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Abstract—This paper presents a differential 
quadrature solution for analysis of transverse 
vibrations of non-homogeneous rectangular 
orthotropic plates of linearly varying thickness 
resting on Winkler foundation. Following Lévy 
approach i.e. two parallel edges are simply 
supported, the governing equation of motion has 
been solved for three different combinations of 
clamped, simply supported and free boundary 
conditions at the other two edges. Numerical 
results for first three natural frequencies for 
various values of parameters are presented in 
tables and graphs. The accuracy and convergence 
results are examined and verified. 

Keywords — DQM, orthotropy, variable 
thickness, non-homogeneity. 

I. INTRODUCTION 

The theory and numerical method of vibration of 
non-homogeneous rectangular orthotropic plates of 
linearly varying thickness plates on foundation have 
been widely concerned. Leissa provides an excellent 
bibliography on plate vibration up to 1987 in [1-5]. 
Subsequently the study of free vibrations of 
homogeneous isotropic rectangular and square plates 
of linearly varying thickness has been reported [6, 7]. 
Considerable amount of work dealing with natural 
frequencies of homogeneous rectangular orthotropic 
plates of uniform and non-uniform thickness have 
appeared [8-15]. Various numerical methods have 
been employed to study the vibrational behavior of 
uniform/variable thickness plates and are reported [8-
14]. Of these, Rayleigh-Ritz method with 
characteristics orthogonal polynomials has been 
employed to obtain the natural frequencies of 
transverse vibrations of rectangular plates of non-
uniform thickness [8]. In [9] adopted a semi-analytical 
approach in the differential quadrature method to 
investigate free vibration of isotropic and orthotropic 
rectangular plates with linearly varying thickness. 
Rossi [10] employed the finite element method in the 
study of vibrations of thin orthotropic rectangular plate. 
Bambill et al. [11] used the Rayleigh-Ritz method and 
finite element method to analyze the transverse 
element method to analyze the transverse vibration of 
an orthotropic rectangular plate with linearly varying 

thickness. Ashour [12] studied the flexural vibrations 
of orthotropic plates with variable thickness in one 
direction by employing the finite strip transition matrix 
technique. In the reference [13] Chebysev collocation 
method has been used in the study of transverse 
vibrations of non-uniform rectangular orthotropic 
plates. Recently Lal and Dhanpati [14] have presented 
Quintic spline solution for transverse vibration of non-
homogeneous orthotropic rectangular plates. 

In the present work, the analysis of vibrational 
behavior of non-homogeneous orthotropic rectangular 
plates with linearly varying thickness along one 
direction resting on Winkler foundation on the basis of 
the classical plate theory have been investigated. The 
two opposite sides are simply supported while the 
other two may be clamped or simply supported or 
free. The partial differential equation governing the 
motion of plate has been reduced into fourth order 
ordinary differential equation with variable coefficients. 
The resulting equation is then solved by differential 
quadrature method (DQM) to study the effect of 
various parameters for a Huber type orthotropic plate 
material “ORTHO1” [15] for the first three mode of 
vibration. 

II. MATHEMATICAL FORMULATION 

Consider an orthotropic nonhomogeneous 

rectangular plate of varying thickness ),( yxh  

occupying the domain byax  0,0  in xy  

plane, where a  and b  are the length and the breadth 

of the plate respectively and resting on a Winkler 
foundation with foundation modulus kf. The middle 
surface being z = 0 and origin is at the one of the 
corners of the plate. The x and y axes are taken along 
the principal directions of orthotropy and the axis of z 
is perpendicular to the xy plane. The differential 
equation governing the transverse vibration of such 
plates is given by [14] 
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where ),,( tyxw
 
is the transverse deflection, t the 

time,  the mass density and ,,, xyx EE  y and xyG  

are material constants in proper directions defined by 
an orthotropic stress-strain law. 

The two opposite edges y = 0 and b are assumed 
to be simply supported. For a harmonic solution, the 
displacement w  is expressed as 

,)/sin()(),,(
_

tiebypxwtyxw    (2) 

where p  is a positive integer and   is the 

frequency in radians. 

Let the thickness of the plate, Young’s moduli 

yx EE ,  and density   be the functions of space 

variable x  only and shear modulus is

)1(2/ yxyxxy EEG  . 

