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Abstract—This paper deals with the 
applicability of the maximum energy release rate 
criterion, of the minimum strain energy density 
(SED) criterion and of the maximum tangential 
stress (MTS) criterion, the purpose of which is to 
define the direction in which the crack kinks at 
different load modes, which leads to different 
opening of the crack tip. In addition to this, the 
suitability of the energy release rate method, using 
the J integral, is dealt with, used to determine 
stress intensity factors KI and KII for an initial 
crack. The suitability of the method is determined 
by comparing the results acquired with this 
method with the results obtained with the crack 
opening method. Based on FEM analysis, it is 
shown that the results obtained with any of the 
three methods used for determining the direction 
in which the crack kinks are comparable when 
tensile stresses at the crack tip are greater than 
shear stresses. If shear stresses prevail, the 
results differ most significantly when using 
maximum energy release rate criterion and the 
energy release rate method using the J integral. 
The differences increase with increased stress 
intensity factor KII. When using the minimum strain 
energy density criterion, special attention must be 
paid to the correct use of its local minimum. The 
results when using energy release rate method 
with the J integral to determine stress intensity 
factors KI in KII are similar to the results obtained 
with the crack opening method; however, special 
attention should be paid to determining the results 
when the impact of shear stresses prevails near 
the crack tip. 

Keywords—Kink angle, Fracture mechanics, 
Stress intensity factor, Numerical simulations 

I. INTRODUCTION 

Fracture mechanics is widely used for analyzing 
crack propagation under given load. For this purpose it 
is necessary to know stress distribution around the 
crack tip. Due to stress concentration caused by crack 
tip, stresses can exceed yield stress. When a plastic 
zone is small compared to the crack length, a linear 
fracture mechanics can be used, where stresses can 
be described with William’s equation. William’s 
equation includes first order constants and higher 
order constants. First order constants describe 
magnitude of crack tip opening mode. Under general 

loading a crack tip can open in mixed-mode with 
tensile mode (described with stress intensity factor KI), 
in-plane shear mode (described with stress intensity 
factor KII) and out-of-plane shear mode (described with 
stress intensity factor KIII). Under mixed-mode loading, 
a pre-crack kinks and further propagates under mode 
I. Usually stress intensity factors are determined 
before the kink angle (crack propagation angle) is 
determined. Many substitution and energy methods 
exist for determination of these factors [1, 2, 3]. 
Normally, a kink angle under mixed-mode opening can 
be determined with the maximum energy release rate 
(G) [4] criterion, the minimum strain energy density 
(SED) criterion [5] and the maximum tangential stress 
(MTS) criterion [6] when stress intensity factors are 
known. In this paper stress intensity factors are 
determined using displacement correlation method and 
energy release rate by using the complex J integral, 
while the kink angle is determined using maximum 
energy release rate, SED and MTS criteria. 

II. MIXED-MODE FRACTURE CRITERIA 

A. The maximum energy release rate (G) 
criterion 

The Virtual Crack Extension method (VCE), as 
proposed by Hellen [7], is based on the criteria of 
released strain energy dV per crack extension da 

G
V

a
 

d

d
 (1) 

which serves as a basis for determining the 
combined stress intensity factor around the crack tip 
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Crack tip elements 

Initial and extended crack tip configuration 

If VC is the strain energy obtained for all degrees of 
freedom not present in the crack tip elements, and VN 
is the energy in the crack tip elements when the tip is 
not extended, while VD is the energy in these 
elements when the tip is extended (see Fig. 1), then 
the total energies of the initial and altered bodies, 

T

D
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N VV and , respectively, are equal to 
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Thus, for a virtual crack extension a it follows 
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which is clearly independent of VC. It follows that 
only strain energies VN and VD in the crack tip 
elements need to be calculated for every possible 
crack extension. This results in a very efficient method 
for determining the instantaneous energy release rate 
and, thus, the stress intensity factor for any given 
crack extension. 

