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Abstract. In this paper, we discuss the deficiency 
index problem for the product differential operators which 
are generated by a general ordinary quasi-differential 
expressions ��, ��, … , ��  each of order �  with complex 
coefficients in the direct sum ⨁�	�
 ��� ��	�  of spaces of
functions defined on each of the separate intervals in the 
cases of regular and singular end-points. The domains of 
these operators are described in terms of boundary 
conditions featuring ��� -solutions of the differential 
equations. These results extend those of formally 
symmetric expression �  studied in [1, 2], [8 - 11] and 
[14,17], and those of general quasi-differential expressions � in [3, 4, 7].
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I.  INTRODUCTION 

    The deficiency index problem for ordinary differential 
operators, at least in the form that we now identity it, goes 
back to Hermann Weyl [15] around 1910, although in one 
guise or another it is present in investigations of self-adjoint 
boundary value problems going back a good deal longer. 
The operators which fulfill the role that the self-adjoint and 
maximal symmetric operators play in the case of a formally 
symmetric expression � are those which are regularly 
solvable with respect to the minimal operators ��(�) and ��(��) generated by a general ordinary quasi-differential
expression � and its formal adjoint �� respectively, the 
minimal operators ��(�)  and ��(��) form an adjoint pair
of closed, densely-defined operators in the underlying ��� -
space, that is ��(�) ⊂ [��(��)	]∗. Such an operator �
satisfies ��(�) ⊂ � ⊂ [��(��)	]∗ and for some �	 	ℂ, (� −�#) is a Fredholm operator of zero index, this means that � 
has the desirable Fredholm property that the equation (� − �#)$ = & has a solution if and only if & is orthogonal 
to the solution space of (� − �#)$ = 0 and furthermore the 
solution space of (� − �#)$ = 0 and �∗ − �#�( = 0  have 
the same finite dimension. This notion was originally due to 
Visik [13]. 

    The AGN (Akhiezer, Glazman and Naimark) [1,11] 
characterized all self-adjoint realizations of linear 
symmetric (formally self-adjoint) ordinary differential 
equations in terms of maximal domain functions. These 
functions depend on the coefficients and this dependence is 
implicit and complicated. In the regular case an explicit 
characterization in terms of two-point boundary conditions 
can be given. In the singular case when the deficiency index ) is maximal. The characterization can be made more 

explicit by replacing the maximal domain functions by a 
solutions basis for any real or complex value of the spectral 
parameter �. In 1986 Sun [9] found a representation of the 
self-adjoint singular conditions in terms of certain solutions 
for non real values of �. This leads to a classification of 
solutions as limit-point (�*) or limit-circle (�+) in analogy 
with the celebrated Weyl classification in the second-order 
case. The �+ solutions contribute to the singular boundary 
conditions, the �* solutions do not. In [4, 7] Evans and 
Ibrahim extend their results for a general ordinary quasi-
differential expression � of ,-th order with complex 
coefficients in the singular case. 

In [5, 17] Everitt and Zettl considered the problem of 
integrable square solutions of products of differential 
expressions �-, ��, … , �.	and investigate the relation ship 
between the deficiency indices of general symmetric 
differential expressions �-, ��, … , �.	and those of the 
product expression ∏ �0.0	-  and in [8] Ibrahim considered
the problem of the product self-adjoint Sturm-Liouville 
differential operators in direct sum spaces.  

      Our objective in this paper is to discuss the deficiency 
index problem for the product differential operators ∏ ��	�0�	.0	-  in the direct sum ⨁1	-2 ��� #1	� of spaces of
functions defined on each of the separate intervals in the 
cases of regular and singular end-points. The domains of 
these operators are described in terms of boundary 
conditions featuring ��� -solutions of the equation3∏ �01.0	- − �45$ = 0 and the adjoint equation 3∏ �01�.0	- −�45( = 0  (�	 	ℂ). These boundary conditions involve �01
expression on any finite number of intervals #1, 6 =1,2, … , 9. 
      We shall not attempt to prove some results in detail 
since the proofs tend to be rather technically complicated 
and are in analogue to those in [3, 4] and [7].  

      We deal throughout this paper with a quasi-differential 
expression � of arbitrary order	, with complex coefficients 
defined by Shin-Zettl matrices [4,7,17], and the minimal 
operator ��(�) generated by 4;-	�[. ] in ��� (#),	 where 4 is
a positive weight function on the underlying interval # = (<, =). The end-points < and = of # may be regular or 
singular end-points.   

II. NOTATION AND PRELIMINARIES

    We begin with a brief survey of adjoint pairs of operators 
and their associated regularly solvable operators; a full 
treatment may be found in [3, Chapter III], [4], [7-9], [11] 
and [17]. The domain and range of a linear operator � 
acting in a Hilbert space > will be denoted by ?(�) and @(�) respectively and 9(�) will denote its null space. The 
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nullity of �, written ,$A	(�), is the dimension of 9(�) and 
the deficiency of �, written )B&(�), is the co-dimension of @(�) in >; thus if � is densely defined and @(�) is closed , 
then )B&(�) 	= ,$A(�∗). The Fredholm domain of � is (in 
the notation of [3]) the open subset ∆D(�) of  ℂ 	consisting 
of those values of  �	 	ℂ  which are such that (� − �#) is a 
Fredholm operator, where # is the identity operator in >. 
Thus  �	 	∆D(�)   if and only if  (� − �#) has closed range
and finite nullity and deficiency. The index of (� − �#)	is 
the number		E,)(� − �#) = ,$A	(� − �#) − )B&	(� − �#), 
this being defined for �	 	∆D(�).
    Two closed densely defined operators F and G acting in a 
Hilbert space > are said to form an adjoint pair if  F ⊂ G∗ 
and, consequently, G ⊂ F∗  ; equivalently , (FH, I) =(H, GI) for all H	 	?(F) and 	I	 	?(G), where (. , . )		denotes the inner-product on >. 
Definition 2.1: The field of regularity Π(F) of F is the set 
of all  �	 	ℂ for which there exists a positive constant K(�) 
such that 
    ‖(F − �#)H‖ ≥ K(�)‖H‖  for all H	 	?(F),               (2.1)                             
or, equivalently, on using the Closed Graph Theorem, ,$A	(F − �#) = 0 and @(F − �#)	is closed.  

 The joint field of regularity Π(F, G) of F and G is the set 
of  �	 	ℂ  which are such that �	 	Π(F),   �	 	Π(G) and both )B &(F − �#)	and )B &G − �#�	are finite. An adjoint pair F and G is said to be compatible if  Π(F, G) ≠ O. 
Definition 2.2: A closed operator � in > is said to be 
regularly solvable with respect to the compatible adjoint 
pair of F and G if F ⊂ � ⊂ G∗ and Π(F, G) ∩ ∆Q(�) ≠ O,
where ∆Q(�) = R�: �	 	∆D(�), E,)	(� − �#) = 0T.
    Given two operators F and G both acting in a Hilbert 
space >, we wish to consider the product operator FG. This 
is defined as follows 

 ?(FG) = RH	 	?(G)	|	GH	 	?(F)T			and	
      (FG)H = F(GH)	&YZ	<AA	H		 	?(FG).		                    (2.2) 
It may be happen in general that ?(FG) contains only the 
null element of >. However, in the case of many 
differential operators the domains of the product will be 
dense in > . 