By introducing the non-dimensional variables X = 

x/a, Y = y/b, awWahh /,/
__

  and using (2), (1) 

reduces to 
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where 
22222 /bap    and primes denote 

differentiation with respect to X. 

For linear variation in thickness [10, 11] i.e. 
_

h = 0h

(1+ α X) and following [14] for non-homogeneity of the 
plate material in X direction as follows: 



    eeEEeEE y 021 ,,   (4) 

where 0h , 0  are the thickness and density of 

the plate at 0X ,α the taper parameter, μ the 

non-homogeneity parameter, β the density 

parameter and 1E , 2E  the Young’s modulii in 

proper directions at X=0. 

Equation (3) now reduces to 

043210  WAWAWAWAWA vi   (5) 

where, 
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where K= a kf (1- x y )/ 1E  , 

Ω
2 
= 12 0 (1- x y ) a

2
ω

2
/ 1E 0h 2

. 

The solution of (5) together with the boundary 
conditions at the edges X = 0 and X = 1 gives rise to a 
two-point boundary value problem with variable 
coefficients whose closed form solution is not 
possible. An approximate solution is obtained by 
employing differential quadrature method. 

III. METHOD OF SOLUTION: DIFFERENTIAL 
QUADRATURE METHOD 

Let X1, X2, Xm be the m grid points in the 
applicability range [0, 1] of the plate. According to the 
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DQM, the n
th 

order derivative of W(X) w.r.t. X can be 
expressed discretely at the point Xi as 
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and i =1,2,…, m  (6) 

where 
)(n

ijc  are the weighting coefficients 

associated with the nth order derivative of W(X) w. r. 
to X at discrete point Xi. Following Shu [16, pages 31, 
35] are given by 
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Discretizing equation (5) at grid points Xi, 

i = 3, 4,…….,m-2, it reduces to, 

.0)()(

)()()(

,4,3

,2,1,0





iiii

iiiii

iv

i

XWAXWA

XWAXWAXWA
  (11) 

Substituting for W(X) and its derivatives at the i
th
 

grid point in (11) and using relations (6) to (10), (11) 
becomes 
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For i = 3, 4 …., (m-2), one obtains a set of (m-4) 
equations in terms of unknowns 

,,,2,1,))(( mjXWW jj   which can be written in the 

matrix form as 

[B][W*]=[0]  (13)  

where B and W* are matrices of order (m-4) x m 
and (m x 1) respectively. 

Here, the (m-2) internal grid points chosen for 
collocation are the zeros of shifted Chebyshev 
polynomial of order (m-2) with orthogonality range 

[0, 1] given by )]
22
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IV. BOUNDARY CONDITIONS AND 
FREQUENCY EQUATIONS 

The three different combinations of boundary 
conditions namely, C-C, C-S, C-F have been 
considered here, where C, S, F stand for clamped, 
simply supported and free edge, respectively and 

first symbol denotes the condition at the edge X=0 
and second symbol at the edge X=1.By satisfying the 
relations for clamped, simply supported and free edge 
conditions, respectively, a set of four homogeneous 
equations in terms of unknown Wj are obtained. 
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These equations together with field equation (13) 
give a complete set of m homogeneous equations in 
m unknowns. For C-C plate this set of equations can 
be written as 

   0* 







W

B

B

CC
  (15) 

where B
CC

 is a matrix of order 4m. For a non-
trivial solution of (15), the frequency determinant must 
vanish and hence, 

0
CCB

B
.  (16) 

Similarly for C-S and C-F plates, the frequency 
determinants can be written as 

0
SCB

B
& 0

FCB

B
respectively  (17, 18) 

V. NUMERICAL RESULTS AND DISCUSSION 

The frequency equations (16-18) have been solved 
numerically to compute the values of the frequency 

parameter  for various values of plate parameters 
and the effect of foundation parameter, non-
homogeneity parameter, density parameter, taper 

parameter and aspect ratio on frequency parameter  
has been analysed for C-C, C-S and C-F plates 
vibrating in first three modes of vibration. The elastic 
constants for the plate material are taken as 

,101 10

1 MPaE   ,1.0,2.0,105 9

2  yxMPaE   

given by [15] (‘ORTHO1’). This is obtained by taking p 

= 1.0 and thickness 0h  = 0.1at the edge 0X . To 
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choose the appropriate number of collocation points 
m, convergence studies have been carried out for 
various sets of parameters for all the three plates. 
Convergence graphs are shown in the Figs. 1(a-c) for 

a/b = 1.0, K = 0.02,  = 0.5, α = -0.5 and β = 0.5 for C-
C, C-S and C-F plates respectively. For these data the 
maximum deviation were observed. In all the 
computations, m = 20 has been fixed since a further 
increase in m does not improve the results even in the 
fourth place of decimal. 