Following the same argument, the energy release 
rate G and the stress intensity factor K can be easily 
determined for several different possible crack 
extension directions for a cluster of points on an arc 
around the initial crack tip with radius da, see Fig. 2a 
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Assuming the validity of the maximum energy 
release criterion, the crack will propagate in the 
direction corresponding to the maximum value of 
(dV/da)

j
, i.e. in the direction of the maximum stress 

intensity factor K
j
. Computational procedure is based 

on incremental crack extensions, where the size of the 
crack increment is prescribed in advance. The virtual 
crack increment should not exceed 1/3 of the size of 
crack tip finite elements. For each crack extension 
increment the stress intensity factor is determined in 
several different possible crack propagation directions 
and the crack is actually extended in the direction of 
the maximum stress intensity factor, which requires 
local remeshing around the new crack tip. The 
incremental procedure is repeated until full fracture 
occurs or until the stress intensity factor reaches the 
critical value Kc, when full fracture is imminent. For 

improved numerical results, special fracture finite 
elements that exhibit r

-1/2
 stress singularity are used in 

the first circle of elements around a crack tip, with 
ordinary elements elsewhere, Fig. 2b. 
 a)                                                             b) 

 da, 1 

 da, 2 

       

       

 da, n 

 various directions of virtual 
 crack extension 

 crack tip 

special crack 
tip elements 

ordinary finite 
elements 

 

Fig. 2. Virtual crack extensions of the crack tip 

Following the above procedure, one can 
numerically determine the functional relationship 
K=f(a) and the critical crack length ac at K=Kc from the 
computed values of K at discrete crack extensions a. 

Hellen and Blackburn [8] also showed that in case 
of maximum energy release rate the crack 
propagation angle can be determined using: 
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This equation can be used for determining crack 
propagation angle up to 45°. Therefore, special care 
must be taken when shear mode is dominant around 
the crack tip. 

B. The minimum Strain Energy Density (SED) 
criterion 

The SED fracture criterion locally focuses on the 
continuum element ahead of the crack and is based 
on the notion of weakness or severity experienced by 
the local material. Failure occurs when a critical 
amount of strain energy dW is accumulated within the 
element volume dV and the crack is then advanced 
incrementally in the corresponding direction [5, 9]. The 
strain energy density function dW/dV is assumed to 
have the form 

r

S

dV

dW
  (8) 

where S is the strain energy density factor and r is 
the distance from the crack tip. Therefore, the 
minimum of the strain energy density factor Smin 
around the crack tip determines the direction of crack 
propagation. 

The strain energy density can be determined 
directly from the relationship 

 T

dV

dW

2

1
  (9) 

which results in the following expression for the 
coordinate stresses evaluated at integration points of 
finite elements around the crack tip 
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 10) 

where  is the shear modulus such that  E = 

2(1+) with E being the Young’s modulus. 
The position of integration points actually defines 

the corresponding angle of calculated strain energy 
density and strain energy density factor S around the 
crack tip as can be observed from Fig. 3. 

 
 

 r 

crack tip elements 

 

integration points positions 

Fig. 3. Layer of integration points around crack tip 

Discrete values for S are then fitted with the 
approximation function, which enables a simple 
algorithm for determining the local minimum. 

The strain density function has several minimums 
around the crack tip, where the global minimum is not 
necessarily the true solution of the problem as can be 
observed from Fig. 4. 

 

Fig. 4. Distribution of the strain density function 

The minimum of strain density function Smin can be 
found numerically by incremental search for a local 
minimum of function S for different possible crack 

extension directions i in the range  around the 
crack tip angle. 

Crack propagation direction determined from 
coordinate stresses show very good correlation with 
experimental data. The accuracy of the method 
depends only on the accuracy of finite element 
method, which can be improved by using finer mesh 
around the crack tip. 

Alternatively, the strain energy density factor S can 
be evaluated for 2-dimensional linear elastic crack 

problems from the stress intensity factors in the 
following manner 

  (11) 

where the coefficients aij (i, j = 1, 2) are for 2-
dimensional case equal to 
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The angle , which is measured from the local 
crack direction, corresponding to the minimum of S 
can be determined from the first and the second 

derivative of Eq. (11) in respect to . 
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This approach strongly depends on correct 
evaluation of the stress intensity factors. To predict 
the crack growth with the use of equations (11), (13) 
and (14), the stress intensity factors KI and KII have to 
be known. 

