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Abstract—In this paper, we determine the lower 

bound for the general sum connectivity index of 

molecular graphs with ( )G  2. The extremal 

molecular structure to reach the lower bound is 

also presented. Furthermore, we consider the 

lower bound and extremal molecular graph for 

triangle-free chemical structures. 
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I.INTRODUCTION 

In theoretical chemistry, drugs and chemical 

compounds are modeled as graphs where each vertex 

represents an atom of molecule and covalent bounds 

between atoms are expressed by edges between the 

corresponding vertices. The graph obtained from a 

chemical compounds is often called its molecular 

graph and can be different structures. 

Chemical indices are introduced to reflect certain 

structural features of organic molecules. Specifically, 

let G be the class of connected molecular graphs, then 

a topological index can be regarded as a score 

function f: G 
, with this property that f(G1) = f(G2) 

if G1 and G2 are isomorphic. There are several vertex 

distance-based and degree-based indices which 

introduced to analyze the chemical properties of 

molecule graph. For instance: Wiener index, PI index, 

Szeged index, geometric-arithmetic index, atom-bond 

connectivity index and general sum connectivity index 

are introduced to test the performance of chemical 

molecular structures. Several papers contributed to 

determine these distance-based or degree-based 

indices of special molecular graph (See Yan et al., [1], 

Gao et al., [2], Gao and Shi [3], Gao and Wang [4], Xi 

and Gao [5-6], Xi et al., [7], and Gao et al., [8] for more 

detail for more detail). The molecular graphs 

considered in our paper are all simple. The notations 

and terminologies used but undefined in this paper can 

be found in Bondy and Mutry [9]. 

The sum connectivity index ( ( )G ) of molecular 

graph G is defined as: 

( )G =

1

2

( )

( ( ) ( ))
uv E G

d u d v




 . 

Few years ago, Zhou and Trinajstic [10] introduced 

the general sum connectivity as 

( )k G =
( )

( ( ) ( ))k

uv E G

d u d v


 , 

where k is a real number. 

Du et al., [11] reported the maximum value for the 

general sum connectivity indices of trees with fixed 

number of vertex, and the corresponding extremal 

trees for several special real number k are determined. 

Ma and Deng [12] computed the tight lower bounds of 

the sum connectivity index of cacti. Xing et al., [13] 

calculated the lower and upper bounds for the sum 

connectivity indices of tree structure with given 

numbers of vertices and pendant vertices. Du et al., 

[14] yielded the minimum sum connectivity indices of 

trees and unicyclic graphs with fixed number of 

vertices and matching number, respectively, and the 

corresponding molecular extremal graphs are deduced. 

Furthermore, they obtained the first and second 

minimum sum connectivity indices of the unicyclic 

graphs with vertex number at least 4. Du et al., [15] 

derived the minimum and the second minimum values 
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of the general sum connectivity indices of unicyclic 

molecular graphs with non-zero k  −1 and given 

vertex number. Moreover, they provided the 

corresponding molecular extremal graphs. Chen et al., 

[16] learned the general sum connectivity index of 

benzenoid systems and phenylenes. Du and Zhou [17] 

studied the sum connectivity index of bicyclic 

molecular graphs. Yang et al., [18] reported the 

computational formulas for calculating the sum 

connectivity index of polyomino chains. Chen and Li 

[19] obtained the sharp lower bound of the sum 

connectivity index for unicyclic molecular graphs with 

given number of vertex and fixed number of pendent 

vertices. Farahani [20] deduced the sum connectivity 

index of special classes of nanotubes. Very recently, 

Tache [21] obtained the molecular graph with the 

maximum general sum connectivity index among the 

connected bicyclic molecular structures with given 

vertex number and k 1. 

In this paper, our contributions are two-fold. We first 

discuss the tight lower bound general sum connectivity 

index for molecular graphs with ( )G  2. The 

sufficient and necessary condition to reach the lower 

bound is given. Then, we focus on the triangle-tree 

molecular structures. The corresponding sharp lower 

bound and extremal structure are presented in 

triangle-tree setting. 

