0, 2)Qn) defined by

the  half-line

24ny — (3n+1)x—(2n* +3n—9)2" =0.

We have now set the stage. Complete intersection
surfaces of general type of a fixed degree n, live in a
very cut out region of the universe.

With these results at hands, one may naturally ask
how looks like the shape of the union of all P, .

Denote P by:
Up, ={P(nd, .0, In>10,22, 3 d, >n+3}
net i=1

One way to look at this question is to search a
deduction from the previous particular cases. If it true
for its lower bound to be deduced, the deduction of the
upper bounds requires more effort as shows the proof
of the following theorem.

Theorem 1.3: The convex hull of P is generated
by the following points

Q. =(136);

3 a2
(L) = (¢7 80" +16d; T 0,
where d >5.

For two distinct points A and B in R?, denote the
line segment connecting A and B by S,;, and the

line passing through A and B by L,; . Denote the
slope of L,z by a(AB).

1. PROOF OF THEOREM 1.2

p:dldz...dn’
Pin = Hdk'
k#i,n

Al =P(;2,---,2,k).

(1) Let eR;d>5. The slope of L
given as follows

P()P(d+1) 1S
3d?-9d +6

a(P(d)P(d +1)) = ST 13d+9)

Then the family of slopes (a(P(d)P(d +1)))d25

is a sequence with positive terms.

Moreover

a(Pd+1)P(d+2))-a(P(d)P(d +1))

B —2d%+d+1 -
(3d2—7d —1)(3d2—13d —9) ~

and

lim a(P(d)P(d +1)

3d*-9d +6 1

= lim > =
d>+0 6(3d2 —13d +9) 6

then (a(P(d)P(d +1)))dzs is decreasing and

. 1 _ .
tending tog. This concludes that all the points P(d) ,

ford >5, are above the line of slope — passing
through P(5) = (5,5) , i.e the line whose equation is

y= 1 ‘it 25
6 6
Lemma 21 Let n>2 and d,d,..,d,eR"
satisfying the following: 2<d, <d, <---<d_  and
d,+d,+---+d, >n+4.
There exist K>2 and a finite number of points
R, R,,--+,R in P, such that

cZ(P(2,---,2,k)) < (R) < (R,) <---<c’(R).

Suppose neR is a positive integer, and

dy, ..., d, e RWe define: Moreover
s, =d +d,+---+d, 1
17 T2 n a(R,P(dl,dz,"',dn))S—
s, =d, +d, +---+d, —n-3, 6
s,=d?+dZ+---+d?, and
s, =d/+dZ+---+d*—n-3,
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1
a(RR )<=
( i |+1) 6

for ie{l, 2,---,|—1}.

Proof. Define A:{j e{L2,---,n-1}|d, 23}.
Case A= is obvious.

Suppose A= . Let i=minA. We know that If

X is a complete intersection surface of general type
of order n, then we have

¢/ (X) = ps;

and

Z(X):Z—Z(Sz,Jrsz,).

Consider
T.=P(d,d,,,d;,,d; -1d,---,d,,d, +1) Set
(x,y;) and (X,,Y,) the coordinates of

P(d,,d,,---,d,) and T, respectively. We obtain
P 2
-y, =—\S, +3s;
Yo=Y 24(2 S1)

—Pu (d,d, +d; —d, ~1)(s, +3s2—2d, +2d, +2)
24 rn i n 2 1 L n

= %[—Zdidn(dn —d; +1)+(d, —d; +1)(s,
+3s2—2d, +2d,+2)]
:%(dn —d, +1)(sz, +3s;—2d, +2d, +2—2didn)-
X=X = pslz' - p;,(did, +d; —d, _1)512’

= pinslz’(dn _di +1)

We get the following slope Oz(Ti P(dl,dz,---,dn))
s, +3s;—2d, +2d, +2-2d.d,
24s? '

Now, let us prove the inequality. We use induction
to do that.

o(TP(,.d,, .d,)) s% iff

The latter inequality is true because the
discriminant of its left hand side polynomial in i is

-8n+9<0.

