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Abstract— This paper deals with the impact of 
optimized input on parameter and state estimation 
in a bounded-error context for uncertain 
controlled dynamical aerospace models. In a 
bounded-error context, perturbations are 
assumed bounded but otherwise unknown.  The 
parameters to be estimated are also considered 
bounded. In this work, we propose an original 
method which combines a guaranteed numerical 
set integration solver with an adapted set 
inversion computation. Another contribution of 
this work consists in bringing out the parameter 
estimation results are highly related with the input 
of studied system, which is a novel approach  in 
the context of interval analysis. To conclude this 
paper, we apply our procedures with two different 
inputs on a case study taken from aerospace 
domain.  

Keywords—component; State estimation; 
Continuous-time systems; Nonlinear systems; 
Bounded noise; Interval analys;  

I.  INTRODUCTION  

Complex systems are often subjected to 
uncertainties that make the modeling task awkward. 
These uncertainties can be unstructured when the 
equations of the system are not entirely known or 
structured when the equations are known but not the 
values of their parameters. In both cases, it is 
particularly difficult to get an accurate model of the 
perturbations and noises acting on the system. This 
may turn the usual stochastic framework inappropriate. 
Thus, we prefer to deal with set-membership 
framework in which perturbations and noises are 
assumed to be bounded but otherwise unknown. In 
this framework, we obtain "guaranteed solutions". This 
last expression means that for all conditions belonging 
to a bounded set, the obtained set contains all the 
solutions.  

Guaranteed state and parameter estimation 
methods are an interesting alternative to stochastic 

model based estimation when perturbations and 
noises are assumed to be bounded but otherwise 
unknown. These methods have received a lot of 
attention in the last years and the literature on this 
topic shows interesting progress, for example [11], [3], 
[6], [23], [19] or for example [5]. 

The issue of the unknown but bounded error 
parameter estimation with ordinary differential 
equations has been significantly addressed [21], [9]. 

In the case of guaranteed state estimation, two 
approaches can be considered. One of them is based 
on some differential inequalities. This method uses the 
bracketing approach which is based on a Müller's 
theorem and a rule where the sign of some partial 
derivatives are taken into account [22]. In this way, 
when the starting point (or the parameter vector) of the 
considered system is a wide interval vector, this 
method gives satisfactory results. But sometimes it 
may happen that this method falls in default. In these 
cases, the approach based on Taylor interval 
expansion can be used and can give good results in 
many cases. This last method is used in this paper. 

Moreover, experimental design is important for 
identifying mathematical models of modern aircraft 
dynamics from flight test data, for example. In the case 
of aerospace domain, the flight test input has a major 
impact on the quality of the data for modeling 
purposes. Good experimental design must account for 
practical constraints during the test. The overall goal is 
to design an experiment that produces data from which 
model parameters can be estimated accurately. Most 
importantly, in an estimation framework, the 
experimental conditions about noise and disturbances 
are usually properly modeled through appropriate 
assumptions about probability distributions ([13], [26], 
[10]). The conventional approach for the experimental 
design is based on stochastic models for uncertain 
parameters and measurement errors (see for example 
[25]). However, other sources of uncertainty are not 
well-suited to the stochastic approach and are better 
modeled as bounded uncertainty. This is the case of 
parameter uncertainties that generally arise from 

http://www.jmest.org/
mailto:qiaochu.li@utc.fr
mailto:lilianne.denis-vidal@math.univ-lille1.fr
mailto:lilianne.denis-vidal@math.univ-lille1.fr


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 3159-0040 

Vol. 2 Issue 2, February - 2015 

www.jmest.org 

JMESTN42350490 218 

design tolerances and from aging. In such cases, 
combining stochastic and bounded uncertainties may 
be an appropriate solution. Some works consider that 
the parameters belong to some prior domain, on which 
no probability function has to be defined (for example 
[20], [1]). The first aim at optimizing is the worst 
possible performance of the experiment over the prior 
domain for the parameters. This maximin approach to 
synthesis the optimal input is described and the 
specific criterion are developed. 