 The next result gives conditions under which the 
deficiency of a product is the sum of the deficiencies of the 
factors. It is a generalization of that in [8, Theorem A] and 
[16]. 
Lemma 2.3 (cf. [8, Lemma 2.3]). Let F and G be closed 
operators with dense domains in a Hilbert space >. Suppose 
that �	 	Π(F, G).	 Then FG is a closed operator with dense 
domain and 
  )B &(FG − �#) 	= )B &(F − �#) + 	)B &G − �#�.						(2.3)                                              
Evidently Lemma 2.3 extends to the product of any finite 
number of operators F-, F�, …,	 F.	. 

III. Quasi-differential expressions in direct sum spaces

    The quasi-differential expressions are defined in terms of 
a Shin-Zettl matrix \1 on an interval #1. The set ].(#1) of 
Shin-Zettl matrices on #1 	consists of , × ,-matrices \1 = _&̀ a1b, 6 = 1,2, … , 9, whose entries are complex-
valued functions on #1 which satisfy the following 
conditions: &̀ a1 	 	�cde	� #1�,	    (1 ≤ Z, g ≤ ,, , ≥ 2)

&̀ ,`�-1 ≠ 0,	 a. e., on #1 (1 ≤ Z ≤ , − 1)  (3.1) &̀ a1 = 0,		a. e., on #1 , 	(2 ≤ Z + 1 < g ≤ ,),  6 = 1,… , 9.
    For \1	 	].(#1), the quasi-derivatives associated with  \1 
are defined by :  

 I[�] ∶= I,	I[`] ∶=	 (&̀ ,`�-1 );-	jI[`;-]�k −∑ &̀ a1à	- I[a;-]m,       (3.2)

 (1 ≤ Z ≤ , − 1) I[.] ∶= 	 jI[.;-]�k −∑ &̀ a1.a	- I[a;-]m	,
where the prime ′ denotes differentiation. 
    The quasi-differential expression �1 associated with \1 is 
given by: �1[. ] ≔ 	 E.I[.]	,				(, ≥ 2),  (3.3) 
this being defined on the set : p�1� ≔ _I:	I[`;-]	 	F+cde#1�, Z = 1,2, … , ,	b,	6 = 1,2, … , 9,	where F+cde#1�,	 denotes the set of  
functions which are absolutely continuous on every 
compact   subinterval of #1. 

The formal adjoint �1� of �1 is defined by the matrix   \1�
given by:   �1�[. ] 		≔ 	 E.I�[.]	,	for all  I	 	p�1��,  (3.4) p�1�� ≔ jI:	I�[`;-]	 	F+cde#1�, Z = 1,2, … , ,m,6 = 1,2, … , 9,	where I�[`;-], the quasi-derivatives
associated with the matrix \1� in ].(#1),\1� =	 (&̀ a1)�	 = (−1)`�a�-	&.̅;a�-,.;`�-1 ,	  (3.5) 
for each Z and g . 
Note that:  (\1�)� =	\1  and so (�1�)� =	 �1	. We refer to
[3], [4], [7], [11] and [17] for a full account of the above 
and subsequent results on quasi-differential expressions. 

For $		 	p�1� , (		 	p�1�� and  r, s		 	#1 , we have
Green,s formula, t j(�1[$] − $	�1�[(]m	uv	wv )H =	[$, (]	=1� − [$, (]	<1�, 6 = 1,2, … , 9,  (3.6) 
where,    [$, (](H) =  E. x∑ (−1)`�a�-	$[`](H)	(�[.;`;-]	(H).;-`	� y 

= (−E).$, $[-], … , $[.;-]	� ×	 	z.×. 	{ (⋮(�[.;-]}(H);    (3.7)

where z.×. = ((−1)`	�`,.;a�-	)-�`,a�. is the non-singular
matrix, see [1, 3, 4, 7] and [9, 11, 17]. Let the interval #1 
have end-points 	<1,		=1	−∞ ≤ 	<1 < 	=1 ≤ ∞	�, and let 	41 ∶ 	#1 → ℝ	be a non-negative weight function with 	41 	 	�cde- (	#1)	and 	41 > 0 (for almost all H		 	#1	). Then>1 = �	�v� (	#1)	denotes the Hilbert function space of

equivalence classes of Lebesgue measurable functions\ 
such that t	�v 	41|&|� < ∞ ; the inner-product is defined by:(&, �)1 ≔ t	�v41&(H)�(H))H			 (&, �	 	�	�v� #1�.							(3.8)	6 = 1,2, … , 9). 
The equation  �1[$] − �41$ = 0			(	�	 	ℂ	)		on #1 , 	6 = 1,2, … , 9   (3.9)
is said to be regular at the left end-point 	<1 	 	ℝ, if for all �	  (	<1 , 	=1)	,  <1	 	ℝ, 	41 	, &̀ a1 		 	�-	<1 , ��,		  Z, g = 1,2, … , ,;6 = 1,2, … , 9	, otherwise (3.9) is said to be singular at 	<1. 
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If (3.9) is regular at both end-points, then it is said to be 
regular; in this case we have, <1, 	=1 		 	ℝ, 	41	, &̀ a1 		 	�-	<1, 	=1�, Z, g = 1,2,… , ,;	6 = 1,2, … , 9	. 

 We shall be concerned with the case when 	<1 is a 
regular end-point of (3.9), the end-point 	=1	being allowed 
to be either regular or singular. Note that, in view of (3.5), 
an end-point of 	#1 is regular for (3.9), if and only if it is 
regular for the equation, �1�[(] − �41( = 0		(	�	 	ℂ)	 on		#1 ,	 6 = 1,2, … , 9. (3.10)                                    

 Note that, at a regular end-point 	<1, say ,  $[`;-]	<1��(�[`;-](	<1)�,		Z = 1,2, … , , is defined for all$		 	p�1� �(		 	p�1���. Set:

�
?�1� 		≔ 	 R$:	$		 	p�1�,	$	<,)	41;-	�1[$]	 	�	�v� 	<1, 	=1�T?�1�� 		≔ 	 R(:	(		 	p�1��,	(	<,)	41;-	�1�[(]	 	�	�v� 	<1 , 	=1�T ���

��
. (3.11) 

The subspaces ?�1� and ?�1�� of �	�v� 	<1, 	=1� are

domains of the so-called maximal operators ��1�	and ��1��  respectively, defined by:��1�	$ ∶= 41;-�1[$]	,	 ($		 	?(�1))  and��1��	( ∶= 41;-�1�[(]	,	 ((		 	?(�1�)).
      For the regular problem the minimal operators ���1� 
and ���1��, 6 = 1,2, … , 9 are the restrictions of 41;-	�1[$]
and 41;-	�1�[(] to the subspaces:

	�
?��1� 	≔ 	 R	$:	$		 	?�1�,		 	$[`;-]	<1� = $[`;-]	=1� = 0, 6 = 1,2, … , 9T,?��1�� ≔ 	 R	(:	(		 	?�1��,	 	(�[`;-]	<1� = (�[`;-]	=1� = 0,			6 = 1,2, … , 9T���

��
,(3.12) 

respectively. The subspaces ?��1� and ?��1�� are dense
in �	�v� 	<1, 	=1�	and ���1� and ���1�� are closed

operators  (see [3], [4], [7] and [17, Section 3]). 
    In the singular problem we first introduce the operators ��′ �1� and ��′ �1��;		��′ �1� being the restriction of41;-�1[. ] to the subspace:

 ?�′ �1� 	≔ R	$:	$		 	?�1�, g$66	($) 	⊂ 	<1 , 	=1�,					6 = 1,2, … , 9T		(3.13)
and with ��′ �1�� defined similarly. These operators are
densely-defined and closable in �	�v� 	<1, 	=1�; and we

define the minimal operators ���1� and ���1�� to be their
respective closures (see [3], [4], [7], [10,11] and [17]). We 
denote the domains of ���1� and ���1�� by ?��1�	 and?��1�� respectively. It can be shown that:

 �$		 	?��1� 		⟹ 		 $[`;-]	<1� = 0, Z = 1,2, … , ,,	(		 	?��1�� 		⟹ 		 (�[`;-]	<1� = 0, Z = 1,2, … , ,,�	 (3.14) 

6 = 1,… , 9, because we are assuming that	<1 is a regular 
end-point. Moreover, in both regular and singular problems, 
we have  ��∗�1� = ��1��,     ��∗�1� = ���1��,		                  (3.15)6 = 1,2, … , 9	;	see [17, Section 5] in the case when �1 = �1� and compare with treatment in [3, Section III.10.3]
and [4] in general case. 

    In the case of two singular end-points, the problem on <1 , 	=1� is effectively reduced to the problems with one 
singular end-point on the intervals	(<1 , 	�1]		and	[�1, 	=1), 
where 	�1	 		<1, 	=1�. We denote by ��1; 	<1� and ��1; 	=1� the maximal operators with domains ?�1; 	<1�	and ?�1; 	=1�	and denote ���1; 	<1� and ���1; 	=1� the closures of the operators ��′ �1; 	<1� and ��′ �1; 	=1�	defined by: 

 ?�′ �1; . � 	≔  { $:	$		 	?�1; . �, g$66	($) 	⊂ 	<1 , 	=1�,	 6 = 1,2, … , 9T     (3.16)
on the intervals	(<1, 	�1]	and	[�1, 	=1) respectively, see ([3], 
[4], [7], [10,11] and [17]). 

Let  ��′� �1�, 6 = 1,2, … , 9	, be the orthogonal sum as:��′� �1� = ��′ �1; 	<1� ⨁ ��′ �1; 	=1� in�	�v� 	<1 , 	=1� = �	�v� 	<1 , 	�1�⨁�	�v� 	�1, 	=1�,6 = 1,2, … , 9	, ��′� �1�  is densely-defined and closable in�	�v� 	<1 , 	=1� and its closure is given by:��� �1� = ���1; 	<1� ⨁ ���1; 	=1�,	  6 = 1,2, … , 9	.	
Also, ,$A3��� �1� − �#5 =  ,$A3���1; 	<1� − �#5

 +		,$A3���1; 	=1� − �#5, )B&3��� �1� − �#5 	=  )B&3���1; 	<1� − �#5	
        +		)B&[���1; 	=1� − �#] 

and [@3��� �1� − �#5 is closed if and only if@3���1; 	<1� − �#5	and @3���1; 	=1� − �#5 are both 
closed. These results imply in particular that, Π3��� �1�5 = Π3���1; 	<1�5 ∩ Π3���1; 	=1�5,		6 = 1,2, … , 9.  
We refer to [3, Section 3.10.14], [4] and [7] for more 
details. 
Remark 3.1: If  �1	wv is  a regularly solvable extension of���1; 	<1�	and �1	uv  is a regularly solvable extension of���1; 	=1�, then  � = ⨁1	-2 (�1	wv⨁�1	uv)  is a regularly

solvable extension of  ��� (�). We refer to [3], [4, 7] and [17]
for more details. 
    Next, we state the following results; the proof is similar 
to that in [3, Section 3.10.4], [4] and [7]. 
Theorem 3.2:  ��� �1� ⊂ ���1�,	 ��1� ⊂ ���1; 	<1� ⨁ ���1; 	=1�
and dim?[���1�]/?[��� �1�]� = ,,				 6 = 1,2, … , 9	.
If  �	 	Π3��� �1�5⋂∆D[	���1� − �#] , then

 E,)3���1� − �#5 	= , − )B&3���1; 	<1� − �#5 
        −		)B&[���1; 	=1� − �#], 

and in particular, if  �	 	Π3���1�5 ,   
 )B&3���1� − �#5 	= )B&3���1; 	<1� − �#5 

        +		)B&3���1; 	=1� − �#5 − ,. 
Remark 3.3: It can be shown that 

�
?[��� �1�] 	≔ 	 R$:		$		 	?[���1�],		 	$[`;-]	�1� = 0, 6 = 1,2, … , 9T?3��� �1��5 ≔ 	 R(:	(		 	?3���1��5,	(�[`;-]	�1� = 0,			6 = 1,2, … , 9T���

�� ;   (3.17) 

see [3, Section 3.10.4]. 
 Let > be the direct sum, 
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> = ⨁1	-2 	>1 = ⨁1	-2 	�	�v� 	<1, 	=1�	.
The elements of > will be denoted by &� = R&-, &�, … , &2T
with	&-	 		>-, &�	 		>�	, … , &2	 		>2 .  
Remark 3.4: When 	#� ∩ #0 = ∅, E ≠ �	; 		E, � = 1,2, … , 9, 
the direct sum space		⨁1	-2 	�	�v� <1, 	=1� can be naturally

identified with the space ��� ∪1	-2 #1�, where 41 = 4 on#1 	, 6 = 1,2, … , 9. This remark is of significance 

when	∪1	-2 #1�, may be taken as a single interval ( see [3]
and [4] ). 
      We now establish by [4] and [6 - 8] some further 
notations, � 	?�(�) 		=	⊕1	-2 	?��1�, ?(�) 			= 	⊕1	-2 ?�1�	,	?�(��) =	⊕1	-2 	?��1��, ?(��) = 	⊕1	-2 ?�1��	�,	 (3.18) 

