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Abstract—The contribution of this paper is in 
suggesting a useful technique for achieving 
optimal multi-stage compensation of process 
control systems. A multi-stage compensator, 
designed according to a number of proposed 
rules, is connected in series with the original 
control system. It eliminates some properly 
selected dominant poles of the system’s transfer 
function. At the same time it introduces a 
specifically designed amplification and new 
dominant poles. This improves the quality of the 
system's performance in terms of its transient 
response, stability and accuracy. Rise and settling 
times, percent maximum overshoot, damping 
ratio, phase margin and steady-state error are 
optimized in the process.  
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I. INTRODUCTION  

A useful technique is proposed to achieve a high 
quality performance of n-order process control 
systems. It emphasizes on development of a number 
of rules for design of a proper multi-stage 
compensation. The compensator, connected in series 
with the original control system, eliminates some 
properly selected dominant poles of the system’s high 
order closed-loop transfer function. At the same time it 
introduces a specifically designed amplification and 
new dominant poles. This improves the quality of the 
system's performance in terms of its transient 
response, stability and accuracy. Rise time, 
percentage overshoot, settling time, damping ratio, 
phase margin and steady-state error are considerably 
optimized. The stability of the system is also 
improved. The suggested technique is originally 
designed for marginal control systems. Its application 
can be easily extended for systems different from 
marginal and can be used successfully for second, 
third or higher order process control systems of Type 
0 and Type 1. The transfer function of the process is 
usually determined through known system 
identification methods. The compensation technique is 
applied, considering that the transfer function is 
presented as [1]:  
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It is well known that poles that close to the 
imaginary axis in the left-half s-plane are dominant 
and are used to design the dynamic performance of a 
system [2]. The insignificant poles should ensure that 
the applied compensator transfer function could be 
realized by physical components. In practice, the 
magnitude of the real part of an insignificant pole is 
considered at least 10 times larger than that of a 
dominant pole [3], [4]. This effect is going to be used 
in the suggested multi-stage compensation technique. 
To meet the ITAE criterion [5], [6] the following system 
objectives are set:  

Damping ratio (DR)  = 0.707 Percent maximum 

overshoot (PMO)   4%  

Settling / to max overshoot time ts / tm  1.4 Steady-

State error ess  1% (type 0 systems)  

These objectives will be used for establishing the 
rules and applying the suggested method. 

II. RULES OF THE COMPENSATION TECHNIQUE 

A. Rules of the Compensation Technique  

The rules of the compensation technique are 
developed on the base on cascade compensation and 
a unity feedback. According to the suggested rules the 
compensator may consist of a multi-stage lead section 
and/or a lag section, depending on the system type. 
Additional attenuation and amplification, that is part of 
the compensator, with factors provided by the rules, 
are also applied to bring the system to the desired 
performance. The purpose of the rules is to set a 
design procedure of a compensator that eliminates 
some properly selected dominant poles, introduces 
new dominant poles and applies proper amplification.  

Rule 1 

To optimize  , ts / tm and the PMO of a Type 0 
marginal closed-loop system, a cascade multi-stage 

lead compensation with factors of 1,2,3,…= 10 is 
applied for a zero-pole cancellation. 
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The number of the compensating stages N should 
be one less than the order of the open-loop system, 

i.e. N = n + m  1.  

The most dominant pole of the open-loop system 
should be left uncompensated. The current gain is 
maintained by attenuation equal to the product 

123… 

Rule 2 

To optimize a Type 0 marginal closed-loop system, 

a single-stage lag compensation with factor  = 10 is 
applied for a zero-pole cancellation of the 
uncompensated most dominant pole of the open-loop 
system. To optimize the steady-state error ess the 

current gain should be increased  = 10 times. 

Rule 3 

If the most significant pole of the open-loop system 
has a real part close in value to that of an insignificant 
pole, following Rule 1, Rule 2 is modified. Then a 
successive two-stage lag compensation with factors 

1 = 2  

Rule 4 

To optimize , ts/tm and the PMO of a Type 1 
marginal closed-loop system, a cascade multi-stage 

lead compensation with factors of 1,2,3,…=10 should 
be applied for a zero-pole cancellation. 