Now, suppose (1) is true for 2<d, <d, <---<d|
such that d, =---=d.; =2 and that the following
holds 3<d, <d,, <---<d,.

Let
| =min{l' e{i,i+1---,n}|3<d, <---<d,, <d,

+1< dMS---Sdn}. Let us prove that (1) is also
verified for the following series of inequalities
2<d, <d,<---<d,, <d, +1<d,,, <---<d,..

If | =1 then we have

(1) true

s, +1+2d, <sf+2s, +1+2d,d, +2d,
<d —-1<s,+d ;becaused. <d,

<-1<s,

The last inequality is true by definition of S, .

If | =n then the inequality (1) is true

< s, +4d,—2d, +5<s7 +2s, +1+2d.d, +2d,
«d, +1<s,+d,

<1<s,—-d, +d,

The last  inequality is  true because
s —d, +d,22(n-2)+6=2n+2. If i=l=n then
n>3 and we have

(1) <s,+2d, +1+2d,-2d, +2<s; +2s, +1
+2d,d,
«<d <d,=s—-d, —n-3
<> d=n+3
k=l

The last  inequality is
> d.=2(n-1)+2=2n,

k=l

true because

To prove ¢/ (P) <c?(P,) <---<c/(R), note that

s,+2d —2d +2<s2+2dd . (1) o(P(d,. .+, d, 5,0, ~1.d, .+, d, 0, +DP(d,,
Ford, ==d,, =2 , d,=d,, =-=d, =3 @)  Oas0) >0
is equivalent to
i”+(—4n+9)i+4n’ -16n+18 > 0.
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Lemma 2.2 Consider an integer e R, N>2 and
P(d,d,---,d) be a pointinP,. Then the sequence of
slopes

(a(P(d,d,--,d)P(d +1L,d +1,---,d +1)),

converges to the number

3n+1
24n

Proof. From the fact that if X is a complete
intersection surface of general type of ordern , then

c/(X)=ps; and Z(X)zz—i(sz,+3sf7), we get

P(d,d,--,d) :(d"(nd —n—3)2;2—4(nd2—n—3
+3(nd —n —3)2)). And clearly
lim (a(P(d,d,--,d)P(d +1,d +1,---,d +1)),

~3n+1
24n

(2) It is easy to see that all points in Q, are above
the segment line [P(2,4)P(3,3)]. Let P(d,,d,) a
pointinQ, . Then
dl

2

P(d,.d,) = ((d, + d, —5)*d,d,; 42 (d2 +d2

_5+3(d1+d2_5)2)) Now P(dlldz) is above
[P(3, 3)P2) if and only if

d,d, ((d, - d,)* +10(d, + d,) —35) > 225.

The left hand side of the latter inequality attains its
minimum for (d;,d,)=(2,4) and the minimum is

225. By Lemma 2.2 we conclude that [P(S, 3)P2) is

the lower bound. For the upper bounds, from
computations we have

k? -2k +1
2(3k? — 9K + 4)

a(P2,k)P(2,k+1)) =

and

a(P2.k+1)P2.k+2))-a(P(2,k)P(2,k +1))

B —3k% —k +2
2(3k* -9k +4)(3k? -3k -2)
(a(P(Z, K)P(2,k Jrl)))k24 is then decreasing. It is
easy to see that

The sequence

kllrpwa(P(Z, K)P(2,k+1)) = %

Lemma 2.1 concludes that points P(2,k) form the

upper bound of the convex hullC, .
(3) Let P(d,,d,,d,) be apointinQ, . Then
P(d,,d,,d,) = ((dl +d, +d, —6)°d,d,d,;
%(dfm;m; ~6+3(d, +d, +d, —6)?)).
The point P(d,,d,,d,) is above [A33P3) if and only
if
(3 (67 + 7 +2) -9~ (4 +d, +d, ~6)°)
>192 (2)

The inequality (2) is true for (d,,d,,d,) =(2,2,3)
Jf2<d,<d,<d; and d; +d, +d; =8 then