Stress intensity factors were determined using the 
displacement correlation method and energy release 
rate using the J integral. In case of plane strain case, 
stress intensity factors can be determined using the 
displacement correlation method, with the following 
equations 
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where ui and vi (i = 1,2) are displacements at 
nodes near the crack tip in x and y directions, 
respectively, and r is a distance of the node on the 
crack surface from the crack tip, see Fig. 5. 
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Fig. 5. Displacement correlation method 
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The corner nodes of special crack tip finite 
elements were chosen as points 1 and 2 on opposite 
crack faces. 

Hellen and Blackburn [8] proposed a method for 
determining stress intensity factors using the J integral 
values in parallel (J1) and perpendicular (J2) direction 
of the crack, as shown in Fig. 6. 
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Fig. 6. Definition of J1 and J2 

In linear elastic fracture mechanics, the J integral is 
equal to the energy release rate G, which can be 
calculated, using the VCE method. In this case stress 
intensity factors can be calculated from 
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When this method is used, special care should be 
taken when shear mode is dominant around the crack 
tip. In such a case a sign before the square root must 
be changed to get KII > KI. A physical intuition is 
needed when a sign should be changed to get correct 
results for KI and KII. 

C. The Maximum Tangential Stress (MTS) 
criterion 

Erdogan and Sih [6] proposed a criterion for 
determining crack propagation angle using a direction, 
which is perpendicular to the direction of maximum 
tangential stress. Shear stress can be expressed in the 
polar coordinate system as: 
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In the direction of maximum tangential stress the 
shear stress is equal to zero. Therefore, the equation 
for the shear stress can be expressed as: 
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Solutions for the above equation are: 
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The first solution has no physical meaning, 

because a crack cannot kink in the direction ± . The 
second solution can be written in the explicit form as: 
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For pure mode I loading of a crack tip (KI  0, KII = 
0), a crack propagation angle is equal to 0, while for 

mode II (KI = 0, KII  0), it is equal to -70,6°. 

III. PRACTICAL APPLICATION OF THE COMPUTATIONAL 

MODEL 

The determination of stress intensity factor and of 
crack propagation angle was evaluated, using the CTS 
specimen [10, 11] shown in Figure 3, with a 55 mm 
long crack. The CTS specimen is loaded with a static 

load of F=15 kN, where 


 321 FFFF  (Fig. 7). Mixed 

mode crack tip opening was simulated using different 
load cases between pure mode I (load angle is equal 
to 0°) and pure mode II (load angle is equal to 90°). 
Material properties were defined for an aluminum alloy 
with Young´s modulus E = 72400 MPa and Poisson´s 
ratio ν = 0,33. 
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Fig. 7. Boundary conditions for CTS specimen 
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Fig. 8. Discretization of CTS specimen using finite 

elements 

IV. RESULTS 

A. Stress intensity factor 

When loading an initial fatigue crack, the crack 

kinks. Consequently, depending on the load angle 

 various proportions of intensity factors KI and KII are 

obtained. 

The BERSAFE [12] software package was used to 

calculate shift values; afterwards equations Eg.(17) 

and Eg.(18) were used to calculate the values of 

stress intensity factors KI and KII. In relation to the 

load angle of 75°, the stress intensity factor KII 

prevails over the stress intensity factor KI. In such a 

case it is required to change the sign that precedes 

the square root in equations Eg.(17) and Eg.(18). 
With energy release rate method using the J 

integral, very good results for values KI and KII are 
obtained; however, for this method, physical intuition 
is required to determine KI and KII, which can be 
problematic when analysing crack propagation in very 
complex models. 

TABLE I.  COMPARISON OF TWO METHODS FOR DETERMINATION OF 

STRESS INTENSITY FACTOR 

 
DCM J(G) 

KI KII KI KII 

0° 542,7 -0,4 549,9 -0,2 

15° 524,3 -57,0 531,3 -56,5 

30° 470,0 -110,6 476,7 -109,2 

45° 383,4 -156,2 389,8 -153,7 

60° 271,3 -191,4 279,1 -186,2 

75° 140,7 -213,7 138,3 -217,3 

90° 0,1 -221,8 0,1 -222,6 

B. Kink angle 

In Fig. 9, a comparison of results for the kink angle 

0 for various load angles  of an initial fatigue crack 
is presented. 