In a recent paper [4], it is supposed that the 
uncertainty on parameters can be modelled by 
bounded intervals and the concepts of interval analysis 
are used for the optimal input synthesis. In this paper 
the original approach of optimal input design for 
uncertain bounded parameter estimation is an 
extension of the works of E.A. Morelli ([15]) using the 
dynamic programming. This approach combines the 
concepts of dynamical programming with the maximin 
approach and with the tools of interval analysis. In the 
presented work, we propose to apply an optimal input 
obtained in [4] for the same case study taken from 
aerospace domain. By using this optimal input, we 
obtain an original algorithm to achieve a guaranteed 
state and parameter estimation based on interval 
analysis and the results reflects the impact of chosen 
input on this kind of model. 

This paper is organized as follows. In Section II, the 
problem statement and the case study are presented. 
The case study is taken from aerospace domain and 
describes the longitudinal motion of a glider. Section III 
presents some basic tools of interval analysis. The 
notions of interval, box, interval matrix and inclusion 
function are given. Section IV presents state 
estimation and the fundamental algorithm to implement 
state and parameter estimation. In Section V, the 
estimation results obtained on the case study are 
presented and discussed. Two cases of inputs are 
tested and the performance of the optimal input is 
highlighted. Finally, some conclusions are outlined in 
section VI. 

II. PROBLEM FORMULATION AND CASE STUDY 

This paper deals with estimating the unknown state 
and parameters for a nonlinear dynamic system of the 
following form: 

 

where 𝑥(𝑡, 𝑝) ∈ ℝ𝑛  and 𝑦(𝑡, 𝑝) ∈ ℝ𝑛𝑦  denote 
respectively the state variables and the measured 
outputs. The initial conditions 𝑥(0)  are supposed to 
belong to an initial bounded box [𝑋0], 𝑢 represents the 
input. 

The vector p is the vector of parameters to be 
estimated and 𝑝 ∈ ℝ𝑛𝑝 which is supposed to belong to 
an a priori box [𝑃0]. 

The time 𝑡 is assumed to belong to [0, 𝑡𝑚𝑎𝑥]. The 
functions f, g and h are nonlinear functions. f and g are 
supposed  analytic on M for every 𝑝 ∈ [𝑝0],where M is 
an open set of ℝ𝑛  such that 𝑥(𝑡, 𝑝) ∈ 𝑀  for every 
𝑝 ∈ [𝑝0]and 𝑡 ∈ [0, 𝑡𝑚𝑎𝑥]. 

The output error is assumed to be given by: 

 

We assume that 𝑣(𝑡𝑖)   and 𝑣(𝑡𝑖)  are known as 

lower and upper bounds for the acceptable output 
errors. Such bounds may, for instance, correspond to 
a bounded measurement noise. The integer 𝑁 is the 
total number of sample times. 

Interval arithmetic is used to compute guaranteed 
bounds for the considered problem at the sampling 
times {𝑡1, 𝑡2, … , 𝑡𝑛}.  

The case study that we consider in this work is 
given by an aerospace model which describes the 
longitudinal motion of a glider. Its physical behavior on 
different input is not clear due to the uncertainties 
considered in the form of intervals. The projection of 
the general equations of motion onto the aerodynamic 
reference frame of the aircraft and the linearization of 
aerodynamic coefficients give the following system: 

 

In these equations, the state vector x is given by 
(𝑉, 𝛼, 𝑞, 𝜃)𝑇  the observation y is full (i.e., 𝑦 = 𝑥 ), the 
input u is 𝛿𝑚(𝛿𝑚0 represents the initial condition). The 
variable V denotes the speed of the aircraft, α the 

angle of attack, 𝛼0 the trim value of α , θ the pitch 
angle, q the pitch rate, 𝛿𝑚  the elevator deflection 
angle, ρ the air density, g the acceleration due to 
gravity, l a reference length and S the area of a 
reference surface. B represents a moment of inertia. 
The parameters to be estimated are 𝐶𝑧𝛼̇ ,  𝐶𝑧𝑞 , 𝐶𝑚𝛼̇ , 

𝐶𝑚𝑞 which are assumed to be uncertain. The other 

coefficients correspond to the dynamic stability 
derivatives are supposed to be known. 

