
Journal of Multidisciplinary Engineering Science and Technology (JMEST)
ISSN: 3159-0040

Vol. 1 Issue 4, November - 2014

Agent-Oriented Software Engineering
Characteristics and Paradigm

Ardavan Ashabi
Advanced Informatics School

Universiti Teknologi Malaysia (UTM)
Kuala Lumpur, Malaysia

ardavan.ashabi@gmail.com

Khalil Salah
Advanced Informatics School

Universiti Teknologi Malaysia (UTM)
Kuala Lumpur, Malaysia

salah.kh@gmail.com

Abstract—Nowadays, agents as well as multi agent
systems have been of research interests among computer
science communities. This is particular in the capturing of
structure in the natural way and in the behavior of
complex systems. Software project problems are
interpreted by actions evolving upon the paradigm in
software engineering. This paper upon a brief introduction
regarding key aspects of agent and agent based
computing, explains the reason for these new direction in
computer engineering field. Agent orientation has become
a necessity in software engineering. The paper also
discusses crucial engineering agent characteristics and
the challenges to be faced.

Keywords—Agent-oriented; Agent-based Computing;
Software Engineering Paradigm.

I. INTRODUCTION
An agent is defined as an encapsulated system of

computer which is located in an environment which is
able to have flexible and autonomous action in there for
meeting its design objectives [1].

In practical applications, environment is open. It’s
dynamic and complex. A consequence is that association
among the elements can’t be fully foreseen at the time of
compile. Also the inherent organizational structure of the
system should be clearly represented.

Proper abstractions, methodologies and tools are
needed for correctly engineer such kind of applications.
Agents are considered as the model for engineering
distributed systems for future which are open and
complex:

Open: Elements can join or leave the environment
that is dynamic. The way the operating conditions get
altered is unpredictable.

Complex: The software has huge number of elements
which interact following the complicated interaction
protocols; all agents have a partial view of the
environment. Also there is no control that is centralized.

Agent Based Computing is a synthesis of Computer
Science (CS) and Artificial Intelligence (AI) [2]. Agent’s
notion usually appears in various contexts of computer
science, usually with various meaning. In the context of
AI or Distributed AI, agents as well as multi agent
systems are usually exploited as a way for tackling

complicated problems and for developing software
systems that are intelligent [3][4][5]. Main acceptation is
AI and Distributed AI. Here agents are normally exploited
as a way for developing special purpose systems
showing some sort of intelligent behavior. Specifically we
take into consideration of agents and relevant concepts
as general purpose abstractions which are useful for the
programming of software systems as a whole,
conceptually extending programming that is object
oriented with aspects which are effective for tackling
certain major challenges in modern day software
development [6].

Agent oriented paradigm inherits object oriented one.
AI paved way for the evolution of the agent concept.
Agents’ nature is being social, reactive and being
proactive. Agent oriented software is developed using
agent oriented technologies [7].

Agent technology has got much attention in the past
few years as a result of which the industry has been
showing interests for developing its own products.
Despite various developed agent theories, architectural
systems and languages as well as successful
applications that are agent based, only slight works for
specifying ways for developing applications using agent
technology is being done. Role played by such
technologies is in assisting every stages of life cycle of
an agent based application which includes management
too [8].

Complicated nature of the process of software
development has resulted in developing strong natural
abstraction with which for modeling and developing
complicated systems. Procedural abstraction, types of
abstract data and objects are such abstraction’s
examples [9]. In the last 20 years, due to the
complicated nature of software projects, agent concepts
which originated from AI has been considered for
devising a new paradigm to handle complicated systems
[1],[10],[11], [12],[13],[14],[15].

There are two main viewpoints for agents. The first
one is powerful AI viewpoint where the agent is
considered proactive and intelligent. There should be
P2P discussed rather than doing client to server
computing. The next viewpoint is the less powerful
software engineering element which has threads of

www.jmest.org
JMESTN42350127 176

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)
ISSN: 3159-0040

Vol. 1 Issue 4, November - 2014

execution that are internal. This can be engaged in
complicated and state interaction protocols [16].