The number of the compensating stages N should 
be one less than the order of the open-loop system, 

i.e. N = n +m  1. 

The pure integration or the most significant pole of 
the open-loop system should be left uncompensated. 

The existing system gain should be maintained by 

attenuation equal to the product 123…, where the 

compensation attenuation factor is  = (0.1 to 1.27). 

B. Rules Design and Application  

By testing different third order transfer functions 
the applicability of the suggested technique is proved 
in practice. It can be easily extended to any higher 
order system.  

Case 1 Application of Rules 1 and 2 (Type 0 
System) 

Following the suggested rules, the compensation 
technique can be demonstrated for a case of a plant 
with a transfer function of Type 0 given in its Bode 
format: 
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There are two important steps, establishing the 

rules of the method. First, the values of the factors 1 

and 2 are varied. Further, the value of the factor  is 
varied, in this way searching for the optimum 
performance of the compensated system. The results 
are shown in Figure 1 and Figure 2. 

From Figure 1, it can be seen that the set of the 
initial objectives to satisfy the ITAE criterion can be 

met if 1 = 2 = 10. The factor  = 10 is chosen as a 
realistic figure for the physical realization of the lag 
compensation stage [7], [8]. 

Figure 2 shows that the set of the objectives 

described in Equations (2), (3) and (4) can be met if = 
10. In this case the steady-state error is measured as 
ess = 0.14%, which satisfies the initial objectives. 

 

Fig. 1. Results of the tracking procedure for 

determination of optimum values of 1 and 2 

 

Fig. 2. Results of the tracking procedure for 

determination of optimum value of  

Since the plant transfer function from Equation (6) 
is of a third order, two-stage lead plus one-stage lag 
compensation is applied. The two less significant 

poles in Equation (6) are p1 = 1/0.02 = 50 and p2 = 

1/0.05 = 20. Then, according to Rule 1, the multi-
stage lead section of the compensator should have a 
transfer function  
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Following Rule 1, additional attenuation should be 
also applied 

1001010)(
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The most significant pole in Equation (6) is p3 = 1. 
Applying Rule 2, the section of the lag compensation 
and amplification is presented by: 
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Now the transfer function of the full compensator 
is: 
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Finally, after applying the full compensation, the 
transfer function of the open-loop system becomes: 
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The system’s original phase margin is PM    0 
and the original system is considered as marginal, or 
practically unstable [9]. By introducing the lead 
compensation and attenuation (Rule 1), the phase 

margin becomes PM     and the damping 

ratio is   . The performance and the stability of 
the closed-loop system are improved.  

 

Fig. 3. Case 1 Bode diagrams of the original 
system and of the system after applying Rules 1 and 2 

The main contribution of the lag compensation and 
amplification (Rule 2) is eliminating the influence of 

the most significant pole and reduction of the steady-
state error of the closed-loop system. The Bode 
diagrams in Figure 3 represent the case of the original 
system and the case of the system after the 
implementation of Rule 1 and Rule 2. 

The diagrams in Figure 3 are obtained by the code, 
as shown below:  

>> z={0} 
>> p={-50;-20;-1} 
>> k=70000 
>> s = zpk('s') 
>> Gp=70000/(s+50)/(s+20)/(s+1) 
Zero/pole/gain: 
70000 
------------------- 
 (s+50) (s+20) (s+1) 
 >> z={0} 
 >> p={-500;-200;-0.1} 
 >> k=7000000 
 >> s = zpk('s') 
 >> G= 7000000/(s+500)/(s+200)/(s+0.1) 
 Zero/pole/gain: 
 7000000 
 ----------------------- 
 (s+500) (s+200) (s+0.1) 
 >> bode(Gp,G) 

The system transient responses before and after 
the full compensation are achieved by the code as 
shown below and are presented in Figure 4: 

>> Gpfb=feedback(Gp,1) 
Zero/pole/gain: 
 70000 
--------------------------------- 
(s+70.17) (s^2 + 0.8292s + 1012) 
>> Gfb=feedback(G,1) 
Zero/pole/gain: 
 7000000 
------------------------------------- 
(s+538.4) (s^2 + 161.7s + 1.302e004) 
>> step(Gpfb,Gfb) 

 
Fig. 4. Case 1 Transient responses of the original 

and the fully compensated closed-loop system 

The performance specifications of the 
compensated system, determined from the transient 
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response shown in Figure 4, are compared with the 
objectives for optimal performance.  