III. BASIC TOOLS 

Interval analysis provides tools for computing with 
sets which are described using outer-approximations 
formed by union of non-overlapping boxes. The 
following results are mainly taken from [7]. 
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A. Basic tools 

A real interval is a closed and connected 
subset of ℝ where 𝑢 represents the lower bound of [𝑢] 
and 𝑢 represents the upper bound. The width of an 
interval [𝑢]  is defined by 𝑤([𝑢]) = 𝑢 − 𝑢  and its 

midpoint by 𝑚([𝑢]) = (𝑢̅ + 𝑢)/2. 

The set of all real intervals of ℝ  is denoted𝕀ℝ . 

Two intervals [𝑢] and [𝑣]  are equal if and only if 
𝑢 = 𝑣  and 𝑢 = 𝑣 . Real arithmetic operations are 

extended to intervals [14]. 

Arithmetic operations on two intervals [𝑢] and [𝑣] 
can be defined by:  

 

An interval vector (or box) [𝑋]  is a vector with 
interval components and may equivalently be seen as 
a cartesian product of scalar intervals:  

 

The set of n-dimensional real interval vectors is 

denoted by . 

An interval matrix is a matrix with interval 
components. The set of n x m real interval matrices is 

denoted by . The width w(.) of an interval 
vector (or of an interval matrix) is the maximum of the 
widths of its interval components. The midpoint m(.) of 
an interval vector (resp. an interval matrix) is a vector 
(resp. a matrix) composed of the midpoint of its interval 
components. 

Classical operations for interval vectors (resp. 
interval matrices) are direct extensions of the same 
operations for point vectors (resp. point matrices) [14]. 

Let  the range of the function f over 
an interval vector [u] is given by: 

 

The interval function denoted [f] is a function from  

 to  .It is an inclusion function for f if: 

 

An inclusion function of f can be obtained by 
replacing each occurrence of a real variable by its 
corresponding interval and by replacing each standard 
function by its interval evaluation. Such a function is 
called the natural inclusion function. In practice the 
inclusion function is not unique, it depends on the 
syntax of f. 

B. Set Inversion 

Consider the problem of determining a solution set 
for the unknown quantities u defined by: 

 

where [y] is known a priori, U is an a priori search 

set for u and  a nonlinear function not necessarily 
invertible in the classical sense. (4) involves computing 

the reciprocal image of  and is known as a set 
inversion problem which can be solved using the 
algorithm Set Inverter Via Interval Analysis (denoted 
SIVIA). The algorithm SIVIA proposed in [8] is a 
recursive algorithm which explores all the search 
space without losing any solution. This algorithm 
makes it possible to derive a guaranteed enclosure of 
the solution set S as follows:  

 

The inner enclosure 𝑆  is composed of the boxes 

that have been proved feasible. To prove that a box [u] 

is feasible it is sufficient to prove that . 

Reversely, if it can be proved that , 
then the box [u] is unfeasible. Otherwise, no 
conclusion can be reached and the box [u] is said 
undetermined. The latter is then bisected and tested 
again until its size reaches a user-specified precision 

threshold 𝜀 > 0. Such a termination criterion ensures 
that SIVIA terminates after a finite number of iterations. 

IV. GUARANTEED STATE AND PARAMETER ESTIMATION 

This section concerns the integration of (1) and set 
inversion computation. Thus, the objective of this 
section is fist to obtain the state vector x at the 
sampling times {𝑡1, 𝑡2, … , 𝑡𝑁} corresponding to the 
measurement times of the outputs. Second follow the 
SIVIA procedure to get the validated sets of feasible 
parameters. 

