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Abstract—In the present work we calculate the 
Nonlinear additives to the Brooks-Herring 
electrostatic screened potential. We also calculate 
the corresponding additives to the ionized 
impurity scattering mobility in n-GaAs over a wide 
range of doping levels and temperatures. It is 
demonstrated that the additives to the mobility 
changes its value up to 50%. The most 
dramatically mobility is changed near the Mott 
transition, when the doping level is about 1014-
2x1016 cm-3 and temperature is below 50 K. Also, 
the results allow us to conclude that the Nonlinear 
additives break the cross section symmetry with 
respect to the sign of the charge of the scattering 
center. 
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I. INTRODUCTION 

The scattering of electrons by ionized impurities in 
solids has been studied for more than half a century. 
The problem is related to the nature of long-range 
action of the electrostatic potential, which complicates 
the reduction of the many-body problem to the 
problem of two bodies. The basic idea for solving the 
problem is to perform statistical averaging of the field 
source over the all charged particles. Thus averaging 
leaves only effective near-field, while the far-field 
averages to zero. It was suggested many different 
theoretical models during the last 70 years. The most 
famous of them are the Conwel and Weisskopf model 
[1], models that reduce the problem to the third body 
exclusion method [2-4], model of the partial-wave 
phase-shift [5-9] and Brooks-Herring model [10, 11]. 
The Conwel and Weisskopf model was a simple 
attempt to avoid divergence in collusion integral by 
using cutoff parameter therefore it is not quite 
consistent. 

The idea of third body exclusion methods is that 
the particle scattered by a given center must not be 
scattered by another one. On our opinion, the cross 
section must not be subjected by this additional 
condition because it follows from the Boltzmann 
kinetic equation. 

The model of the partial-wave phase-shift has 
been developed for the case of extremely high carrier 
concentrations that is realized in metallic alloys. The 

method usually includes the density functional 
formalism or the random phase approximation that are 
more general than the Thomas-Fermi approximation. 
On the other hand, the basic equation for the partial-
wave phase-shift method is the Friedel sum rule. The 
latter is the sequence of the semiclassical approach 
for the radial wave functions [6]. Therefore the 
approach is valid only when the scattered particle 
wavelength is much shorter than the average distance 
between impurities that is incorrect for most cases of 
doped semiconductors. Also, it has to be emphasized, 
that the quantum peculiarities of the screening appear 
only on the distances in order of lattice constant, and 
so they are not essential for the particles near thermal 
equilibrium state [12]. 

Given the above, the Brooks-Herring model is the 
most consistent for low and moderate carrier 
concentrations (criterion can be found in .9, Ref. [13]). 

The validity of the Brooks-Herring approach was 
discussed several times [13-15], but to the best of our 
knowledge this investigation mathematically not 
rigorous or just comparable. Moreover, previous 
authors consider only limiting cases of non-
degenerate or degenerate electron gases. 

It is well known that Brooks-Herring screened 
potential  can be obtained as the 
solution of the Poisson equation with linearized right-
hand side. The parameter  is named screening 
length. The main issues that arise in this model is the 
validity of the expansion of the right-hand side of 
Poisson's equation in power series and accuracy 
which implements a linear term of the expansion. 

To the best of our knowledge, the nonlinear 
Poisson equation for the ionized impurity potential 
firstly was considered by Csavtnszky [16] and Adawi 
[17]. The corresponding mobility was calculated by 
Chattopadhyay [18]. But the obtained results are not 
realistic because of the incorrect boundary conditions. 

In the present investigations, we obtain the 
approximate solution of Poisson's equation that 
contains the following nonlinear terms of the 
expansion. As an example, the calculation of the 
ionized impurity scattering mobility is performed for n-
GaAs parameters. The results of the calculation give 
an opportunity to determine which areas and with 
what precision Brooks-Herring approach is valid. In 
addition, the results also provide an opportunity to 
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assess the accuracy of the formulas for mobility with 
the following nonlinear terms. The mobility is 
calculated in the framework of semiclassical 
Boltzmann equation with the first-order Born 
approximation. The validity of the approximation is 
well analyzed in Ref. [19], Chapter 11 pp. 190-197 
and Chapter 15 pg. 253. 