TABLE I OBJECTIVES AND REAL RESULTS FOR CASE 1 

Specifications Objectives Real 

Results 
Consideration 

 = 0.707 = 0.707 Matching 

PMO  4% = 3.8% Better 

ts(1%)/tm  1.49 = 1.44 Better 

ess(t) < 1% = 0.14% Better 

From the summary in Table I, it is seen that the 
transient response of the compensated system in 
terms of damping ratio, percent maximum overshoot, 
time ratio and steady-state error is either matching or 
is better than the one of the set objective. 

Case 2 Application of Rules 1 and 3 (Type 0 
System) 

Rule 3 can be illustrated for a Type 0 marginal 
control system with a transfer function as shown:  
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In this case the real part of the most significant 

pole, p3 = 10, is only 5 times smaller than the real 

part of the one of the insignificant pole p1 = 50. This 
implies application of Rule 3.  

According to Rule 1, two-stage lead compensation 

and attenuation with factors 1 =   = 10 are applied. 

Then, following Rule 3, a two-stage lag 

compensation with factors 1 = 2 = 10 and a factor 

amplification = 80 is suggested.  

The values of the factors 1 and 2 are chosen by 
the same considerations as in Rule 2. Using tracking 
procedures on the transient response, the value of the 

factor  is varied, searching for the optimum 
performance of the compensated system. It can be 
seen from Figure 5 that the set of objectives can be 

met if  = 80. The steady-state error is ess = 0.06%. 

 
Fig. 5. Results of the tracking procedure for 

determination of optimum value of  

Using a similar sequence as in Case 1, applying 
Equation (3), the two-stage lead stage is presented by  
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 The attenuation )(
''

sGc  is the same as in Equation 

(4). Then applying Rule 3, the two-stage lag 
compensation and amplification is presented by: 

)101)(1(

)1)(1.01(80

)1)(1(

)1)(1(
)(

'''

4231

43

ss

ss

sTsT

sTsT
s

c
G














 (10) 

 Now, applying the full compensation, considering 
Equations (11) and (12), the transfer function of the 
open-loop system becomes  
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The effect of the application of the method can be 
seen from the Bode diagrams shown in Figure 6. The 
phase margin of the system and hence the damping 
ratio and stability are improved considerably and are 
close to the desirable objectives. The Bode diagrams 
are plotted with the aid of the following code: 

 >> z={0} 
 >> p={-10;-50;-100} 
 >> k=1000000 
 >> s = zpk('s'); 
 >> Gp=1000000/(s+10)/(s+50)/(s+100) 
 Zero/pole/gain: 
 1000000 
 --------------------- 
 (s+10) (s+50) (s+100) 
 >> z={0} 
 >> p={-0.1;-500;-1000} 
 >> k=80000000 
 >> s = zpk('s'); 
 >> G=80000000/(s+0.1)/(s+500)/(s+1000) 
 Zero/pole/gain: 
 80000000 
 ------------------------ 
 (s+0.1) (s+500) (s+1000) 
 >> bode(Gp,G) 

 
Fig. 6. Case 2 Bode diagrams of the system before 

and after applying the full compensation 
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The closed-loop system transient responses before 
and after full compensation are shown in Figure 7 and 
is obtained by the following code: 

 >> Gpfb=feedback(Gp,1) 
 Zero/pole/gain: 
 1000000 
 --------------------------------- 
 (s+160.3) (s^2 - 0.3106s + 6550) 
 >> Gfb=feedback(G,1) 
 Zero/pole/gain: 
 80000000 
 ------------------------------------ 
 (s+1116) (s^2 + 383.8s + 7.171e004) 
 >> step(Gpfb,Gfb)  

 

Fig. 7. Case 2 Transient responses of the closed-
loop system before and after the full compensation 

From the summary in Table II, it is obvious that the 
objectives are met. Again, the real results for the 
compensated control system are either close or better 
than the set specifications. 