II.MINIMUM GENERAL SUM CONNECTIVITY 

INDEX OF MOLECULAR GRAPH WITH ( )G  2 

AND k<0 

For an edge e=uv of a molecular graph G, its 

general weight is denoted as ( ( ) ( ))kd u d v . 

Lemma 1. Let e be an edge with maximal general 

weight in G, and k<0. We have 

( )k G e  < ( )k G . 

Proof. Let e=uv. Since edge uv has maximal 

general weight in molecular graph G, we get 

( )d w  ( )d v  for any w ( )N u  and ( )d w  ( )d u  

for any w  ( )N v . Noticing that the function 

( 1)k kx x   is increasing for x > 1 and negative real 

number k, we obtain 

( )k G - ( )k G e  = ( ( ) ( ))kd u d v +

( )\{ }

(( ( ) ( )) ( ( ) ( ) 1) )k k

w N u v

d u d w d u d w


    +

( )\{ }

(( ( ) ( )) ( ( ) ( ) 1) )k k

w N v u

d v d w d v d w


    

( ( ) ( ))kd u d v +

( ( ) 1)(( ( ) ( )) ( ( ) ( ) 1) )k kd u d u d v d u d v     +

( ( ) 1)(( ( ) ( )) ( ( ) ( ) 1) )k kd v d u d v d u d v     =

( ( ) ( ) 1) ( ( ) ( ))k kd u d v d u d v    >0. 

Hence, we yield the desired result.  

Let 
,a bK  be the complete bipartite molecular 

graph with a and b vertices in its two partite sets, 

respectively. For n 4, the molecular graph 
*

2, 2nK   is 

deducedby joining an edge between the two 

non-adjacent vertices of degree n-2 in 
2, 2nK 

. By 

simple calculation, we infer 
*

2, 2( )k nK  = 

1( , )f n k = ( 1)kn + 2( 2)( 1)kn n  . We use ( )G  

to denote the minimum degree of the molecular graph 

G. 

Theorem 1. Let G be a molecular graph with vertex 

number n  3 and minimum degree
 

( )G  2. 

Suppose k<0. Then ( )k G  1( , )f n k  with equality 

if and only if G
*

2, 2nK  . 

Proof. It is not hard to check that the assertion is 

hold for n=4. Suppose it holds for 4 n’< n. Then, we 

show that it also holds for n in the following. 
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Let G be a molecular graph with at least 5 vertices. 

If ( )G  3, then according to Lemma 1, the deletion 

of an edge with maximal general weight gets a graph 

G′ of minimal degree at least two such that 

( ')k G < ( )k G . So, in what follows, we only need to 

verify the result is hold for molecular graph G with 

minimum degree
 
2. 

Case 1. Each pair of adjacent vertices of degree 2 

has a common neighbor. 

Let 1u  and 2u  be a pair of adjacent vertices with 

degree 2 in molecular graph G, and 3u
 
is

 
their 

common neighbor. We immediately get 

2 3( )d u  n-1. 

Subcase 1.1. If 3( )d u =2, let 1G =G-{ 1u , 2u , 3u }, 

then 1( )k G  1( 3, )f n k  in view of the induction 

hypothesis, and 

( )k G = 1( )k G + 3 4k  1( 3, )h n k + 3 4k >

1( , )f n k . 