	��(�)&		 = R	��(�-)&-, 	��(��)&�, … , 	��(�2)&2T;&-	 	?�(�-), &�	 	?�(��), … , &2	 	?�(�2),	��(��)� = R	��(�-�)�-, 	��(���)��, … , ��(�2�)�2T;�-	 	?�(�-�), ��	 	?�(���), … , �2 	 	?�(�2�).
Also, �(�)&				 = R�(�-)&-, �(��)&�, … , �(�2)&2T;&-	 	?(�-), &�	 	?(��), … , &2	 ?(�2),	�(��)�		 = R�(�-�)�-, �(���)��, … , �(�2�)�2T;�-	 	?(�-�), ��	 	?(���), … , �2 	 	?(�2�)	.
We summarize a few additional properties of ��(�) in the
form of a Lemma.  
Lemma 3.5: We have, 
(i)     [��(�)]∗ 				= 	⊕1	-2 [���1�]∗ =	⊕1	-2 3��1��5,		[��(��)]∗ 	= 	⊕1	-2 [���1��]∗ =	⊕1	-2 3��1�5.	
In particular,  ?[��(�)]∗ 						= ?[�(��)]	  =	⊕1	-2 3��1��5,?[��(��)]∗ 				= ?[�(�)]			   =	⊕1	-2 3��1�5.
(ii)    ,$A[��(�) − �#]	 = ∑ ,$A3���1� − �#521	- , 	,$A3��(��) − �#5	 = ∑ ,$A3���1�� − �#5.21	-
(iii)   The deficiency indices of ��(�) are given by:)B&[��(�) − �#]   = ∑ )B&3���1� − �#521	-  for all �	 	Π3���1�5, )B&3��(��) − �#5	  = ∑ )B&3���1�� − �#5	21	-  for 
all �	 	Π3���1��5.
Proof:  Part (a) follows immediately from the definition of ��(�)	and from the general definition of an adjoint operator.
The other parts are either direct consequences of part (a) or 
follow immediately from the definitions. 
Lemma 3.6:  For �	 	Π[��(�), ��(��)],)B&[��(�) − �#] + 	)B&3��(��) − �#5		is constant and0 ≤ )B&[��(�) − �#]  +		)B&3��(��) − �#5 ≤ 2,9	.
In the problem with one singular end-point, ,9 ≤ )B&[��(�) − �#]  +		)B&3��(��) − �#5 ≤ 2,9,
for all �	 	Π[��(�), ��(��)]	.
In the regular problem, )B&[��(�) − �#]  +		)B&3��(��) − �#5 = 2,9,
for all �	 	Π[��(�), ��(��)]	.
Proof: The proof is similar to that in [4], [6] and [8], and 
therefore omitted. 
Lemma 3.7: Let 	��(�) = 	⊕1	-2 ���1� be a closed
densely-defined operator on >. Then, Π[	��(�)] =∩1	-2 [���1�]

Proof: The proof  follows from Lemma 3.5 and since @[	��(�) − �#] is closed if and only if @3���1� − �#5,6 = 1,2, … , 9	are closed. 

Remark 3.8: If  �1	wv , 6 = 1,2, … , 9 is a regularly solvable

extension of ���1; 	<1� is a regularly solvable extension 

of		�1	uv then ���1; 	=1� is regularly solvable extension of� = ⨁1	-2 (�1	wv⨁�1	uv).  We refer to [3], [4], [6], [7], [10,
11] and [17] for more details.

IV. The product operators in direct sum spaces

    The proof of general theorems will be based on the 
results in this section. We start by listing some properties 
and results of quasi-differential expressions �-, ��, … , �.. 
For proofs the reader is referred to [5], [8] and [16]. (�- + ��)� = �-� +	���(�-��)� 					= ���	�-�,			(��)� = �̅��		                        (4.1)
for � a complex number .       
    A consequence of Properties (4.1) is that if τ� = τ 
then	(*(�))� = *(��) for * any polynomial with complex 
coefficients. Also we note that the leading coefficients of a 
product is the product of the leading coefficients. Hence the 
product of regular differential expressions is regular. 
Lemma 4.1: (cf. [8]). Suppose τ� is a regular differential 
expression on the interval [<, =] and �	 	Π[��(�-	�� …	�.), ��(�-	�� …	�.)�], then we have,
(i) The product operator ∏0	-. ��(τ�)	is closed, densely-

defined, and )B&3∏0	-. ��(τ�) 	− �#5	 = ∑ )B&3���0� − �#5.0	- , )B&3∏0	-. ���0��– �#5	  = ∑ )B&3���0�� − �#5.0	-  . 

(ii)  ��(�-	�� …	�.) 		⊆ 	∏0	-. [��(τ�)]	 and��(�-	�� …	�.)� ⊆ 	∏0	-. [��(�0�)]	.	
Note in part (ii) that the containment may be proper, i.e., 
the operators ��(�-	�� …	�.)	and ∏0	-. [��(τ�)]	  are not
equal in general. 
Lemma 4.2: Let τ-, τ�, … , τ¡ be a regular differential 
expressions on	[<, =) and  suppose that  �	 	Π[��(�-	�� …	�.), ��(�-	�� …	�.)�]. Then	[��(�-	�� 	…	�.)] = ∏ 	[��(�0)]	.0	- ,  (4.2) 
if and only if the following partial separation conditions 
is satisfied:  

 �
&	 	��� (<, =), &[a;-]	 	F+cde[<, =), where	s	is	the	order	of		product	expression	(τ-	τ� 	…	τ¡)	and	(�-	�� 	…	�.)�& 	��� (<, =)	together	imply	that	(∏ �0��)&	 	��� (<, =),			± = 1,… . , , − 1	.	²0	- ���

��
.  (4.3) 

Furthermore, ��(�-	�� …	�.) 		= 	∏0	-. [��(τ�)]	 and��(�-	�� …	�.)� = 	∏0	-. [��(�0�)],	
if and only if , )B&[��(�-	�� …	�.) 	− �#]	 				= ∑ )B&3���0� − �#5.0	- ,	)B&3��(�-	�� …	�.)� 	− �#5  	= ∑ )B&3���0�� − �#5.0	- . 
    We will say that the product τ-, τ�, … , τ¡ is partially 
separated expressions in 	��� (<, =)	whenever Property (4.3)
holds. 
Lemma 4.3:  For  �	 	Π[��(�-	�� …	�.), ��(�-	�� …	�.)�],
we have  
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Π[��(�-	�� …	�.), ��(�-	�� …	�.)�] =Π3∏ 	[��(�0)]	,.0	- ∏0	-. [��(�0�)]5.        (4.4)
Proof: Let		�	 	Π[��(�-	�� …	�.), ��(�-	�� …	�.)�], then
from definition of the field of regularity we have �	 	Π[��(�-	�� …	�.)] and	�³		 	Π[��(�-	�� …	�.)�],	 E. B.,
each  of the operators ��(�-	�� …	�.) and ��(�-	�� …	�.)�
has closed range and densely-defined on > with finite 
deficiency indices. Consequently  by Lemma 4.2 each of 
the operators 3∏0	-. ��(τ�) 	− �#5	and 3∏0	-. ��(�0�) − �#5	has closed range and their deficiency indices are finite, i.e., 	�	 	Π3∏ [��(�0)]	,.0	- ∏0	-. [��(�0�)]5.	 The rest of the proof
follows from definition and Lemma 4.2. 
Corollary 4.4: Let �0		is a regular differential expressions 
on [<, =) for � = 1,2, … , , If all solutions of the differential 
equation (�0	– �#)$ = 0 and (�0�– �#)( = 0 on [<, =) are in��� (<, =) for � = 1,2, … , , and �	  ℂ; then all solutions of[∏0	-. �0	– �#]$ = 0 and (∏0	-. �0�– �#)( = 0 on [<, =) are in��� (<, =)	for all �	  ℂ .
Proof: Let n = ,0	 = order of �0	 =	order of �0� for � =1,2, … , ,. Then by Lemma 3.5, we have )B&[��(�) − �#] = 	)B&3��(��) − �#5 = ,
for all �	 	Π[��(�), ��(��)]. Hence, by Lemma 4.1, we
have      )B&[��(�-	�� …	�.)� 	− �#]  = )B&3∏0	-. ��(�0�) 	− �#5	= ∑ ,0	 = ,�.0	- =  order of  (�-	�� …	�.)