II. REASONS THAT AGENT-BASED SYSTEM IS SEEN AS A
CRITICAL NEW DIRECTION

There are various reasons for the present intensity of
interest, but for sure one of the crucial one is the agent’s
concept as an autonomous system which has the ability
for interacting with different agents for satisfying the
system’s design objectives, is a natural one for designers
of software products. Similar to the way that we can
understand various systems are being composed of
passive objects that are essential, so we can also
understand various others which are being made of
agents that are interacting and semi-autonomous.

A sure question to ask is why the agents and multi
agent systems are considered crucial new direction in
this engineering field of software:

A. Natural Metaphor
Similar to the way that various domains can be

conceived of having many interacting objects that are
passive essentially, various others can be conceived as
interacting and purposeful agents who are active too.

B. Distribution of Data
In most software systems, it is impossible for

identifying a locus of control; rather an overall control is
the system is passed across various computing nodes
that are frequently distributed geographically. For making
such systems work properly these nodes got to be
capable of autonomous interaction among them- they
must agents.

C. Legacy Systems
A natural method for incorporation of legacy systems

into modern distributed information system is to agentify
them: for wrapping them with no agent layer, which shall
enable them for interacting with different agents other
than this.

D. Open Systems
Most systems are open. That is, it is difficult for

knowing during the time of design exactly which elements
comprise the system and how these elements will be
used for interacting among one another. For operating
effectively in such systems, the ability for engaging in
autonomous decision making which is flexible is very
important [17].

III. AGENT-ORIENTED SOFTWARE ENGINEERING

A. The requirement for Agent-Oriented Software
Engineering
1) Software engineering is crucial in discipline such as

software systems and processes. Reliability of the
approaches is on the abstraction sets and on relevant
technologies as well as tools.

2) Agent based computing which introduces
abstractions that are novel, which needs clarification of
the group of essential abstractions. It also needs new
tools production and methodology adaptations.

3) Novel and specific software engineering methods
that are agent oriented are required [16].

B. Key Software Engineering Agents’ Characteristics
Agent based solutions can’t be applied in every

situations. One critical factor for successful agent
oriented software engineering is the thus identification of
the application needs which shows an agent based
solution. What are the major characteristics which shows
an agent based way is appropriate [18]?

Software agent can be defined as a computer
systems located in an environment which acts on its
user’s behalf and it is characterized by various properties
[19].

Many researchers agree that autonomy is an agent’s
crucial property. It’s precisely the autonomy of agents
that define the agents [20]. Also the cooperation between
various software agents can be useful for attaining their
targets [19]. As per [21] the most usual way in using the
term agent is for denoting hardware or software based
system of computers which enjoys the properties such
as: social ability, being pro-active, reactivity and
autonomy. In [22] major concepts in the definition was
identified which was adapted from [21]. They are
autonomy, social ability, reactivity and pro-activeness. In
[23] an intelligent system defines as the one that has
autonomy and enjoys having it, having social ability, pro-
activeness and reactivity. He also emphasized that the
components put forward by other researchers such as
veracity, rationality, learning, mobility and benevolence
also need to get good focus [ibid].

Agents possess various characteristics in different
combinations. Table 1 enumerates and gives definition
for all characteristics adopted for this research’s purpose
[24].

TABLE I. CHARACTERISTICS OF SOFTWARE ENGINEERING AGENTS

Characteristics Definition

Autonomy

It means that the agent can act without
direct intervention by humans or other
agents and that it has control over its own
actions and internal state (Sycara, 1998).

Reactivity or
situatedness or
sensing and
acting

It means that the agent receives some form
of sensory input from its environment, and it
performs some action that changes its
environment in some way (Chira, 2003;
Sycara, 1998).

Proactiveness or
goal directed
behavior

It means that the agent does not simply act
in response to its environment; it is able to
exhibit goal-directed behavior by taking the
initiative (Chira, 2003; Wooldridge &
Jennings, 1995; Odell, 2000).