The results match well up to the load angle =60°. 
When the load angle is larger than 60°, the results 
obtained using the maximum energy release rate 

criterion deviate significantly from the results obtained 
on the basis of the remaining two criteria. 

 

Fig. 9. Comparison of 0 for different criteria 

The deviation of the results is largest in case of the 
pure loading mode II. Therefore, it can be concluded 
that the results obtained with the maximum energy 
release rate are not very accurate when shear 
stresses prevail over the tensile stresses near the 
crack tip. 

If the results for the kink angle using the criteria of 
the minimum strain energy density and the test results 
[13, 14] are compared, it can be observed that the 

results match well for load angles =30° and =60°. 

When it comes to load angles =75° and =90°, the 
difference between the results for the kink angle is 
larger (approximately 5° and 11°). When it comes to 
further crack propagation, the test revealed a larger 
slope of the direction of crack propagation than 
numerical analysis. 

On the basis of the comparison between numerical 
results and test results it can be concluded that, using 
the criteria of minimum strain energy density, the kink 

angle for load angles  up to 60° can be determined 
very reliably, whereas the results do not match so well 
when it comes to further crack propagation. 

When using the criteria of minimum strain energy 
density, special attention must be paid when trying to 

find a solution for the kink angle 0. It is evident from 
Fig. 10 that the global minimum for Smin is obtained at 

the angle of   ‒130° when the crack cannot 
propagate. Consequently, it is necessary to observe 
the local minimum for the value of the angle when the 
crack can physically propagate. In our analysis, that 
was the second minimum. 

 

Fig. 10. Distribution of factor S round the crack tip 
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Fig. 10 presents the distribution of the strain 
energy density round the crack tip for various load 

angles . From figures, the increase in the kink angle 

0 related to the increase in load angle  is evident. 
Fig. 11 presents the distribution of the strain 

energy density round the crack tip for various load 

angles . From figures, the increase in the kink angle 

0 related to the increase in load angle  is evident. 

 

 

 

 
 

 

 

 

Fig. 11. Distribution of S round the crack tip, depending 
on the load angle  

For =0° and =90°, a symmetrical curve S round 
the crack tip is obtained, Fig. 11. 

V. CONCLUSIONS 

The crack tip of a CTS test piece is loaded with 
different proportions of tensile and shear loads; FEM is 
used to discretize the CTS test piece. Due to the 
impact of the shear stress near the initial crack tip, the 
crack kinks. The direction in which the crack kinks and, 
consequently, in which the crack propagates, is 
determined, using the maximum energy release rate 
criterion, the minimum strain energy density (SED) 
criterion and the maximum tangential stress (MTS) 
criterion. Stress intensity factors KI in KII for the initial 
crack (pre-crack) were determined with the energy 
release rate method using the J integral, and the 
results are compared with the results obtained using 
the crack opening method. 

For the analysis, plane strain and material 
properties of the aluminum alloy are taken into 
account, which can be described with linear elastic 
fracture mechanics. 
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Generally speaking, the direction in which the crack 
kinks in case of opening modes I and II can be fairly 
reliably described when KI > KII. 

With the energy release rate method using the J 
integral, special attention must be paid when shear 
stress prevails near the crack tip as in such a case 
physical intuition is required to define stress intensity 
factors KI and KII. Similarly, the analysis shows that, 
with the energy release rate method, on which the 
VCE method is based, the direction in which a crack 
kinks can be determined up to 45°. Consequently, it is 
impossible to define the direction in which a crack 
kinks from an initial crack in case of mode II of pure 
loading. 

In case of the minimum strain energy density (SED) 
criterion, results show that, when this criterion is used 
to determine the crack kink, the second minimum of 
the strain energy density must be taken into 
consideration as at the global minimum, the crack 
cannot propagate physically. 

With the maximum tangential stress (MTS) 
criterion, the direction in which a crack kinks can be 
uniformly determined. 
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