=  order of  (�-	�� …	�.)�	.
Thus 	)B&[��(�.	� …	��	�	�-	�	) 	− �#] = order of(�-	�� …	�.)�	and consequently all solutions of the
equations [∏0	-. �0	– �#]$ = 0 and [∏0	-. �0�– �#]( = 0 are
in ��� (<, =).	Repeating this argument with �0	� replaced by�0	, we conclude that all solutions of (∏0	-. �0�– �#)( = 0 are
in ��� (<, =).
    The special case of Corollary 4.4 when �0	 = � for � = 1,2, … , , and � is symmetric was established in [5]. In 
this case it is easy to see that the converse also holds. If all 
solutions of (�.– �#)$ = 0 are in ��� (<, =), then all
solutions of (�– �#)$ = 0 must be in ��� (<, =). In general, if
all solutions of [(�-	�� …	�.) − �#]$ = 0 are in��� (<, =),	then all solutions of (�.– �#)$ = 0 are in��� (<, =) since these are also solutions of [(�-	�� …	�.) −�#]$ = 0. If all solutions of the adjoint equation [(�-	�� …	�.)� 	− �#]( = 0 are also in ��� (<, =), then it
follows similarly that all solutions of (�0�– �#)( = 0 are in��� (<, =).

 Next, we consider our interval is # = [<, =] and denote by ��(�-	�� …	�.) and �(�-	�� …	�.) the minimal and
maximal operators. We see from (3.15) and Lemma 4.2 
that	 ��(�-	�� …	�.) ⊂ �(�-	�� …	�.) ⊂ [��(�-	�� …	�.)�]∗		
and hence ��(�-	�� …	�.) and ��(�-	�� …	�.)� form an
adjoint pair of closed densely defined operators in ��� (<, =).
From Lemmas 3.5 and 4.1 we have the following: 
Lemma 4.5:  For �	 	Π3∏ 	[��(�0)]	,.0	- ∏0	-. [��(�0�)]5 we
have 
(i) 	[∏ ��∗�0�] 	= 	 	⊕1	-2 3∏ ��∗�01�.0	- 5	.0	- =	 	⊕1	-2 3∏ 		��01� �.0	- 5, 

[∏ ��∗�0��] = 	⊕1	-2 	 3∏ ��∗�01� �.0	- 5	.0	- 	=		⊕1	-2 	 3∏ 		��01�.0	- 5. (EE)     ,$A[∏ 	���0� − �#]	.0	- =	∑ ,$A3∏ 	���01�.0	- − �#521	-		= ∑ (21	- ∑ ,$A.0	- 3	���01� − �#5),,$A[∏ 	���0�� − �#]	.0	- 	= ∑ ,$A3∏ 	���01� � − �#.0	- 521	-  		= ∑ (21	- ∑ ,$A	[	���01� � − �#].0	- ).

(iii) The deficiency indices of  ∏ 	���0�.0	-  and∏ 	���0��		.0	- are given by: 	)B&[∏ 	���0� − �#]	.0	- = ∑ )B&3∏ 	���01� − �#.0	- 521	-  = ∑ (21	- ∑ )B&.0	- 3	���01� − �#5), )B&[∏ 	���0�� − �#]	.0	- 	= ∑ )B&3∏ 	���01� � − �#.0	- 521	-	= ∑ (21	- ∑ )B&.0	- [	���01� � − �#]).
Lemma 4.6:  For �	 	Π3∏ 	[��(�0)]	,.0	- ∏0	-. [��(�0�)]5,)B&3∏ 	[��(�0)]	.0	- − �#5	 +	)B&3∏0	-. [��(�0�)] − �#5
is  constant and 0 ≤ )B&3∏ 	[��(�0)]	.0	- − �#5+	)B&3∏0	-. [��(�0�)] − �#5 ≤ 2,�9	.
In the problem with one singular end-point, ,�9 ≤ )B&3∏ 	[��(�0)]	.0	- − �#5+	)B&3∏0	-. [��(�0�)] − �#5 ≤ 2,�9	.
for all �	 	Π3∏ 	[��(�0)]	,.0	- ∏0	-. [��(�0�)]5	.
In the regular problem, )B&3∏ 	[��(�0)]	.0	- − �#5+	)B&3∏0	-. [��(�0�)] − �#5 = 2,�9,
for all �	 	Π3∏ 	[��(�0)]	,.0	- ∏0	-. [��(�0�)]5.
Proof: The proof is similar to that in [3, 4], [7] and [17], 
and therefore omitted. 

For  �	 	Π3∏ 	��(�0)	,.0	- ∏0	-. ��(�0�)5,	 we define Z, g
and  ´  as follows :  

 �
Z	 = Z(�) ≔ )B&[∏ 	���0� − �#]	.0	-	= ∑ )B&3∏ 	���01� − �#.0	- 521	- = ∑ Z121	-g	 = g(�) ≔ )B&[∏ 	���0�� − �#]	.0	-	= ∑ )B&3∏ 	���01� � − �#.0	- 521	- = ∑ g121	-´	 ∶= Z + g = ∑ (Z1 + g1)21	- 	 ���

�
���.   (4.5) 

Also,  
 0 ≤ ´ ≤ 2,�9	.                                                   (4.6) 

For �	 	Π3∏ 	��(�0)	,.0	- ∏0	-. ��(�0�)5, define Z, g and ´
as in (4.1), let µ�(E = 1,2, … , g), Φc(A = g + 1,… ,´) be
bases for 9[∏ ��0� − �#]		.0	- ] and 9[∏ ��0�� − �#]		.0	- ]
respectively, thus µ0, Φ² ∈ ��� (#) for  ( E = 1,2, … , g; 	A =g + 1,… ,´)	and ∏ �0�.0	- [µ�] = �4µ� 	,   ∏ �0��	.0	- [Φc] = �4Φc	  (4.7)

Since [∏0	-. ��(�0�) − �#] has closed range , so does its

adjoint 3∏ ��0� − �#]		.0	- 5 and moreover @3∏ ��0� − �#]	.0	- 5· = 9 ¸∏ 0	-. ���0�� − �#¹ = R0T.
Hence @3∏ ��0� − �#]		.0	- 5 = ��� (#) and @3∏ ��0�� −.0	-�#		5 = ��� (#). We refer to [4], [7] and [17] for more details.
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    We can therefore define the following functions H0 , y0 , � = 1,2, … ,´ ∶	       
	� 	H0 = µ0 ,			(� = 1,2, … , g	)	[∏ ��0�� − �#].0	- H0 = Φ0 	, (� = g + 1,… ,´)	 �,     (4.8)                    

� [∏ ��0�� − �#	]	.0	- I0 = µ0 ,			(� = 1,2, … , g	)		I0 = Φ0 	, (� = g + 1,… ,´)	 �.    (4.9) 

Lemma 4.7: (cf. [4, Lemma 4.1]). 
 The set _H0 ∶ � = 1,2, … ,´b		is a basis of 93∏ ��0�� − �#	.0	- 53∏ ��0� − �#]		.0	- 5�  and _I0 ∶ � = 1,2, … ,´b is a basis of 93∏ ��0� − �#]		.0	- 53∏ ��0�� − �#		.0	- 5� . 

     On applying [3, Theorem III.3.1] we obtain the 
following : 
Lemma 4.8: (cf. [4, Corollary 4.2]).  