TABLE II. OBJECTIVES & REAL RESULTS FOR CASE 2 

Specifications Objectives Real 

Results 
Consideration 

 = 0.707 = 0.717 Close 

PMO  4% = 2.8% Better 

ts(1%)/tm  1.49 = 1.25 Better 

ess(t) < 1% = 0.06% Better 

Case 3 Application of Rule 4 (Type 1 System)  

In this case, the suggested application is for a plant 
with a marginal transfer function of Type 1, presented 
in its Bode form: 
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By applying Rule 4, the values of the factors 1 

and 2 are determined similarly as in Rule 1. 

Additional adjustment factor  is introduced so that the 

real attenuation becomes 12. With the aid of a 

tracking procedure  is determined for different 

marginal control systems of Type 1. To keep  = 
0.707, when the ratio of the less significant to the 
most significant pole of the plant transfer function, r = 

p1/p2, varies from 50 to 1, the value of  may vary from 

0.1 to 1.27, as shown in Figure 8. When the ratio is r = 

2.5, as in the case of Equation (19), then   1. If r < 
2.5, the attenuation should be adjusted within the 

limits   = (1 to 1.27). If r >2.5, then the adjustment 

factor should be within the limits   = (0.1 to 1). 

 
Fig. 8. Relationship between the damping ratio  

and the factor  for different poles ratios r = p1/p2 

In this case, first, a two-stage lead compensation 
and attenuation is used. The two poles of Equation 

(12), to be cancelled, are p1 = 50 and p2 = 20. The 
lead compensation and attenuation employ transfer 
functions like those shown in Equations (3), (4). The 

factors used are 1 = 2 = 10 and   1. Then, after 
applying Equation (7), the transfer function of the 
open-loop system becomes: 
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The open-loop systems Bode diagrams, before 
and after applying the compensation technique, are 
achieved by the code as shown below and are 
presented in Figure 9. 

 >> z={0} 
 >> p={-50;-20;0} 
 >> k=70000 
 >> s = zpk('s'); 
 >> Gp=70000/(s+50)/(s+20)/(s+0) 
 Zero/pole/gain: 
 70000 
 --------------- 
 s (s+50) (s+20) 
 >> z={0} 
 >> p={-500;-200;0} 
 >> k=7000000 
 >> s = zpk('s'); 
 >> G=7000000/(s+500)/(s+200)/(s+0) 
 Zero/pole/gain: 
 7000000 
 ----------------- 
 s (s+500) (s+200) 
 >> bode(Gp,G) 
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Fig. 9. Case 3. Bode diagrams of the system 

before and after applying the full compensation 

The transient responses of the closed-loop system 
before and after applying the compensation are 
shown in Figure 10 and are obtained by the code:  

 >> Gpfb=feedback(Gp,1) 
 Zero/pole/gain: 
 70000 
 -------------------- 
 (s+70) (s^2 + 1000) 
 >> Gfb=feedback(G,1) 
 Zero/pole/gain: 
 7000000 
 ----------------------------------- 
 (s+538.4) (s^2 + 161.6s + 1.3e004) 
 >> step(Gpfb,Gfb)  

 
Fig. 10. Case 3. Transient responses of the 

closed-loop system before and after the full 
compensation 

The real results of the compensated system are 
compared with the objectives for optimal performance 
and summarized in Table III. It can be seen that again 
the objectives are met. 

TABLE III. OBJECTIVES & REAL RESULTS FOR CASE3 

Specifications Objectives Real 

Results 

Consideration 

 = 0.707 = 0.709 Close 

PMO  4% = 3.3% Better 

ts(1%)/tm  1.49 = 1.4 Better 

ess(t) =0% = 0% Matching 

C. Application of the Compensation Technique 
with Changed Objectives 

 Some process control systems may require a very 
fast response, compromising with the PMO and 
ts(1%)/tm values. In practice the damping ratio may be 

modified [10], to be within the range of   3 to 
0.45. Then all the rules of the proposed method will 

stand, but additional amplification by a factor  = 2 is 

required. The value of  is determined by tracking 
procedure for different transfer functions. For 

example, the system described by Equation (13) has  

 707. Increasing its gain two times secures a 

damping ratio of   423 and faster response, which 
is illustrated in Figure 11. 