(2) is true
3 2 2 2 1 2
<:E(d1+d2+d3)—9—5(d1+d2+d3—6) >16

<3(d? +d? +d2)+12(d, +d, +d,) > (d, +d, +d,)°* +86

The latter inequality is true  because
3(d} +d2 +d?)>(d, +d, +d,)? and also
12(d, +d, +d,)212-8=96 . By Lemma 2.2 we

conclude that [AfPS) is the lower bound. For the
upper bound, we have

2k? -2k +1

a(A<A<+1)=M'

Moreover
a(Af+lA<3+2 )) B a(AfAil))

B —4k? —6k +2
4(3k? -5k +)(3k* +k—1)

(a(AA))es s

Then the
decreasing. We have

sequence
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lim a(AfAf )_1 & 4(n-5)k+n*-11n+22>0.
+1/J T A
ko 6 We check that the latter inequality is true.
By lemma 2.1 we conclude that points P(2,2,k) Moreover, we have the following limit
give the upper bound. . 1
lim a(AA) =
(4) (a) Ki—+o0 6
We have

Lemma 2.1 permits to say that all points in Q, are

n_ 3 _ 2 2 n-1.
A _((k +2(n=5)k”+(n 10n+25)k)2 ’ below the line passing through A; whose slope is 1

2”34k (4k3 +6(n—-5)k* +(3n* —27n+ 68)k))- i.e the line whose equation is
Computations give 6y —Xx+(n°-9n+12)2"? =0.
a(A?A?u) _ 12k 4;12(”—4)k "‘3(”22—7” +14) . (b) Let P(d,,d,,---,d.) apointin Q,.
24(3k? + (4n—17)k +n> —8n +16)
P(d,.d,, -, d,) is above the half line [A/P.)
(i) If n=4 then & np(sz, +33f,) —(Bn+1)s;p—(2n*+3n-9)2" >0
a(AA°) = 2k22+1 | & p(ns, —s2) = (2n? +3n-9)2"
4(3k* —k) < ns, —n(n+3) >s? —2(n+3)s, +3n* +9n
We get < 2(n+3)s, > 4n*+12n
T (e e S

A(3k? +5k +2)(3k* —k) . o
The latter inequality is true. By Lemma 2.2 we
conclude that [A;1 Pn) is the lower bound.

Then (a( A*A? is decreasing and tending to
( (A(A<+l))k g g 3 Proof of Theorem 1.3

1
g . Lemma 2.1 concludes. From Theorem 1.2, we see that for a fixed integer
N, the lower bound of C, is a line with slope
(i) If N=5 then
, 3n+1
K +k+1 :
5A5 ) — 24n
a = :
(A4.) 2(3k* +3k +1) , o _ ,
Besides, all points in P have their X — coordinate
We get a(AilAiz)_a(Afpfﬂ) and Y- coordinate greater than those of P(5)
-4k +1 = A
(3% + 9K (7)(3k)2 K +1) Then (5:8).
+9k + +3K +
1 lim 3n+1l 1
(a(A°A ), is decreasing and tending tog. By oo 24n 8’
Lemma 2.1, we get the result. the lower bound of P is given by the line of slope
1
1 = .
(i) Forn>6, we prove that a(AilAi]+l)S€' n g passing through P(5) . That concludes that
fact Lp(s)0, defines the lower bound. Let us prove now the
upper bound.
a(AA") < 1 ™
AAG) < 6 Lemma 3.1. Let eR N>2, by, b, ...,b, e R such
12k* +12(n—4)k +3(n* ~7n+14) _1 that — for —al - Ac{l2enp o with
<= -n-— >
2432+ (4n—17)k+n> —8n+16) 6 [Al=n 1'§bn 2n+3.If
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b7 +b +---+b*>—n-3< (b +b, +---+b —Nn-3)°
then

df+d?+---+d’-n-3<(d, +d, +---+d_—n-3)
forall i €{L,2,---,nN} andne R such that d, >Db..