Table 1 presents a comparison of the results which 
shows the computational accuracy of DQM for 

homogeneous ( = β = 0), isotropic (E2 / E1= 1) plate 
of uniform thickness (α=0.0) for υx = υy = 0.3 and 
p=1.0 with approximate results obtained by quintic 
spline technique, Chebyshev collocation method, 
Frobinius method and finite element method and 
exact value reported in [1]. 

The results are presented in tables (2-4) and Figs. 

(2 & 3). It is found that the frequency parameter  for 
a C-S plate is greater than that for C-F plate while 
smaller than that for a C-C plate for the same set of 
values of plate parameters. 

The tables (2-4) presents the values of frequency 
parameter for E2 / E1 = 0.5, υx = 0.2 and different 

values of non-homogeneity parameter  = -0.5, 0.0, 
0.5, density parameter β = -0.5, 0.0, 1.0 foundation 
parameter K= 0.0, 0.02, taper parameter α = -0.5, 0.0, 
0.5 and aspect ratio a/b= 0.5, 1.0 for C-C, C-S and C-
F plates vibrating in first three modes of vibration. It is 

observed that the frequency parameter  decreases 
with increasing values of density parameter β keeping 
other parameters fixed. The rate of decrease in 

frequency parameter  with β increases with the 
increase in the values of non-homogeneity 

parameter, foundation parameter K and taper 
parameter α. This rate of decrease for a C-S plate is 
higher than that for C-F plate but smaller than that for 
C-C plate. The rate of decrease in Ω with β increases 
with increase in number of modes for all the plates. 
Further, it is found that frequency parameter Ω 
increases with increasing value of boundary 

conditions. The rate of increase in  with  decreases 
in the order C-C, C-S and C-F non-homogeneity 

parameter  for all the three plates respectively. This 
rate decreases with the increase in the values of 
foundation parameter K or density parameter β or 
both while increases with the increasing value of taper 
parameter α for all the three plates for first three 
modes. This rate of increase gets pronounced in 
higher modes. The frequency parameter Ω increases 
with the increasing values of the aspect ratio a/b for 
C-C, C-S and C-F plates vibrating in first three modes 
of vibration. The rate of increase of frequency 
parameter Ω with a/b in case of C-S plate is smaller 
than that for a C-F plate but higher than that for a C-C 
plate, irrespective of other plate parameters. However, 
when the plate is vibrating in the first mode due to the 
effect of elastic foundation this rate of increase does 
not follow order of the boundary conditions i.e. this 

rate of increase in C-F plate is smaller than that for C-
S plate. This rate increases with the increase in the 
values of taper parameter α, non-homogeneity 

parameter, and foundation parameter K while 
decreases with the increasing value of density 
parameter β for all the three plates. This rate of 
increase increases with the increase in number of 
modes. 

Fig. 2(a) depicts the behavior of frequency 
parameter Ω with taper parameter α for a/b= 1, 

β = -0.5, K = 0.0, 0.02, and  = -0.5, 0.5 for the first 

mode of vibration. The frequency parameter  is 
found to increase continuously with the increasing 
values of taper parameter α in the absence of elastic 
foundation (K=0.0) for all the three plates. However, in 
the presence of an elastic foundation, the frequency 
parameter Ω is found to increase with increasing 
values of α for C-C and C-S plates, but in case of C-F 

plate for  = -0.5, the frequency parameter Ω 
decreases with the increasing values of taper 

parameter α, while for  = 0.5, it first decreases and 
then increases with a local minima in the vicinity of α= 