A. Validated Integration for Nonlinear Systems 
by Using Taylor Expansion 

Rigorous solution for dynamical nonlinear systems 
can be solved efficiently by considering methods 
based on Taylor expansions [14], [24], [2] or [17]. 
These methods consist in two parts: the first one 
verifies the existence and uniqueness of the solution 
by using the fixed point theorem and the Picard-
Lindelöf operator. At a time 𝑡𝑗+1, an a priori box [𝑥̃𝑗] 
containing all solutions corresponding to all possible 
trajectories between 𝑡𝑗 and 𝑡𝑗+1  is computed. In the 

second part, the solution at 𝑡𝑗+1 is computed by using 

a Taylor expansion, where the remainder term is [𝑥̃𝑗]. 

To obtain the set [𝑥̃𝑗], a classical technique consists 

in inflating this set until it verifies the following inclusion 
[12], [17]: 

 

where ℎ𝑗  denotes the integration step and [𝑥𝑗]the 

first solution. In the proposed work, to state estimate, 
we use the package VNODE-LP in which the previous 
validated integration method is implemented. The 
former package VNODE-LP is VNODE, which is 
developed by N.S Nedialkov [18], is a  C++ package 
for computing bounds of solutions in Initial Value 
Problem for ordinary differential equation. In the latest 
version, named with VNODE-LP, algorithms 
corresponding to high order enclosure and Hermite-
Obreschkoff method [16] have been implemented. 
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Thus VNODE-LP gives a way to obtain tighter 
enclosure.  

B. Parameter Estimation 

Parameters estimation from experimental 
measures are usually obtained within a stochastic 
framework in which known distribution laws are 
associated to interferences and measurement noise. 
Oppositely, in a bounded error context, measures and 
modeling errors are supposed to be unknown but to 
stay within known and acceptable bounds. 

Errors between measured and predicted outputs 
may rely on many factors, among them: limited 
sensors accuracy, interferences, noise, structured 
uncertainties, etc. Some are quantifiable, some are 
not. We consider here the quantifiable error 𝜈, which is 
added to the model output y. The experimental outputs 
𝑦𝑚 are given by (2): 

 

In the presented work, the error 𝜈 is supposed to be 
within an interval whose lower bound is 𝜈 and upper 

bound is 𝜈. An allowable error set 𝔼 may be defined as 
a set of constraints: 

 

These bounds may be considered constant over 
time as well as variable. They may be established from 
data given by constructors for electronic parts for 
example. 

A parameter vector p is acceptable if and only if the 
error between 𝑦𝑚 and the model output y is bounded in 
a known way. To estimate system parameters, we 

have to get the set of all parameters p enclosed in 
the a priori search set [𝑃0] such that error between real 

data and model outputs belongs to : 

 

The characterization of the set may be defined as a 
set inversion problem (4). By simplicity of notation, we 
note this set: 

 

A guaranteed enclosure of may be computed by 
using the SIVIA algorithm presented in Section III-B. 

C. Parameter and State Estimation 

With all the tools in hand, we could perform the 
parameter estimation with different inputs. The whole 
procedure is constructed with 3 steps. First, prepare 
the measurements. The measurement should be 
generated with different input with the same initial state 
condition. Second, according to experience, set a priori 
domain for parameter. At last, the state and parameter 
estimation can be performed. We propose the 
following algorithm implemented in C++. It combines 
the strategy of bisections used in SIVIA and the 
validated integration used by VNODE-LP. A new 
robust verification regime is proposed here when 

VNODE-LP is unable to obtain a predicted state. This 
would reduce the frequency of bisection and admit 
more admissible parameter candidate in practice. 

 

V. APPLICATION 

In this section, the state and parameter estimation of 
the aerospace system is performed by using the 
proposed algorithm. The initial conditions are 
supposed to belong to:  

 

The parameters are supposed to be included in: 

 

The output error (2) is supposed to be bounded by:  

 

The measurements have been simulated by using 
the parameters equal to (1.8, 5, -5, -22) and initial 
states [𝑋0]. The test duration is fixed at one second. 

The stop criterion for SIVIA is 𝜀=[0.01, 0.05, 0.05, 0.1] 
that means that the stop threshold for the first 
parameter is 0.01, the second and third are 0.05 and 
the last one is 0.1.  