Subcase 1.2. If 3( )d u  4, let 2G = G-{ 1u , 2u }, 

then 2( )k G  1( 2, )f n k  in terms of the induction 

hypothesis. Since ( 2)k kx x   is increasing for x > 

2 and k<0, we infer 

( )k G = 2( )k G + 4k
+ 32( ( ) 2)kd u  +

3 1 2

3 3

( )\{ , }

(( ( ) ( )) ( ( ) ( ) 2) )k k

v N u u u

d u d v d u d v


    

2( )k G + 4k
+ 32( ( ) 2)kd u  +

3 3 3( ( ) 2)(( ( ) 2) ( ( )) )k kd u d u d u    2( )k G + 4k
+

32( ( ))kd u - 32( ( ) 2)kd u   

 1( 2, )f n k + 4k
+

32( ( ))kd u - 32( ( ) 2)kd u  

1( 2, )f n k + 4k
+ 2( 1)kn - 2( 1)kn > 1( , )f n k . 

Subcase 1.3. If 3( )d u =3, let 4u  be the neighbor 

of 3u  in G different from 1u  and 2u , where 2 

 4( )d u  n−3. 

(i) Suppose that 4( )d u =2. Denote by 5u  the 

neighbor of 4u  in G different from 3u , where 

2  5( )d u  n−4. Let 3G  = G − 4u + 3 5u u , then 

3( )k G  1( 1, )f n k  by the induction hypothesis. 

Note that ( 1)k kx x   is decreasing for x > 0 and 

k<0. 

( )k G = 3( )k G + 5k
+ 5( ( ) 2)kd u  - 5( ( ) 3)kd u 

 3( )k G + 5k
+ ( 2)kn - ( 1)kn  1( 1, )f n k + 5k

+

( 2)kn - ( 1)kn > 1( , )f n k . 

(ii) Suppose that 3  4( )d u  n-3. Let 4G = G 

− 1u − 2u − 3u , then 4( )k G  1( 3, )f n k  by the 

induction hypothesis. Note that 

( 2) 3( 1) 2( )k k kx x x     is decreasing for x > 0 

and k<0. 

( )k G = 4( )k G + 4k
+ 2 5k + 4( ( ) 3)kd u  +

4 3

4 4

( )\{ }

(( ( ) ( )) ( ( ) ( ) 2) )k k

v N u u

d u d v d u d v


    

4( )k G + 4k
+ 2 5k + 4( ( ) 3)kd u  +

4 4 4( ( ) 1)(( ( ) 2) ( ( ) 1) )k kd u d u d u     4( )k G + 4k
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+ 2 5k + 4( ( ) 3)kd u  - 43( ( ) 2)kd u  +
42( ( ) 1)kd u 

 

 4( )k G + 4k
+ 2 5k +

kn - 3( 1)kn + 2( 2)kn 

1( 3, )f n k + 4k
+ 2 5k +

kn - 3( 1)kn + 2( 2)kn >

1( , )f n k . 

Case 2. There is a pair of adjacent vertices of 

degree two without common neighbor. 

Let 1u  and 2u  be a pair of adjacent vertices with 

degree two in G which has no common neighbor. 

Denote by 3u  the neighbor of 1u  in G different from 

2u . Let 5G =G− 1u + 2 3u u , then 

5( )k G  1( 1, )f n k by the induction hypothesis, 

and ( )k G = 5( )k G + 4k   

1( 1, )f n k + 4k
> 1( , )f n k . 

Case 3. There is no pair of adjacent vertices of 

degree two. 

Let u be a vertex of degree two with neighbors v 

and w in G. 

Subcase 3.1. vwE, where 3 ( )d v  n − 2 and 

3  ( )d w  n − 2. Let 6G =G−u + vw , then 

6( )k G  1( 1, )f n k  by the induction hypothesis. 

Note that ( , , )f x y k = ( 2)kx + ( 2)ky 

 

− ( )kx y  ( 2, 2, )f n n k  for 3  x  n – 2, 

3 y n – 2 and k<0, since 
f

x




 < 0 and 

f

y




< 0. 

( )k G = 6( )k G + ( ( ) 2)kd v  + ( ( ) 2)kd w  -

( ( ) ( ))kd v d w  6( )k G + ( 2, 2, )f n n k  

1( 1, )f n k + 2 ( 2)k kn n   > 1( , )f n k . 