0.2. In particular, for a C-S plate for K=0.02 and  = -
0.5, the frequency parameter Ω first decreases and 
then increases, with a local minima in the vicinity of α 
= -0.4. In case of second mode of vibration, Fig. 2 (b), 
the frequency parameter Ω increases with increasing 
values of taper parameter α for all the boundary 
conditions. The rate of increase in frequency 
parameter Ω is found to increase with the increasing 

values of non-homogeneity parameter  but it 
decreases with the increase in the value of foundation 
parameter K. As far as the behavior of the plate 
vibrating in the third mode is concerned, 

Fig. 2 (c), it is same as for the second mode. The 
rate of increase of frequency parameter Ω with taper 
parameter α is higher in third mode as compared to 
the first two modes. 

Figs. 3(a-c) show the plots of the frequency 
parameter Ω versus foundation parameter K for taper 
parameter α = 0.5, non-homogeneity parameter μ = 
0.5, density parameter β = -0.5, 0.5 and aspect ratio 
a/b =1.0. It is observed that the frequency parameter 
Ω increases with the increasing values of K for all the 
three boundary conditions. The rate of increase in 
frequency parameter Ω with foundation parameter K is 
higher in case of C-F plate as compared to C-S and 
C-C plates for the same set of values of other plate 
parameters. The rate of increase goes on decreasing 
with the increase in the order of modes. 

Figs. 4(a-c) present the plots for normalized 
transverse displacements for a square plate i.e. a/b = 

1.0 and K = 0.02, β = -0.5,  = -0.5, 0.5, α = -0.5, 0.5 
for the first three mode of vibration for clamped, 
simply supported and free plate, respectively. The 
nodal lines are found to shift towards the edge X = 1 
as α increases from – 0.5 to 0.5 i.e. as the plate 
becomes thicker at outer edge. A similar pattern of 
nodal lines is seen for different values of β and K. 

(c) 
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Fig.1. Percentage error in frequency parameter Ω; for (a) C-C, (b) C-S and (c) C-F plate, for a/b= 1.0,  
K= 0.02, μ= 0.5, β= 1.0, α = 1.0, —–—–, first mode,.……..., second mode, – – – – – , third mode.  
% error = [(Ωm –Ω20)/ Ω20] × 100. 

Fig.2. Natural frequencies of C-C, C-S and C-F plates: (a) first mode (b) second mode and (c) third 

mode, for a/b= 1.0,β = - 0.5.—––– , C-C; ……, C-S; – – – , C-F;▲, = - 0.5, K= 0.0; ∆, = 0.5, K= 0.0;       

●,  = -0.5, K= 0.02; ○,  = 0.5, K= 0.02. 
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VI. Conclusion 

The effect of non-homogeneity, which is presumed to arise due to variation in Young’s moduli and density on 
natural frequencies of rectangular orthotropic plates of linearly varying thickness resting on Winkler  foundation has 

been studied on the basis of classical plate theory. It is observed that frequency parameter  increases with the 

increase in non-homogeneity parameter , aspect ratio ba / , foundation parameter K, and other plate parameters 

being fixed. Further Ω is found to decrease with the increasing value of density parameter β keeping all other plate 
parameters fixed for all the three boundary conditions. However, the behavior with taper parameter α is not 
monotonous. The results will help design engineers to have desired natural frequency by a proper choice of plate 
parameters. 

       
 

 

 
Fig. 4:  Normal displacements: (a) C-C plate, (b) C-S plate, (c) C-F plate, for a/b = 1.0, β = -0.5, K = 0.02,  
———, first mode; …….....  , second mode; – – – – ,third mode;  
▲, μ = -0.5, α = -0.5; ∆, μ = -0.5, α = 0.5; ●, μ =0.5, α = -0.5; ○, μ = 0.5, α = 0.5.              