Any º ∈ ?[∏ ��0�.0	- ] and º� ∈ 	?[∏ ��0��	.0	- ] have 
a unique representations   º		 = 	 º� +	∑ <0H0»0	- 	 	(º� ∈ 	?3∏ 	���0�.0	- 5),	   (4.10)

º� =	º�� +	∑ =0I0»0	- 	 	º�� ∈ 	?3∏0	-. ��(�0�)5�,   (4.11)	<0 , =0 ∈ ℂ 

 A central rule in the argument is played by 

Lemma 4.9: (cf. [4, Lemma 4.3]). Let 

 ¼»×» ≔ ([H0 , I0](=))-���»-�0�»  (4.12)                      

and 
 ¼a×`-,� ≔ ([H0 , I0](=)) -���aa�-�0�» .  (4.13)                        

Then 
 Z<,±	¼a×`-,� = Z<,±	¼»×» = ´ − ,�9		.  (4.14)                                   

 In view of  Lemma 4.9 and since Z, g ≥ ´ − ,�9	,	 we 
may suppose, without loss of generality, that the matrix ¼»;.½2	�×(»;.½2	)-,� = ([H0 , I²](=))-�0�(»;.½2	).½2	�-�²�»  .   (4.15)          

satisfies Z<,±	¼»;.½2	�×(»;.½2	)-,� = ´ − ,�9		.  (4.16)                                              

If we partition ¼»×» : 

¼»×» = {¼»;.½2	�×.½2-,- ⋮ ¼»;.½2	�×(»;.½2	)-,�⋯⋯ ⋯⋯ ⋯⋯¼.½2	×.½2�,- 	⋮ ¼.½2	×(»;.½2	)�,� 	} 

 (4.17) 
and set 

� 	¼»;.½2	�×»- = ¼»;.½2	�×.½2-,- ⊕	¼»;.½2	�×(»;.½2	)-,� 	¼.½2	×»� =	¼.½2	×.½2�,- 	⊕ 		¼.½2	×(»;.½2	)�,� 	 	� 
 (4.18)                                

 �	 \»×.½2- =	¼»;.½2	�×.½2-,- ⊕¿ 		¼.½2	×.½2�,-
	\»×»;.½2	�� = ¼»;.½2	�×(»;.½2	)-,� ⊕¿ 	¼.½2	×(»;.½2	)�,� � 

 (4.19)                               
Then (4.16) yields the results Z<,±	¼»;.½2	�×»- = Z<,±	\»×»;.½2	��

 = ´ − ,�9		.  (4.20) 

Lemma 4.10: (cf. [4, Lemma 4.5]). 
Let º� 	(E = 1,2, … , ,�9	) be a function in ?[∏ ��0�.0	- ] 

which satisfy  �º�[²;-](<) = ��²	,					º�[²;-](�) = 0		º�(À) = 0									&YZ				À ≥ �	. �  (4.21) 

and suppose that (4.14) is satisfied.  Then H� 	(E = ´ −,�9 + 1,… ,´) has a unique representation H� 	= 	 H�� 	+ 	∑ =�0º0.½20	- +∑ ��0H0»;.½20	-  (4.22) 

where  H�� ∈ ?[∏ 	��(�0).0	- ],	 and the =�0  and  ��0  are 
complex constants . 
Lemma 4.11: (cf. [4, Lemma 4.6]).  Let  ?-[∏ ��0�.0	- ]
be the linear span of Rº� ∶ E = 1,2, … , ,�9	T where 	º� ∈?[∏ ��0�.0	- ] satisfy (4.21) and let ?�[∏ ��0�.0	- ] be the
linear span of RH� ∶ E = 1,2, … ,´ − ,�9	T with (4.16)
satisfied . Then ?3∏ ��0�.0	- 5 = ?3∏ 	���0�.0	- 5 ∔	?-3∏ ��0�.0	- 5 ∔	?�3∏ ��0�.0	- 5. 
If  º��	(E = 1,2, … , ,�9	) are function in ?[∏ ��0��.0	- ] 
which for ± = 1,2, … , ,�9  and some � ∈ #, satisfy �(º��)�[²;-](<) = ��² 	,					(º��)�[²;-](�) = 0	º��(À) = 0			,					&YZ				À ≥ �	. �  (4.23) 

and (4.16) is satisfied, then we have that each I� 	(E =1,2, … , ,�9) has a unique representation I� 	= 	 I�� 	+ 	∑ )�0º0�.½20	- + ∑ B�0H0»0	.½2�- 	,	  (4.24) 

where  I�� ∈ 	?[∏0	-. ��(�0�)],	 and the )�0  and  B�0 are

complex constants. Also, if ?-[∏ ��0��.0	- ] and?�[∏ ��0��.0	- ] are the linear spans of Rº�� ∶ E =1,2, … , ,�9	T and RI� ∶ E = ,�9 + 1,… ,´T respectively
then ?3∏ ��0��].0	- 5 = ?[∏0	-. ��(�0�)] 	∔	?-[∏ ��0��].0	-∔ ?�[∏ ��0��.0	- ]  (4.25) 

V.  Boundary conditions featuring ��� -solutions

For 	Π3∏ 	��(�0)	,.0	- ∏0	-. ��(�0�)5 ≠ ∅ the domains of
the operators which are regularly solvable with respect to 
the product operators ∏ 	[��(�0)]	.0	- and ∏0	-. [��(�0�)] on[<, =) are characterized by the following theorem which 
proved for a general quasi-differential operator in [3, 
Theorem 10.15], [4], [7] and [17]. 

Theorem 5.1: For �	 	Π3∏ 	��(�0)	,.0	- ∏0	-. ��(�0�)5.		LetZ, g and  ´  be defined by (4.5), and let µ0		(� = 1,2, … , Z),	
Φ²(± = Z + 1,… ,´)  be arbitrary functions satisfying: 
(i) µ0		(� = 1,2, … , Z) ⊂ ?[∏ �(�0)].0	- are linearly 

independent modulo ?[∏ 	��(�0)].0	- and Φ²(± =Z + 1,… ,´) 	⊂ ?[∏ �(�0�)].0	- are linearly 
independent modulo ?[∏ 	��(�0�)]..0	-

(ii) 3µ0 ,Φ²5(=) − 3µ0 ,Φ²5(<) = 0,			� = 1,2, … , Z;
 ± = Z + 1,… ,´. 

Then the set R$: $	 	?[∏ �(�0)].0	- ,	  [$,Φ²](=) − [$,Φ²](<) = 0,	± = Z + 1,… ,´	T,  (5.1) 
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is the domain of an operator � which is regularly solvable 
with respect to [∏ 	��(�0)].0	-  and [∏ 	��(�0�)].0	-  and the
set R(: (	 	?[∏ �(�0�)].0	- ,	 3µ0 , (5(=) − 3µ0 , (5(<) = 0	,

 � = 1, 2, … , Z	T  (5.2) 
is the domain of the operator �∗ ;  moreover �	 	∆Q(�) .