 
Fig. 11. Comparison between the original and a 

faster transient response 

The transient responses are obtained with the aid 
of the following code: 

 >> G1=7000000/(s+500)/(s+200)/(s+0) 
 Zero/pole/gain: 
 7000000 
 ----------------- 
 s (s+500) (s+200) 
 >> G2=14000000/(s+500)/(s+200)/(s+0) 
 Zero/pole/gain: 
 14000000 
 ----------------- 
 s (s+500) (s+200) 
 >> G1fb=feedback(G1,1) 
 Zero/pole/gain: 
 7000000 
 ----------------------------------- 
 (s+538.4) (s^2 + 161.6s + 1.3e004) 
 >> G2fb=feedback(G2,1) 
 Zero/pole/gain: 
 14000000 
 ------------------------------------- 
 (s+567.2) (s^2 + 132.8s + 2.468e004) 
 >> step(G1fb,G2fb) 

D. Application of the Compensation Technique 
for Systems Different from Marginal 

The suggested compensation technique can be 
also used for systems that are different from marginal. 
To apply the suggested compensation technique, 
such systems are initially brought to a marginal state 
by tuning their original steady-state gain K. For 
example, a system with a transfer function as shown 

http://www.jmest.org/
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in equation (14) is not marginal, but its performance is 
unacceptable due to large oscillations.  

)1)(05.01)(02.01(
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   (14) 

 
Fig. 12. Application of the compensation technique 

for systems different from marginal 

By tuning the original gain from K =50 to K’ = 70 
and then applying Rule 1 and Rule 2 of the suggested 
compensation method, brings the system to the 
desirable performance as shown in Figure 12. The 
transient responses on the original system, the 
system after tuning and the compensated system are 
plotted by applying of the following code:  

>> z={0} 
>> p={-50;-20;-1} 
>> k=50000 
>> s = zpk('s') 
>> Gp1=70000/(s+50)/(s+20)/(s+1) 
Zero/pole/gain: 
 50000 
------------------- 
(s+50) (s+20) (s+1) 
>> Gp1fb=feedback(G1p,1) 
Zero/pole/gain: 
 50000 
--------------------------------- 
(s+66.29) (s^2 + 3.707s + 754.2) 
>> z={0} 
>> p={-50;-20;-1} 
>> k=70000 
>> s = zpk('s') 
>> Gp2fb=feedback(Gp,2) 
Zero/pole/gain: 
 70000 
--------------------------------- 
(s+70.17) (s^2 + 0.8292s + 1012) 
>> z={0} 
>> p={-500;-200;-0.1} 
>> k=7000000 
>> s = zpk('s') 
>> G= 7000000/(s+500)/(s+200)/(s+0.1) 
 Zero/pole/gain: 
 7000000 
----------------------- 
(s+500) (s+200) (s+0.1) 
>> Gfb=feedback(G,1) 
Zero/pole/gain: 
 7000000 
------------------------------------- 
(s+538.4) (s^2 + 161.7s + 1.302e004) 
>> step(Gp1fb,Gp2fb,Gfb) 

III. Conclusion 

Although the suggested method of multi-stage 
compensation is based on some known theoretical 
procedures, like the zero-pole cancellation, the lead 
and lag compensation, combining and analyzing 
them, results in development of some new ideas. The 
originality of the suggested technique is based on the 
statement of a number of rules, which are applied in a 
predetermined sequence.  

The compensation equipment consists of three 
major parts. Its lead section eliminates all insignificant 
poles of the original plant transfer function and 
introduces new properly designed poles. This 
improves the transient response specifications, 
especially the damping ratio of the system. The lag 
section eliminates the most significant pole of the 
original plant transfer function and along with the 
amplifying section improves further the transient 
response and reduces considerably the steady-state 
error. 
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