Fig.  3. Natural frequencies of C-C, C-S and C-F plates: (a) first mode (b) second mode and (c) third mode, 
for α = 0.5, μ = 0.5, a/b = 1.0.  —––, C-C; ……, C-S; – – –, C-F; ▲, β= - 0.5; ∆, β= 0.5.0.  
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Table 1: Comparison of frequency parameter Ω for isotropic (E2/E1=1), homogeneous ( = = 0), and 
uniform (α = 0) C-C, C-S and C-F plates for υ= 0.3. 
Boundary 

Conditions 
 K=0.0 K=0.01 

C-C 

a/b 0.5 1.0 0.5 1.0 

Ref.     /Mode I II I II I II I II 

Liessa [1] ― ― 28.946 69.320 ― ― ― ― 

Lal et al.[13] 23.816
 

63.635
 

28.951
 

69.327
 

26.214
 

64.472 30.954 70.187 

Jain &Soni [17] 23.816
 

63.535 28.951 69.327 ―
 

― ― ― 

Lal and 
Dhanpati [14] 

23.820
 

63.603
 

28.950 69.380
 

26.219
 

64.539 30.953 70.239 

Present 23.815 63.5345 28.950 69.3270 26.2142 64.472 30.954 70.1872 

C-S 

Liessa [1] ― ― 23.646 58.641 ― ― ― ― 

Lal et al.[13] 17.332
 

52.098 23.646 58.646 20.503 53.237 26.060 59.661 

Jain &Soni [17] 17.332
 

52.097 23.646 58.646 ― ― ― ― 

Lal and 
Dhanpati [14] 

17.335 52.150 23.647 58.688 20.506 53.288 26.061 59.702 

Present 17.3318 52.0979 23.6363 58.6464 20.5034 53.2372 26.0605 59.6607 

C-F 

Liessa [1] ― ― 12.680 ― ― ― ― ― 

Lal et al.[13] 5.704 24.944 12.687 33.065 12.351 27.243 16.762 34.839 

Lal and 
Dhanpati [14] 

5.703 24.949 12.684 33.064 12.350 27.248 16.760 34.831 

Present 5.7039 24.9438 12.6874 33.0651 12.3505 27.3432 16.7621 348325 

Table 2: Values of frequency parameter  for C-C plate, and E2/E1=0.5, x=0.2.  

β 

 

  
a/b = 0.5 

    
a/b =1 

  

 
K= 0.0 

  
K = 0.02 

  
K= 0.0 

  
K = 0.02 

 

-0.5 0.0 1.0 -0.5 0.0 1.0 -0.5 0.0 1.0 -0.5 0.0 1.0 

Mode I 

 
-0.5 17.3309 19.5172 24.7181 27.1434 28.4703 32.0482 19.9152 22.4537 28.4674 28.8919 30.5771 35.0229 

-0.5 0.0 23.4124 26.4407 33.6694 29.2746 31.7139 37.8936 26.8656 30.3388 38.5883 32.1037 35.0284 42.3197 

 
0.5 28.7852 32.5612 41.6017 32.7875 36.1431 44.4538 33.0632 37.3736 47.6262 36.6002 40.5319 50.136 

 
-0.5 15.1153 17.0844 21.7947 23.7312 24.9684 28.2893 17.356 19.6446 25.0995 25.2361 26.7982 30.911 

0.0 0.0 20.6239 23.3762 29.9834 25.7943 28.0437 33.7492 23.663 26.8257 34.3836 28.2832 30.9777 37.7125 

 
0.5 25.506 28.9566 37.2652 29.0501 32.14 39.8184 29.3043 33.2526 42.7018 32.4368 36.0605 44.9504 

 
-0.5 11.3747 12.9494 16.7595 17.8768 18.9398 21.7632 13.0328 14.8643 19.2852 18.968 20.2917 23.7602 

1.0 0.0 15.831 18.0739 23.5215 19.7805 21.6661 26.4632 18.1473 20.7313 26.9859 21.671 23.9232 29.5857 

 
0.5 19.8083 22.6518 29.5803 22.5395 25.1236 31.5926 22.7538 26.0198 33.9372 25.1644 28.1978 35.7092 

Mode II 

 
-0.5 46.2639 52.4264 66.998 50.9064 56.5038 70.1383 50.9064 55.8272 71.3772 53.6331 59.6725 74.3333 

-0.5 0.0 63.0322 71.2619 90.6526 65.4474 73.3937 92.3171 65.4474 75.8394 96.4661 69.3526 77.8461 98.0321 

 
0.5 77.748 87.7788 111.3597 79.3217 89.1741 112.4603 79.3217 93.4399 118.491 84.2518 94.7518 119.5259 