Social ability

It means that the agent interacts and this
interaction is marked by friendliness or
pleasant social relations; that is, the agent is
affable, companionable or friendly (Odell,
2000).

Coordination

It means that the agent is able to perform
some activity in a shared environment with
other agents (Odell, 2000). Activities are
often coordinated via plans, workflows, or
some other process management
mechanism (Odell, 2000).

www.jmest.org
JMESTN42350127 177

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)
ISSN: 3159-0040

Vol. 1 Issue 4, November - 2014

Characteristics Definition

Cooperation
or collaboration

It means that the agent is able to coordinate
with other agents to achieve a common
purpose; non-antagonistic agents that
succeed or fail together (Odell, 2000).

Flexibility

It means that the system is responsive (the
agents should perceive their environment
and respond in a timely fashion to changes
that occur in it), pro-active and social
(Jennings et al., 1998).

Learning or
adaptivity

It means that an agent is capable of i)
reacting flexibly to changes in its
environment; ii) taking goal-directed
initiative, when appropriate; and iii) learning
from its own experience, its environment,
and interactions with others (Chira, 2003;
Sycara, 1998).

Mobility

It means that the agent is able to transport
itself from one machine to another and
across different system architectures and
platforms (Etzioni & Weld, 1995).

Temporal
continuity

It means that the agent is a continuously
running process, not a "one-shot"
computation that maps a single input to a
single output, then terminates (Etzioni &
Weld, 1995).

Personality
or character

An agent has a well-defined, believable
"personality" and emotional state (Etzioni &
Weld, 1995).

Reusability

Processes or subsequent instances can
require keeping instances of the class
‘agent’ for an information handover or to
check and to analyze them according to
their results (Horn et al., 1999).

Resource
limitation

An agent can only act as long as it has
resources at its disposal (Horn et al., 1999).
These resources are changed by its acting
and possibly also by delegating (Horn et al.,
1999).

Veracity

It is the assumption that an agent will not
knowingly communicate false information
(Wooldridge & Jennings, 1995; Wooldridge
1998).

Benevolence

It is the assumption that agents do not have
conflicting goals and that every agent will
therefore always try to do what is asked of it
(Wooldridge & Jennings, 1995; Wooldridge
1998).

Rationality

It is the assumption that an agent will act in
order to achieve its goals, and will not act in
such a way as to prevent its goals being
achieved — at least insofar as its beliefs
permit (Wooldridge & Jennings, 1995;
Wooldridge 1998).

Inferential
capability

An agent can act on abstract task
specification using prior knowledge of
general goals and preferred methods to
achieve flexibility; goes beyond the
information given, and may have explicit
models of self, user, situation, and/or other
agents (Bradshow, 1997).

“Knowledge-
level”
communication
ability

The ability to communicate with persons and
other agents with language more resembling
humanlike “speech acts” than typical
symbol-level program-to-program protocols
(Bradshow, 1997).

Prediction
ability

An agent is predictive if its model of how the
world works is sufficiently accurate to allow it
to correctly predict how it can achieve the
task (Goodwin, 1993)

 Source: adopted from Georgakarakou, C. Ε., & Economides, A. A, 2009, p.5

Concluding we can express that the traits of software
engineering agents can be divided into 2 major groups:
the first one is the fundamental traits such as being pro-
active and autonomy, interactivity and situatedness. The
second one is traits that are additional such as locality,
mobility, adaptation, learning and openness [16], [ibid].

C. Agent-Oriented Software Engineering (AOSE)
Paradigm
Paradigm in software engineering evolved action for

interpreting issues of a software project. Various
paradigms are used these days. Selecting paradigm is
based in features regarding the project, application types,
devices and type of controls needed. Paradigm
distinguishes in abstraction and method of approach. It is
tough for building best quality software. In software
engineering, various kinds of programming paradigms
are developed. Binary language was used at first for
writing programs.