 Conversely, if � is regularly solvable with respect to [∏ 	��(�0)].0	-  and [∏ 	��(�0�)].0	-  and�	 	Π3∏ 	[��(�0)]	,.0	- ∏0	-. [��(�0�)]5 ∩ ∆Q(�),		then with Z
and g defined by (4.5) and there exist functions µ0		(� =1,2, … , Z),Φ²(± = Z + 1,… ,´) which satisfy (i) and (ii) 
and are such that (5.1) and (5.2) are the domains of � and �∗ respectively. � is self-adjoint if, and only if, ∏ �0� =.0	-∏ �0��	,.0	- 	Z = g and Φ² = µ²;`	(± = Z + 1,… ,´); 	� isz −self-adjoint if 	∏ �0�� = z∏ �0�z	.0	-.0	-   (z is a complex

conjugate), Z = g and Φ² =	µ²;`	(± = Z + 1,… ,´)
Proof: The proof is entirely similar to that of [3], [4], [7], 
[8], [12] and [17], and therefore omitted. 
    We shall now consider our interval is #	 = [<, =) and we 
characterize all the operators which are regularly solvable 
with respect to  ∏ 	[��(�0)]	,.0	-  and ∏0	-. [��(�0�)] in terms
of boundary conditions featuring ��� -solutions of the
equations in (4.7). This generalizes an analogue of a results 
of Evans and Ibrahim [4], Sun Jiong,s result [9] in the 
special case of symmetric operators with equal deficiency 
indices and  Zai-ju Shang,

 s results [12] for z-symmetric 
operators. 

Theorem 5.2 (cf. [7, Theorem 4.1]): 
Let 	�	 	Π3∏ 	[��(�0)]	,.0	- ∏0	-. [��(�0�)]5,  let  Z, g and ´

be defined by (4.5), and let H� 	(E = 1,2… ,´),	 I0 	(� =1,2… ,´) be defined by (4.8) and (4.9) and arranged to 
satisfy (4.16). Let   K`×.½2 , �`×(»;.½2) ,	Âa×.½2  and9a×(»;.½2) be numerical matrices which satisfy the
following conditions: (E)   Z<,±	K`×.½2 		⊕ 		�`×(»;.½2)� = Z,	Z<,±	Âa×.½2 		⊕		9a×(»;.½2)� = g	,(EE)		�`×(»;.½2)	¼»;.½2�×»;.½2�-,� 9a×(»;.½2)�¿+(−E).½2	K`×.½2		z.½2×.½2	(Âa×.½2)¿ = 0`×a .
Then the set of all $ ∈ 	?[∏ ��0�.0	- ] such that

Âa×.½2 { $(<)⋮$3.½2;-5(<)}	
−	9a×(»;.½2) {3$, I.½2�-]5(=)⋮3$, I»]5(=)	 } = 0a×-   (5.3)

Is the domain of an operator 	� which is regularly solvable 
with respect to ∏ 	��(�0)	.0	- and ∏0	-. ��(�0�) and ?(�∗) is
the set of all ( ∈ 	?[∏ ��0��.0	- ] which are such that

K`×.½2 { (̅(<)⋮(̅3.½2;-5(<)}	
	−	�`×(»;.½2) Ã [H-, (](=)⋮[H»;.½2 , (](=)Ä = 0`×-	.    (5.4)                                             

Proof: The proof follows by using (3.7), Theorem 5.1, 
Lemmas 4.9 , 4.10 and by considering :       Âa×.½2	z.½2×.½2;- = −E.½2(r0²)`�-�0��»-�²�.½2  , 

9a×(»;.½2) =	 (s0²) `�-�0�».½2�-�²�»,  (5.5) 

K`×.½2	z.½2×.½2;- = −E.½2(Å0²) -�0��`-�	²	�.½2, 

 �`×(»;.½2) =	 (Æ0²) -�	0	�	`-�²�»;.½2 .  (5.6) 

 The following is the converse of Theorem 5.2: 

Theorem 5.3 (cf. [7, Theorem 4.2]): Let the operator � be 
a regularly solvable with respect to ∏ 	��(�0)	.0	-  and∏0	-. ��(�0�), let  �	 	Π3∏ 	[��(�0)]	,.0	- ∏0	-. [��(�0�)]5 ∩∆Q(�), let  Z, g and ´ be defined by (4.5) , and suppose that
(4.16) is satisfied. Then there exist numerical matrices K`×.½2 ,  �`×(»;.½2) , Âa×.½2  and  9a×(»;.½2) such that
the conditions (i) and (ii) in Theorem 5.1 are satisfied and ?(�) is the set of all $ ∈ ?[∏ ��0�.0	- ] satisfying (5.3) 

while ?(�∗)  is the set of all ( ∈ 	?[∏ ��0��].0	- ]
satisfying (5.4) . 

Remark 5.4:  Theorems 5.2  and 5.3  follows from the 
following  results for the case of one singular end points in 
[4], for the case of two singular end-points in [7] and for 
any finite number of intervals in [8]. 

Remark 5.5:  In the case when ∏ �0�.0	-  is formally  z −	symmetric , that is  ∏ �0��.0	- = z∏ �0�	z	.0	- , where z is 
complex conjugation. The operator ∏ 	[��(�0)]	.0	- is then z −	symmetric and ∏ 	[��(�0)]	.0	- and ∏ 	[��(�0�)] =.0	-z ∏ 	[��(�0)]	z	.0	- 	form an adjoint pair with Π3∏ 	��(�0)	,.0	- ∏0	-. ��(�0�)5 = Π3∏ 	��(�0)	,.0	- 5. Since 	∏ �0�.0	- [$] = �4$			if and only if  ∏ �0��.0	- [$Ç] = �4$Ç  
it follows that from (4.6) that for all  � ∈ ∏ 	[��(�0)].0	- , )B&3∏ 	[��(�0)]	.0	- − �#5  = 	)B&3∏0	-. [��(�0�)] − �#5 is
constant ℓ , say, and so in (4.5), Z = g = ℓ  with 0 ≤ ℓ ≤ ,�9 . 

Remark 5.6:  If � is a  z −	self-adjoint extension of, then �∗ = z�z and consequently  ( ∈ ?(�∗) if and only if, (̅ ∈ ?(�). In this case when ∏ �0�.0	-  is formally z −	symmetric for a complex conjugation z,  Theorems 5.2 and 
5.3  include Theorem 5.5 of Zai-Jiu-Shang [12]. 

VI. Discussion.

    Everitt and Zettl [6] discussed the possibility of 
generating self-adjoint operators which are not expressible 
as the direct sum of self-adjoint operators defined in the 
separate intervals. In this section we extend this case of 
general ordinary differential operators,  i.e., we discuss the 
possibility of the regularly solvable operators which are not 
expressible as the direct sums of regularly solvable 
operators defined in the separate intervals  #1 = 	<1 , 	=1�,6 = 1, 2, 3, 4	. We shall refer to these operators as " new 
regularly solvable operators" . 

 If  	<1  is a regular end-point and 	=1 is singular,  then 
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)B&3∏ 	[��(�0)]	.0	- − �#5  +	)B&3∏0	-. [��(�0�)] − �#5 = 4,�
for all �	 	Π3∏ 	[��(�0)]	,.0	- ∏0	-. [��(�0�)]5 if and only if,
the terms in (5.1) at the end-points 	=1 is zero. By Lemma 
4.6, for all �	 	Π3∏ 	[��(�0)]	,.0	- ∏0	-. [��(�0�)]5, we get in
all cases 0 ≤ )B&3∏ 	[��(�0)]	.0	- − �#5  +	)B&3∏0	-. [��(�0�)] − �#5 ≤ 8,�      (6.1)
While 2,� ≤ )B&3∏ 	[��(�0)]	.0	- − �#5 + )B&3∏0	-. [��(�0�)] − �#5 ≤ 8,�       (6.2)
when each interval has at least one singular end-point, and )B&3∏ 	[��(�0)]	.0	- − �#5  +	)B&3∏0	-. [��(�0�)] − �#5 = 8,�  (6.3) 
for the case when all end-points are regular. 