 
-0.5 40.4219 45.9476 59.0832 44.4182 49.4697 61.8145 44.4182 48.9297 62.945 46.8057 52.251 65.5158 

0.0 0.0 55.5401 62.9853 80.6179 57.6603 64.8626 82.0929 57.6603 67.0307 85.7853 61.1021 68.7977 87.1729 

 
0.5 68.8485 77.9711 99.525 70.2453 79.2132 100.5108 70.2453 82.9972 105.8938 74.6098 84.1652 106.8208 

 
-0.5 30.5756 34.9684 45.5228 33.579 37.6325 47.6156 33.579 37.2411 48.5006 35.3891 39.7534 50.4703 

1.0 0.0 42.7258 48.752 63.173 44.3809 50.2264 64.3457 44.3809 51.8846 67.2204 47.0295 53.2726 68.3238 

 
0.5 53.4914 60.9541 78.7685 54.605 61.9505 79.5688 54.605 64.8824 83.8027 57.9954 65.8196 84.5556 

Mode III 
 

 
-0.5 89.5352 101.7175 130.4754 92.0379 103.897 132.1348 92.0379 105.352 135.1572 95.1448 107.4571 136.7597 

-0.5 0.0 122.3857 138.4249 176.0137 123.6488 139.5365 176.8792 123.6488 143.3354 182.2635 127.9443 144.4092 183.0996 

 
0.5 151.1668 170.5338 215.7212 151.9832 171.2571 216.2922 151.9832 176.6086 223.3991 157.3412 177.3072 223.9505 

 
-0.5 78.2837 89.1905 115.0683 80.427 91.0625 116.5021 80.427 92.382 119.1976 83.151 94.1902 120.5822 

0.0 0.0 107.8505 122.3346 156.4457 108.9575 123.3116 157.2108 108.9575 126.6728 161.9918 112.7443 127.6166 162.7309 

 
0.5 133.831 151.4103 192.6247 134.5563 152.0547 193.1363 134.5563 156.7965 199.4628 139.2962 157.4188 199.9568 

 
-0.5 59.3352 67.9879 88.7267 60.9454 69.4027 89.8234 60.9454 70.4323 91.9179 63.0234 71.7991 92.9769 

1.0 0.0 83.0386 94.7304 122.5393 83.9096 95.5036 123.1517 83.9096 98.0942 126.8777 86.8321 98.8411 127.4693 

 
0.5 103.9964 118.3343 152.2789 104.5823 118.8579 152.6992 104.5823 122.5406 157.666 108.267 123.0462 158.0719 

μ 

α 
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Table 3: Values of frequency parameter  for C-S plate, and E2/E1=0.5, x=0.2. 

β 

 

  
a/b = 0.5 

    
a/b =1.0 

  

 
K= 0.0 

  
K = 0.02 

  
K= 0.0 

  
K = 0.02 

 

-0.5 0.0 1.0 -0.5 0.0 1.0 -0.5 0.0 1.0 -0.5 0.0 1.0 

Mode I 

 
-0.5 13.6268 15.2319 18.9755 25.4862 26.2645 28.382 16.4709 18.5367 23.4154 27.1344 28.3122 31.4955 

-0.5 0.0 17.2496 19.2682 23.9503 24.8254 26.2316 29.7773 21.4938 24.2308 30.7459 27.9292 30.0491 35.4494 

 
0.5 20.4138 22.7904 28.3062 25.787 27.7009 32.382 26.0871 29.4576 37.5406 30.4725 33.3979 40.6971 

 
-0.5 11.7294 13.1545 16.4948 22.0268 22.7546 24.7197 14.1728 16.0093 20.372 23.4337 24.5215 27.4494 

0.0 0.0 14.9556 16.7577 20.9572 21.533 22.8215 26.0616 18.6538 21.1049 26.9734 24.2479 26.1805 31.1057 

 
0.5 17.7759 19.9046 24.867 22.4517 24.1907 28.4457 22.759 25.7914 33.1062 26.5817 29.2385 35.8876 

 
-0.5 8.5911 9.6967 12.3141 16.1629 16.7969 18.4696 10.3658 11.7918 15.2196 17.1671 18.0842 20.5222 