Subcase 3.2. vwE, where 3 ( )d v  n-1 and 

3  ( )d w  n-1. Let 7G = G-u, then 

7( )k G  1( 1, )f n k by the induction hypothesis. 

Note that ( , , )g x y k = ( )kx y

 

+ 3( 1)kx + 3( 1)ky  - ( 2)kx y  - 3( 2)kx -

3( 2)ky   ≥ ( 1, 1, )g x y k   for 3  x  n-1, 

3  y  n-1 and k<0, since ( )
g g

y x

 

 
<0 and 

g

x






( ,3, )g x k

x




<0, and ( )

g g

x y

 

 
< 0 and 

g

y






(3, , )g y k

y




<0. 

( )k G = 7( )k G + ( ( ) 2)kd v  + ( ( ) 2)kd w  -

( ( ) ( ) 2)kd v d w  +

( )\{ , }

(( ( ) ( )) ( ( ) ( ) 1) )k k

z N v u w

d v d z d v d z


    +

( )\{ , }

(( ( ) ( )) ( ( ) ( ) 1) )k k

z N w u v

d w d z d w d z


     

 7( )k G + ( ( ) 2)kd v  + ( ( ) 2)kd w  -

( ( ) ( ) 2)kd v d w  + 

( ( ) 2)(( ( ) 2) ( ( ) 1) )k kd v d v d v    +

( ( ) 2)(( ( ) 2) ( ( ) 1) )k kd w d w d w     

 7( )k G + ( ( ) ( ))kd v d w + 3( ( ) 1)kd v  +

http://www.jmest.org/
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3( ( ) 1)kd w  - ( ( ) ( ) 2)kd v d w  - 3( ( ) 2)kd v  -

3( ( ) 2)kd v  - 3( ( ) 2)kd w   7( )k G +

( 1, 1, )g n n k   1( 1, )f n k + (2 2)kn + 6 kn -

(2 4)kn - 6( 1)kn

 

= 1( , )f n k . 

with equality if and only if G
*

2, 2nK  . 

Hence, the assertion is true for all n 4.  

III. A LOWER BOUND FOR THE GENERAL SUM 

CONNECTITY INDEX OF TRIANGLE-FREE 

MOLECULAR GRAPH WITH ( )G  2 

In the section, we will give a best possible lower 

bound for the general sum connectivity index of a 

triangle-free molecular graph with ( )G  2 and 

characterize the extremal molecular graphs. 

Theorem 2. Let G be a triangle-free molecular 

graph of order n  4 with ( )G  2. Assume k<0. 

Then ( )k G ≥ 2 ( , )f n k = 2( 2) kn n   with equality if 

and only if G
2, 2nK 

. 

Proof. It is easy to check that the assertion is true 

for n=4. Suppose it holds for 4 n’< n; we next show 

that it also holds for n. 

Let G be a molecular graph with n>4 vertices. If 

( )G ≥ 3, then by Lemma 1, the deletion of an edge 

with maximal general weight yields a graph G′ of 

minimal degree at least two such that 

( ')k G < ( )k G . So, we only need to prove the result 

is true for G with ( )G = 2. 

Case 1. There exists a vertex u of degree two such 

that the neighbors of u have degree at least three. 

Let ( )N u ={ 1u , 2u } and 3 ( )id u  n − 2 for i = 1; 

2, then ( )G u   2 and G−u is 

triangle-free. ( )k G u   2( 1, )f n k  by the 

induction hypothesis. 