Proof. Let d,d, ..., d, e R such that d, >b, for all
ie{l,2,---,n} and set k =d.—b. We have
b2 +bZ +---+b* + (0 +k)*+b’, +---+b>—n-3
=07 +b% +---+b> —n—3+2k b +k’
<(b,+b, +---+b —n-3)* + 2k b +k?
<(b,+b, +---+b, —n—-3)* +2k (b, +b, +---
+b —n—-3)+k?
<@ +b,+---+b_ +d +b  +---+b —n-3)°

Applying the same reasoning consecutively n
times with distinct | we obtain

d?+d>+---+d?’-n-3<(d, +d, +---+d —n-3)°.

We will now prove that for allneR ; n=>2 ,
deR;d>5, for all d;d,..,d,eR such that

Zn:di >n+3,

i=1

P(n;d,,d,,---,d ) € P is below Lo,o,.-

2<d, <d,<d;<---<d, and

A point P(n;d,,---,d.) is below the line Lo,o,, If
and only if

[ (3% 130 +9)s, ~3(d” +d -1)s7 |-
(2d*-6d°*+13d*—75d +54) <O0.

We will use Lemma 3.1 to prove the cases N>6
and Lemma 2.1 to check the case n=2,3,4,5. Now,

letus set f (d;d,,---,d.) to be the following function
p 2 2 2
2a| (347 -13d +9)s, ~3(d” +d -1)s]

—(2d4—6d3+13d2 —75d +54).

Moreover

22 42% 4422 -n-3<(2+2+---+2-n-3)°.

n times n times

The conditions of Lemma 3.1 are satisfied for
b =b,=---=b =2 Thus s,<s. . Then

f (d;d,,d,,--,d )<O0.

Case N =7 We get the following inequality

2?42 4+2° +2° 422 +2°+3F -7-3=23<25=
(242+2+2+2+2+3-7-3)°

and the conditions of Lemma 3.1 are satisfied for

b =b,=b,=b,=b,=b,=2,b, =3.

Then

df +d>+d?+d? +dZ+d?+d>-7-3
<(d,+d,+d,+d, +d, +d, +d, —7-3)* for all
d,d,,---,ds>2,d,>3. It is easy to check that

f,(d;2,...,2) =—2d* +6d° +179d° —8949d + 6666
<0.

Casen =6: We have

2242242242243 +32-6-3=(2+2+2+2
+3+3-6-3)°

22422422422+ +4°—6-3<(2+2+2+2
+3+4-6-3)°

22422 +2° 42 +2°+5°—6-3<(2+2+2+2
+2+5-6-3)°

By Lemma 3.1, we come to the conclusion that
d/ +d}+d?+d? +dZ +d? -6-3<(d,+d, +d, +d,
+d; +d, —6-3)

holds for all (d,,d,,d,,d,,d;,d;) such that
d,d,,d;,d,>2 and d;>3

and d,>3 or d;>2 and d,=5. 1t is

easy to verify that f¢(d;d,d,,d;,d,,d;,d;)<0

We need to prove that f (d;d,,---,d,) is negative. when
Case N >8: We first notice that ford >5, we have (dl’ d2’d3’ d4’ d5’ d6) e{(2, 2,2,2,2,2),(2,2,2,2,2,3),
0<3d?—13d +9<3(d? +d —1) (222,224}

Case n=5: By theorem 1.2(2), we only need to
check f.(d;d,,d,,d,,d,,d;) <0 for

and

2d* —6d°®+13d% —75d +54 > 0.
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(d_1,d_2,d_3d_4,d_5) = (22 2 2 k)

with K>2 and d>5.

Founding the same argumentation and seeing that
f,(d;2,2,2,k) =—2d* +6d°* + (12k?* + 24k —13)d?

+(=32k® +12k* —136k + 75)d + 24k* —12k* + 96k

54 <0,

It is easy to see that
f.(d;2,2,2,2,k) =—2d* +6d° +(96k —13)d*
+(—64k3 —416k + 75)d +48k® +288k —54 < 0.

c?(X) <84(X)-35,

c/(X)z5 x(X)z5

19 65
== (X)) ==<c?(X).
6}(( ) 5 + (X)
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Corollary 3.1 If X is a complete intersection

surface of general type, then
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