II. SCREENED POTENTIAL 

The Poisson equation for the screened potential 
has the form 

 (1) 

where  is the 
electron concentration as the function of temperature 

 and chemical potential ,  is the Fermi-Dirac 
integral [20],  is the effective mass, is the static 
dielectric constant and  is the electron charge. 
The boundary conditions to the (1) are discussed 
below. 

We will restrict the investigation to the centrally 
symmetric case for the bulk semiconductor electron 
gas ( ). Leaving only the first non-zero term 
of the right-hand side power-series expansion, one 
can obtain the Brooks-Herring approach for the 
screened potential  with the screening length : 

  (2) 

Below we use dimensionless coordinate  
and potential , where  is the charge 
of the scattering center in  units. Proceeding the 
expansion of the right-hand side of (1) one obtains: 

 

 (3) 

 
where we use the remainder term in the Lagrange 

form [21]. Note that since the functions 
 have a maximum in the region 

, in the degenerate case strict inequality 
holds , whereas in the case of 
Boltzmann electron gas we can speak only about the 
order of magnitude  . We 
proceed the consideration, omitting the remainder 
term  and supposing that tolerance is estimated 
by the value . 

Supposing that  are small parameters one can 
replace  with  in the right-
hand side of (3), where is the 
dimensionless Brooks-Herring potential. The 
approach is invalid for  because one cannot treat 
terms as a small values in right-hand side of (3). 

Therefore we subject the approximate solution to 
the conditions 

and  . The 
first approach has form 

 (4) 

Where 

 
Fig. 1. Contour plots of the coefficients , versus 

temperature  and donor concentration  (logarithmic 
scale) for bulk GaAs. Frames a-c correspond to , 

. 

 

  (5) 

at that the upper index  identifies the number of 
taken into account nonlinear terms and the lower 
index identifies the number of iterations was done. It is 
easy to see that for  iteration procedure is 
divergent for . On the other hand, relaxation 
processes are introduced through the Fourier 
components  of the potential in the Born 
approximation, and the divergence became are not 
essential for if  is finite. Indeed, the necessary 
condition for the existence of the integral is that the 
small region of integration gives a small contribution to 
the integral. For small , one can estimate, that the 
region where   
is , for . Hence, the corresponding 
contribution to the Furrier components  has an 
order of . Similarly, one can estimate 
that for  this value has an order of  

. The Fourier transformation of the (4) 
is possible for and has the next form 
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 (6) 

where  and  is the wave-vector transfer 
value. To obtain usual dimension one has to multiply 
the Fourier component by the factor . The 
coefficients  are defined as the next 

 

  (7) 

One can see from (7) that for any  
coefficients . Therefore, if  are 
small enough, then (6) and (7) with  and  
give the valid Fourier components of the screened 
potential. Next, we consider bulk GaAs as an 
example. To calculate  we need the equation of 
electroneutrality 

 (8) 

where  is the donor concentration and  is the 
donor energy level. In the latter formula we suppose 
that donor concentration higher than 1016 cm-3 leads 
to the Mott transition in bulk GaAs (see for example 
pg. 41, Fig. 21 in Ref. [22]). Figs. 1 (a-c) demonstrate 
coefficients  for n-GaAs parameters [23] versus 
temperature  and donor concentration  as the 
contours of equivalent values. The calculations 
performed for . Obviously, in the case  
(acceptors)  change their signs to opposite [see 
(3)]. Therefore, screened potential loses its symmetry 
relative to the sign of the centers charge, when the 
nonlinear terms are taken into account. 

It was supposed that the system is 
quasiequilibrium, hence the concentration is 
determined by the Fermi-Dirac statistics and the 
chemical potential satisfies the condition of 
electroneutrality (7). In the case of a non-equilibrium 
process the explicit dependence of the distribution 
function on the ionized impurity potential is very 
specific, therefore generalization of the result obtained 
is complicated. Nevertheless, there are cases when 
electron-electron interaction is dominant and the 
distribution function can be approached with the Fermi 
function , where the electron temperature  
and the chemical potential  are defined by the 
energy and concentration balance equations (see for 
example Ref. [24] Chapter 2, pp. 79-87 and Chapter 
7, pp. 299-309). In this case the (1-3) are correct if 
one replaces  with  and (8) with the 
balance equations for  and . 

III. ADDITIVES TO MOBILITY 

In the present section we calculate the nonlinear 
additives to the ionized impurity scattering mobility in 
n-GaAs [23]. 