1.0 0.0 11.1092 12.523 15.8487 15.97 17.0331 19.6929 13.8697 15.8013 20.4799 18.004 19.5794 23.6004 

 
0.5 13.3151 14.9964 18.9504 16.7919 18.2033 21.6602 17.0925 19.5041 25.3894 19.9362 22.0866 27.5028 

Mode II 

 
-0.5 39.1374 44.2335 56.1974 44.7119 49.1615 60.0388 42.3099 47.8931 61.0523 . 475116 52.4791 64.6098 

-0.5 0.0 51.9901 58.5442 73.8128 54.9271 61.1518 75.873 56.5469 63.804 80.8236 59.2605 66.2073 82.7125 

 
0.5 63.3044 71.1352 89.2931 65.2327 72.8546 90.6657 69.1836 77.9288 98.3895 70.9528 79.502 99.6375 

 
-0.5 34.0191 38.564 49.2905 38.7664 42.7753 52.5951 36.7745 41.7494 53.533 41.2051 45.6684 56.5926 

0.0 0.0 45.5707 51.4702 65.2857 48.132 53.7512 67.0986 49.5453 56.0655 71.4275 51.9109 58.1665 73.0882 

 
0.5 55.7655 62.8541 79.376 57.469 64.3777 80.5998 60.9041 68.7992 87.3514 62.4661 70.1922 88.4629 

 
-0.5 25.4799 29.0563 37.5876 29.0017 32.2003 40.0861 27.5408 31.4504 40.8038 30.8277 34.3758 43.116 

1.0 0.0 34.7122 39.4439 50.6429 36.6989 41.2243 52.0759 37.7145 42.9271 55.3247 39.5484 44.5661 56.6362 

 
0.5 42.9067 48.6581 62.2071 44.2597 49.8763 63.1987 46.8065 53.1817 68.2971 48.0467 54.2951 69.1969 

Mode III 

 
-0.5 78.8503 89.4641 114.4294 81.7353 91.9831 116.3568 82.2011 93.3139 119.4958 84.9721 95.7321 121.3443 

-0.5 0.0 106.3604 120.0538 151.9469 107.8201 121.3416 152.955 111.098 125.4917 159.105 112.4969 126.725 160.0691 

 
0.5 130.5309 146.8937 184.7772 131.4769 147.7341 185.4445 136.5639 153.8172 193.9029 137.4685 154.6201 194.5391 

 
-0.5 68.7561 78.2316 100.6326 71.2113 80.3813 102.2867 71.6761 81.5916 105.067 74.0343 83.6551 106.6531 

0.0 0.0 93.4877 105.8241 134.7008 94.7626 106.9521 135.5887 97.6289 110.5828 140.9762 98.8504 111.6627 141.8248 

 
0.5 115.2736 130.0957 164.5832 116.1122 130.8428 165.1798 120.5551 136.1617 172.5873 121.3567 136.8752 173.1558 

 
-0.5 51.8541 59.3328 77.1941 53.6859 60.9459 78.4498 54.0584 61.8781 80.5741 55.8178 63.4264 81.7777 

1.0 0.0 71.6443 81.5622 105.0138 72.645 82.4528 105.7231 74.7929 85.1893 109.8164 75.7514 86.0417 110.494 

 
0.5 89.176 101.2244 129.544 89.8529 101.8311 130.0343 93.206 105.8619 135.6786 93.8529 106.4411 136.1455 

 

μ 

α 
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Table 4: Values of frequency parameter  for C-F plate, and E2/E1=0.5, x=0.2. 

Β 

 

  
a/b = 0.5 

     
a/b = 1 

   

 
K = 0.0 

  
K =0.02 

  
K = 0.0 

  
K =0.02 

 

-0.5 0.0 1.0 -0.5 0.0 1.0 -0.5 0.0 1.0 -0.5 0.0 1.0 

Mode I 

 
-0.5 5.3919 5.8943 7.0633 24.4483 24.6092 24.9236 8.4598 9.6288 12.5369 25.4182 25.7938 26.8625 

-0.5 0.0 5.8396 6.4679 8.0511 19.7418 19.9129 20.4308 10.8824 12.56 16.8466 21.7072 22.553 25.1075 