Two cases of inputs are considered for the tests: the 
first one concerns a constant input and the second one 

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 3159-0040 

Vol. 2 Issue 2, February - 2015 

www.jmest.org 

JMESTN42350490 221 

is an optimal input proposed in [4] with six stages. The 
optimal input is the following: 

 

with 𝑎6𝑖
= 1.6  degrees with 𝑖 = 0, … 5  and 𝑡06

= 0𝑠 , 

𝑡16
= 0𝑠 , 𝑡26

= 0𝑠 , 𝑡36
= 0𝑠 , 𝑡46

= 0𝑠 , 𝑡56
= 0𝑠 , The 

function H is the Heaviside function. 

The optimized input is given in the Figure 1.  

 

The order of the Taylor expansion is chosen 
automatically by the VNODE-LP.  

The parameter estimation results, for a constant 
input,  are given in Figures 2, 3, 4, 5, 6 and 7. 

 

 

 

 

 

 

 In these figures, the red boxes represent the 
acceptable sets for parameters, the blue boxes 
represent the rejected boxes and the yellow boxes 
represent the undetermined boxes. The black border 
cube represent the box [𝑃0]. 
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As seen in these figures, the first three parameters 
have not been well estimated. The diameter of each 
interval remained almost as proposed. The parameter 
𝐶𝑚𝑞 has been well obtained compared with other 

parameters.  

By using the optimal input, we obtain Figures 8, 9, 
10, 11, 12 and 13.  

 

 

 

 

 

 
 

We can observe a great difference on the quality of 
estimated results with different inputs. The volume of 
estimated parameters are reduced heavily which 
increase the quality of estimation. The term %p 
indicates the percentage of unacceptable and 
uncertain interval sets we eliminated. Results have 
been done with constant input and optimal input.  

TABLE I.  ELIMINATED PERCENTAGE OF INITIAL BOX 

Parameter %𝒑𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕 %𝒑𝒐𝒑𝒕𝒊𝒎𝒂𝒍 

𝐶𝑧𝛼̇ 0.00 0.00 

𝐶𝑧𝑞 0.00 75.00 

𝐶𝑚𝛼̇ 25.00 87.50 
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Parameter %𝒑𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕 %𝒑𝒐𝒑𝒕𝒊𝒎𝒂𝒍 

𝐶𝑚𝑞 65.62 93.75 

 

Clearly, the optimal input improves significantly the 
estimated parameters' domain. The last 3 rows of 
Table I show an improvement in estimation results. 

The volume of obtained acceptable boxes are 
presented in the following table: 

TABLE II.  VOLUME OF OBTAINED ACCEPTABLE BOXES 

Parameters 
Constant 
input 

Optim
al input 

𝐶𝑧𝛼̇, 𝐶𝑧𝑞, 𝐶𝑚𝛼̇ 0.1215 
9.4482
e-4 

𝐶𝑧𝑞, 𝐶𝑚𝛼̇, 𝐶𝑚𝑞 1.7325 0.0116 

 

Through Table II, we show the clear improvement 
of the acceptable domain for the parameters by using 
an optimal input.  

VI. CONCLUSION 

In this contribution, a procedure for parameter and 
state estimation in a bounded-error context has been 
pointed out. Two different inputs have been 
implemented in the context of interval analysis and the 
estimation results have been compared. We can see 
that the coefficient 𝐶𝑧𝛼̇  is difficult to be correctly 
estimated even with the optimized input.  

The efficiency with an optimized input in interval 
parameter estimation context has been revealed. 

The presented method has potential for being used 
for active diagnosis problems in continuous-time 
systems or hybrid systems.  

Our future works concern an improvement in the 
estimation parameter problem for these models and 
the potential application of this method to the active 
diagnosis. In fact, this last objective will be to use 
these tools to achieve an active diagnostic 
methodology that is to find a sequence of actions to 
refine the diagnosis.  

As seen in the results for parameter estimation, the 
obtained results are clearly closed to the choice of 
input, thus another direction of our future work 
concerns the development of a methodology of optimal 
input design in a bounded error context for parameter 
estimation which is a new perspective. 
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