( )k G = ( )k G u  + 1( ( ) 2)kd u  + 2( ( ) 2)kd u  + 

1

1 1

( )\{ }

(( ( ) ( )) ( ( ) ( ) 1) )k k

v N u u

d u d v d u d v


    +

2

2 2

( )\{ }

(( ( ) ( )) ( ( ) ( ) 1) )k k

v N u u

d u d v d u d v


     

 ( )k G u  + 1( ( ) 2)kd u  + 2( ( ) 2)kd u  +

1 1 1( ( ) 1)(( ( ) 2) ( ( ) 1) )k kd u d u d u    +

2 2 2( ( ) 1)(( ( ) 2) ( ( ) 1) )k kd u d u d u   

 

 ( )k G u  + 12( ( ) 1)kd u  - 12( ( ) 2)kd u  +

22( ( ) 1)kd u  - 22( ( ) 2)kd u   

 ( )k G u  + 2( 1)kn - 2 kn + 2( 1)kn - 2 kn 

2( 1, )f n k + 4( 1)kn - 4 kn = 2 ( , )f n k . 

with equality if and only if G
2, 2nK 

. 

Case 2. Every vertex u of degree two has a 

neighbor of degree two in G. 

Let ( )N u ={ 1u , 2u } and 1( )d u = 2, 2( )d u  2; 

1( )N u ={u,v}. 

Subcase 2.1. v is not a neighbor of 2u . 

Let 8G = G − u + 1 2u u , then 8( )G  2 and 8G  is 

triangle-free. 8( )k G  2( 1, )f n k  by the induction 

http://www.jmest.org/
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hypothesis. 

( )k G = 8( )k G + 4k  2( 1, )f n k + 4k
> 2 ( , )f n k

. 

Subcase 2.2. v is also a neighbor of 2u . 

(I) If ( )d v  = 2( )d u = 2, let 9G =G−u−v− 1u − 2u , 

then 9( )G  2 and 9G  is triangle-free, implying 

n  8. 9( )k G  2( 4, )f n k by the induction 

hypothesis. 

( )k G = 9( )k G +
14k  2( 4, )f n k +

14k
>

2 ( , )f n k . 

(II) If none of v, 2u  has degree two, then 

3  ( )d v  n−3 and 3  2( )d u  n-3 since G is 

triangle-free. Let 10G = G − u − 1u , then 10( )G ≥ 2 

and 10G  is triangle-free, implying n   6. 

10( )k G  2( 2, )f n k by the induction hypothesis. 

Note that 

( , , )t x y k = ( )kx y - ( 2)kx y  + 3( 1)kx +

3( 1)ky  - 3( 2)kx - 2( 2)ky   ( 3, 3, )t n n k   

for 3 x n−3, 3 y n−3 and k<0, since ( )
t

y x

 

 
<0 

and 
t

x






( ,3, )t x k

x




<0 and 

t

y




<0, similarly. 

( )k G = 10( )k G + 4k
+ ( ( ) 2)kd v  + 2( ( ) 2)kd u 

+ 2( ( ) ( ))kd v d u - 2( ( ) ( ) 2)kd v d u  +

1 2( )\{ , }

(( ( ) ( )) ( ( ) ( ) 1) )k k

w N v u u

d w d v d w d v


    +

2

2 2

( )\{ , }

(( ( ) ( )) ( ( ) ( ) 1) )k k

w N u u v

d u d w d u d w


    

10( )k G + 4k
+ ( ( ) 2)kd v  + 2( ( ) 2)kd u  +

2( ( ) ( ))kd v d u - 2( ( ) ( ) 2)kd v d u   

+ ( ( ) 2)(( ( ) 2) ( ( ) 1) )k kd v d v d v    +

2 2 2( ( ) 2)(( ( ) 2) ( ( ) 1) )k kd u d u d u     

 10( )k G + 4k
+ 2( ( ), ( ), )t d v d u k  

 10( )k G + 4k
+ ( 3, 3, )t n n k   

 2( 2, )f n k + 4k
+ ( 3, 3, )t n n k   

> 2 ( , )f n k . 

(III) If exactly one of v, 2u  has degree two, without 

loss of generality, assume 2( )d u = 2, then 

3 ( )d v  n−3 since G is triangle-free. 

(i) If ( )d v  4, let 11G = G−u− 1u − 2u , then 

11( )G  2 and 11G  is triangle-free, implying n  7. 