 Let )B&3∏ 	[��(�0)]	.0	- − �#5  + )B&3∏0	-. [��(�0�)] − �#5 = ),	
and )B&3∏ 	[��(�01)]	.0	- − �#5  +	)B&3∏0	-. [��(�01� )] − �#5 = )1 ,  6 = 1, 2, 3, 4	.
Then, by part (iii) in Lemma 4.5, we have that  ) = ∑ )1Q1	-     .

 We now consider some of the possibilities. 

Example 1: ) = 0.	 This is the minimal case in (6.1) and 
can only occur when all eight end-points are singular. In 
this case  ∏ 	[��(�0)].0	- | is itself regularly solvable and has
no proper regularly solvable extensions; see [3, Chapter III] 

and [4] for more details. 

Example 2:  ) = ,� with one of )1 ,  6 = 1, 2, 3, 4 is equal
to ,� and all the others are equal to zero.  We assume that )- = ,� and )� = )D = )Q = 0. The other possibilities are
entirely similar. In this case we must have seven singular 
end-points and one regular end-point. There are no new 
regularly solvable extensions and we have that � =�- ⊕1	�Q ∏ 	[��(�01)].0	- , where �- is regularly solvable 
extension of ∏ 	[��(�0-)].0	- , i.e., all regularly solvable 
extensions of ∏ 	[��(�0)].0	- can be obtained by forming 
sums of regularly solvable extensions of ∏ 	[��(�01)].0	- , 6 = 1, 2, 3, 4	. These are obtained as in the case of one 
interval. 

Example 3: six singular end-points and ) = 2,�. We 
 consider two cases. 

(i) One interval has two regular end-points,  say  #- , 
and each one of the others has two singular end-
points. Then, � = �- ⊕1	�Q ∏ 	[��(�01)].0	- ,
where �- is regularly solvable extension of ∏ 	[��(�0-)].0	- , generates all regularly solvable 
extensions of the product  differential   operator  ∏ [��(�0)].0	- 	.

(ii) There are two intervals , say #- and #� each has 
one singular and one regular end-points, and 
each one of the others has two singular end-
points. In this case  

� = �- ⊕�� ⊕ ∏ 	[��(�0D)].0	-⊕ ∏ 	[��(�0Q)].0	- , 
and �- ⊕ �� generates all regularly solvable 
extensions of the product operator ∏ 	[��(�0)].0	- 	. The other possibilities in the 
cases (i) and (ii) are entirely similar. 

Example 4:  Five end-points and ) = 3,�.  We consider 
 two cases. 

(i) There are two intervals, say #- and #� such that #- 
has two regular end-points and #� has one regular 
and one singular end-points,  and each one of the 
others has two singular end-points. In this case )- = 2,�	and )� = ,�, then � = �- ⊕�� ⊕∏ 	[��(�0D)].0	- ⊕∏ 	[��(�0Q)].0	-  and �- ⊕��
generates all regularly solvable extensions of the 
product operator ∏ 	[��(�0)].0	-  which is similar 
to the case (ii) of Example 3. 

(ii) There are three intervals, say #- , #�  and #D  each 
one has one regular and one singular end-points 
and  the fourth has two singular end-points. In 
this case )- = )� = )D = ,�	and )Q = 0, then� = �- ⊕�� ⊕ �D ⊕∏ 	[��(�0Q)].0	- and �- ⊕ �� ⊕ �D generates all regularly solvable 
extensions of the product operator ∏ [��(�0)].0	-  . 

The other possibilities  are entirely similar. 

Example 5: Four singular end-points and ) = 4,�. We 
 consider three cases . 

(i) There are two intervals, say #- and #� each one 
has two regular end-points, and each one of the 
others has two singular end-points. In this case 	)- = )� = 2,�	, )D = )Q = 0, then � = �- ⊕�� ⊕∏ 	[��(�0D)].0	- ⊕ ∏ 	[��(�0Q)].0	- , and�- ⊕�� generates all regularly solvable 
extensions of  ∏ 	[��(�0)].0	-  . 

(ii) There are two intervals, say #- and #� each one 
has one regular and one singular end-points, and 
the others #D and #Q has two regular and singular 
end-points respectively. In this case )- =)� = ,�	, )D = 2,� and )Q = 0, then � = �- ⊕�� ⊕�D ⊕ ∏ 	[��(�0Q)].0	- as the case (ii) of
Example 4 . 

(iii) Each interval has one regular and one singular 
end-points. In this case, )1 = ,� ,  6 = 1, 2, 3, 4.
Then "mixing" can occur and we get new 
regularly solvable extensions of the product 
operator ∏ 	[��(�0)].0	-  . For the sake  of
definiteness assume that the end-points 	<-, 	=�, 	<D and 	=Q are singular end-points and 	=-, 	<�, 	=D and 	<Q are regular end-points .  The 
other possibilities  are entirely similar. 

For $	 	?[∏ �(�0)].0	- and Φ²	  ?[∏ �(�0�)].0	-  where $ = R$-, $�, 	$D, $Q	T and Φ² = _Φ-0, Φ�0 ,ΦD0,ΦQ0 		b the
conditions (5.1) reads: 0 = [$,Φ²] = ∑ _3$,Φ²05(=) − 3$,Φ²05(<)bQ0	- ,	

 (± = 1, 2, 3, 4).  (6.4) 
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Also, for  (	  ?[∏ �(�0�)].0	- and µ� 	 	?[∏ �(�0)].0	-
where ( = R(-, (�, 	(D, (Q	T and µ� = Rµ-� , µ�� , µD� , µQ� 		T
the conditions (5.2) reads: 0 = [µ� , (] = ∑ _3µ�1 , (5(=) − 3µ�1 , (5(<)bQ1	- ,  (6.5) E = 1, 2, 3, 4  and condition (ii) in Theorem 4.7 reads 0 = [µ� ,Φ²] = ∑ R[µ� ,Φ²](=) − [µ� ,Φ²](<)T.Q�	- 	
By [3, Theorem III.10.13], the terms involving the singular 
end-points 	<-, 	=�, 	<D and 	=Q are zero, such that (6.4) , 
(6.5) and (6.6) reduces to       [$,Φ²�](=�) 	−		 [$,Φ²-](<-) − [$,Φ²D](<D)−	[$,Φ²Q](=Q) = 0,[µ��, (](=�) 		−		 [µ�- , (](<-) 	− [µ�D , (](<D)−	[µ�Q, (](=Q) 	= 0
and [µ��,Φ²�](=�) − [µ�-,Φ²-](<-) −	 [µ�D,Φ²D](<D)−		[µ�Q,Φ²Q](=Q) = 0,(E, ± = 1, 2, 3, 4	) respectively. Thus the boundary 
conditions are not separated for the four intervals and hence 
the regularly solvable operator can not be expressed as a 
direct sum of regularly solvable operators defined in the 
separate intervals  #1 , 6 = 1, 2, 3, 4	. 
    We refer to Everitt and Zettl, s papers [6] and [8] for more 
examples and more details.   
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