The transport time for the electron-impurity 
scattering can be calculated according to the formula 
[13, 20] 

  (9) 

 
Fig. 2. Contour plots of the relative additives to the  mobility 
in bulk GaAs versus temperature  and donor concentration 

 (logarithmic scale). Frames a-c correspond to  

where  is the electron energy and  is 
defined by the formulas (6), and (7) with  and 

. The low-field mobility of the electron gas can 
be introduced in the form [20]: 

  (10) 

To demonstrate the influence of the nonlinear 
additives on mobility we introduce the next 
dimensionless parameter 

  (11) 

where  is the mobility calculated in the Brooks-
Herring approach. The parameters  may be 
treated as the relative mobility changes due to the -
th nonlinear term. The results of calculation for GaAs 
parameters one can see in Fig. 2 (a-c). It is easy to 
see that outside the region ,  (1014 cm-3; 
2x1016 cm-3) nonlinear additives change the mobility 
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no more then 20%. Whereas, inside the 
region ,  (1014 cm-3; 2x1016 cm-3) the 
changes in mobility with the addition of the quadratic 
term  is very significant see [Fig. 2 (a)]. On the 
other hand, with increasing amounts of nonlinear 
terms from  to , the mobility does not 
change substantially [see Figs. 2 (b) and (c)]. 
Correspondingly, one may expect that for  the 
mean inaccuracy of the formulas (6) and (7) caused 
by the power-series cutoff at most 10% in the low 
temperature region and below 5% for  [see 
Fig. 1(b)]. In the case  inaccuracy decreases 
even further [see Fig. 2(c)]. 

IV. LONG-WAVE LIMIT 

Considering (6) and (7), one can see that for  
Fourier components in (6) can be rewritten as 

 

  (12) 

where we suppose that  
 and the functions 

 describe small values in order of the 
argument. It is easy examining that functions 

 conserve this form for 
arbitrary number of iterations k. Neglecting the small 
values  and supposing that the number of 
convergent iterations is infinite, one could obtain the 
algebraic system of equations for the parameters 

 and : 

  (13) 

where the coefficients  are 
defined by the equality 

 
 (14) 

and the coefficients 
 are defined by the 

next equality 

  (15) 

If the algebraic system (13) with given  and 
coefficients (14), (15) has real positive solutions then 
the iteration procedure is supposed to be convergent. 

Choosing the solution that is closest to the pair  
and  one can use the Fourier components 

  (16) 

The latter approach valid for processes with a 
small wave-vector transfer , but for arbitrary  that 
provide eqs. (13)-(15) with real positive roots. To 
analyze the system we consider limiting case  
and put . Under such conditions we obtain  
and only one equation . The real root 

 that satisfies the mentioned 
above conditions exists only if . Note, that in 
the case  the latter inequality is always satisfied. 
On the other hand, in the case  it fails in the low 
temperature region [see Fig. 1(a)]. The linearization of 
the system (14) leads to the approximate solution 

 and . Therefore, one can 
expect that if  then  and , whereas if 

 then  and . One also can estimate that 
inaccuracy of the first iteration, considered in Sec. III 
is about  for slow particles [see Fig. 1(a)]. 
The physical interpretation of the approach (13)-(16) 
is simple: the Brooks-Herring screened potential 
remains valid for slow particles, but the screening 
length became in  times larger and the charge of the 
ionized impurity became  times larger. 

V. CONCLUSION 

The validity of the results obtained is restricted to 
the conditions for the Born and the effective mass 
approximations. 

The latter supposes  ( is the lattice 
constant) that is well satisfied for the considered 
doping levels, whereas Born approximation is 
questionable for some regions of parameters. We also 
omit consideration of the nonparabolicity effect that is 
not essential for the investigation performed. 

The main theoretical results are next: (i) the 
screened potential loses its symmetry relative to the 
sign of the scattering centers charge, when the 
nonlinear terms are taken into account; (ii) in the 
region ,  (1014; 2x1016) cm-3 the nonlinear 
terms changes the ionized impurity scattering mobility 
up to 50% in n-GaAs;(iii) the Brooks-Herring screened 
potential is valid in low temperature region under the 
condition , but with the different screening 
length  and the different charge of the 
scattering center , where 

,  and  
. 
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