11( )k G  2( 3, )f n k by the induction hypothesis. 

( )k G = 11( )k G +1+ 2( ( ) 2)kd v  +

1 2( )\{ , }

(( ( ) ( )) ( ( ) ( ) 2) )k k

w N v u u

d w d v d w d v


    

11( )k G +1+ 2( ( ) 2)kd v  +

( ( ) 2)(( ( ) 2) ( ( )) )k kd v d v d v    

 11( )k G +1+ 2( ( ))kd v - 2( ( ) 2)kd v   

http://www.jmest.org/
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 11( )k G +1+ 2( 3)kn - 2( 1)kn  

 2( 3, )f n k +1+ 2( 3)kn - 2( 1)kn  

> 2 ( , )f n k . 

(ii)If d(v) = 3, denote by 3u the neighbor of v in G 

different from 1u and 2u . 

(a) If 3( )d u = 2, let 4u  be the neighbor of 3u  in 

G different from v and 12G = G − 3u + 4vu , then 

12( )G  2 and 12G  is triangle-free. 

12( )k G  2( 1, )f n k  by the induction hypothesis. 

And 

( )k G = 12( )k G + 5k
+ 4( ( ) 2)kd u  - 4( ( ) 3)kd u 

. 12( )k G + 5k
+ 4k

-5k
 

= 12( )k G + 4k  2( 1, )f n k + 4k
> 2 ( , )f n k . 

(b) If 3( )d u  3, then 3( )d u  n−5 as G is 

triangle-free. Let 13G = G−u−v− 1u − 2u , we have 

13( )G  2 and 13G  is triangle-free, implying n  8. 

13( )k G  2( 4, )f n k  by the induction hypothesis. 

Note that ( 3)kx - 3( 2)kx + 2( 1)kx  is 

decreasing for x 0 and k<0. 

( )k G = 13( )k G +1+ 2 5k + 3( ( ) 2)kd u  +

3

3 3

( )\{ }

(( ( ) ( )) ( ( ) ( ) 1) )k k

w N u v

d u d w d u d w


     

 13( )k G +1+ 2 5k + 3( ( ) 2)kd u  +

3 3 3( ( ) 1)(( ( ) 2) ( ( ) 1) )k kd u d u d u     

 13( )k G +1+ 2 5k +
3( ( ) 2)kd u  -

3 33( ( ) 2) 2( ( ) 1)k kd u d u    

 13( )k G +1+ 2 5k + ( 2)kn -

3( 3) 2( 4)k kn n    2( 4, )f n k +1+ 2 5k +

( 2)kn -3( 3) 2( 4)k kn n    

> 2 ( , )f n k . 

The proof of our theorem is completed.  

IV.SUM CONNECTIVITY INDEX OF MOLECULAR 

GRAPH AND TRIANGLE-FREE MOLECULAR 

STRUCTURE WITH ( )G  2 

Let k=
1

2
 , we get the following results on sum 

connectivity index of molecular graph. 

Lemma 2. If e is an edge with maximal general 

weight in G, and k<0, then ( )G e  < ( )G . 

Theorem 3. Let G be a molecular graph with vertex 

number n 3 and minimum degree
 

( )G  2. Then 

( )G  1

1
( , )

2
f n  =

1

2( 1)n


 +

1

22( 2)( 1)n n


   

with equality if and only if G
*

2, 2nK  . 

Theorem 4. Let G be a triangle-free molecular 

graph of order n  4 with ( )G  2. Then 

( )G ≥ 2

1
( , )

2
f n  =

1

2

2( 2)n n


   with equality if and 

only if G
2, 2nK 

. 
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V.CONCLUSION 

In this paper, by virtue of molecular graph structural 

analysis and mathematical derivation, we determine 

the lower bound of the general harmonic index of 

molecular graph with ( )G  2. Furthermore, the 

lower bound for the general harmonic index of 

triangle-free molecular graph with ( )G  2 is 

deduced. 
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