 
0.5 6.5232 7.3219 9.3921 17.2672 17.5784 18.5241 13.4733 15.6712 21.3255 20.8866 22.3584 26.6118 

              

 
-0.5 4.4151 4.8358 5.8167 20.4668 20.5507 20.7604 6.9348 7.9146 10.365 21.1826 21.4819 22.3972 

0.0 0.0 4.7872 5.3111 6.6339 16.2147 16.377 16.8525 8.9587 10.3697 13.9981 17.8958 18.6422 20.8794 

 
0.5 5.3548 6.0201 7.7495 14.168 14.4477 15.2801 11.1299 12.9857 17.795 17.2478 18.5215 22.2014 

              

 
-0.5 2.932 3.2222 3.9013 13.7329 13.8067 13.9983 4.6095 5.2852 6.9897 14.1882 14.433 15.1634 

1.0 0.0 3.1854 3.5441 4.4529 10.7364 10.883 11.2783 5.997 6.9748 9.516 11.9335 12.4983 14.1611 

 
0.5 3.5712 4.026 5.2135 9.4026 9.6218 10.2488 7.4924 8.7864 12.1795 11.5666 12.4916 15.1605 

Mode II 

 
-0.5 20.4511 22.8938 28.5271 30.9878 32.4706 36.3893 24.1824 27.3337 34.8319 33.4359 35.6482 41.4911 

-0.5 0.0 25.2801 28.2023 34.9767 31.0851 33.479 39.3146 31.3768 35.5017 45.4577 36.2187 39.8271 48.8836 

 
0.5 29.687 33.0912 41.0622 33.6359 36.6723 43.9947 38.1424 43.2345 55.6431 41.2926 46.0357 57.844 

              

 
-0.5 17.4696 19.608 24.5619 26.0028 27.4148 31.0414 20.661 23.4124 29.9792 28.2081 30.2277 35.4781 

0.0 0.0 21.7456 24.3208 30.3097 26.6996 28.8358 34.0394 26.9836 30.6019 39.3523 31.1145 34.2998 42.2919 

 
0.5 25.6368 28.6453 35.7046 29.0562 31.754 38.2623 32.9226 37.3994 48.3269 35.6502 39.8307 50.246 

              

 
-0.5 12.6426 14.2655 18.0606 34.7737 19.8116 22.7255 14.9566 17.0378 22.041 20.2995 21.8931 26.0031 

1.0 0.0 15.9556 17.9369 22.5769 19.6583 21.3304 25.4114 19.7988 22.5659 29.2954 22.8874 25.3481 31.5349 

 
0.5 18.9581 21.287 26.7798 21.5616 23.6684 28.7629 24.3442 27.7876 36.2364 26.4277 29.6589 37.7361 

Mode III 

 
-0.5 49.4734 55.92 70.9768 54.1699 60.0601 74.1976 53.3063 60.4273 77.2296 57.7002 64.2906 80.2193 

-0.5 0.0 64.7572 72.799 91.4123 67.1622 74.9348 93.1038 70.7096 79.8452 101.3423 72.9259 81.8052 102.8797 

 
0.5 78.364 87.8425 109.6856 79.9347 89.2451 110.8099 86.3731 97.3583 123.2107 87.8021 98.6273 124.2143 

              

 
-0.5 42.8419 48.5582 61.9767 46.7749 52.0349 64.6955 46.1322 52.4288 67.3466 49.8106 55.6705 69.8657 

0.0 0.0 56.5474 63.7478 80.4925 58.6311 65.6032 81.9697 61.6484 69.7843 88.991 63.5652 71.4832 90.3294 

 
0.5 68.7629 77.297 97.0511 70.1467 78.5363 98.0502 75.6193 85.4386 108.6071 76.8758 86.5572 109.496 

              

 
-0.5 31.892 36.3486 46.9181 62.1875 38.9105 48.9444 34.3062 39.1927 50.8692 36.9989 41.5782 52.742 

1.0 0.0 42.8107 48.5375 61.9879 44.4305 49.9888 63.1578 46.5473 52.9587 68.2026 48.0344 54.2846 69.2592 

 
0.5 52.5743 59.4408 75.4866 53.6824 60.4398 76.3027 57.59 65.3911 83.9084 58.5946 66.2913 84.6328 

 

μ 

α 
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