For making programming simpler, assembly
languages got developed which used mnemonic codes.
Procedural languages are as per the unit and scope
concepts. Program writing in procedural languages is
much easy. Every successive development either makes
the engineering procedure easier as it claims or extends
the complicated nature of applications which be built
feasibly. A new paradigm evolved from the advancing
turn before. For example, to object oriented from
procedural and to component oriented from object
oriented. Similarly agent oriented paradigm evolves [7].

Agent orientation emerges as a new paradigm for the
construction of software systems. Newer systems types
are getting developed as per the concept of software
agent. As per a definition [17], software agents are
located where they sense environment, they are
autonomous and have control upon their own actions and
states of internal and can act with no straight intervention
from people and are flexible, that is responsive to
environmental changes, oriented towards a goal,
opportunistic and take steps initially and are also social,
that is they interact with other agents that are artificial as
well as human beings for completing their targets and
helping others.

Agent orientation provides a new way of thinking
regarding software and is its construction. Compared with
the previous software paradigm that was dominant,
called as object orientation, agent orientation gives a top
level abstraction for thinking regarding characteristics
and behaviors of software systems. It can be considered
as a part of the current trends regarding in-depth
interactivity in conceptions of software programming and
construction of software systems [25], [26], [27], [28].

When developing string and robust software
capabilities is evident basically to the enterprise of
software and IS, it is also evident that we require
effective methods for determination of need and
requirement for specific application setups so that the
correct system can be developed foe meeting the needs.
A software systems’ success depends on the needs and
how good they are resolved during development stage
[28].

www.jmest.org
JMESTN42350127 178

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)
ISSN: 3159-0040

Vol. 1 Issue 4, November - 2014

The needs engineering community is active in
developing newer concepts and methodologies [28], [29],
[30]. This study shows that agent orientation can be as
an important paradigm that shifts for needs engineering
as for the construction of software. Models and
languages are important for needs engineering. They
enable the proper type of knowledge for expression for
supporting the correct type of reasoning and analysis. As
the requirements and contexts of needs engineering
vary, advances in modeling and languages are also
required for responding to the changes. Conventional
modeling methods reflect the mechanistic view of the
world in which they concentrate on specifications of
behavior which are detailed, known and completely
controllable. Current systems are environments are more
complex and dynamic, accommodate much domestic
freedom and initiative and got to cope-up with limited
control as well as limited knowledge [28].

A proper concept of agent got to be developed for
serving as a central construct in a latest type of modeling
and analysis for responding to current day needs. Most
like the concepts of object and concepts of activity which
plays vital role in initial days’ modeling paradigms, the
concept of agent can be instrumental for putting forward
a shift towards an even richer ontology that is socially
oriented which is required for characterizing and
analyzing current days systems and environments [ibid].
Agent oriented systems are string, even flexible and also
rebuts that the traditional software systems [ibid].

Agent Oriented Software Engineering (AOSE)
paradigm shows an interesting way to analyze, design
and build complicated software systems and it quite suits
the new development of software needs [15].

Yoav Shoham proposed the paradigm of AOSE in the
year 1990 [13]. This was based on a societal
computation view [13], [14]. Artificial Intelligence is the
major source for this paradigm [1], [31]. Distributed
Artificial Intelligence is precisely the source for this [32],
[33], [15].

In AOSE agents are more of computer science and
software engineering than of AI [1]. Agent oriented
paradigm got multiplied many times in the last 20 years
and even though it was initially limited to academic level
researches, it got the industry’s interests in the last few
years [31], [33], [15]. It has to be noted that almost after
10 years of its introduction, this paradigm’s progress
faced severe transformation, which certain researchers
refers as the gateway to new generation methods in
software engineering [33], [34], [15]. Hence this paper on
AOSE paradigm strengths indicates the essentiality of its
use [15].

IV. DISCUSSION AND CONCLUSION
Agents as well as multi agent systems are at present

one of the most discussed topics in research area among
computer science communities. The natural method of
capturing the structure as well as behavior of complicated
systems has stimulated this interests among computer
science researchers particularly. This resulted in making
agent oriented software engineering, which paved way
for a new paradigm in software engineering [35].

Agent based computing is a promising method for
application development in complicated domains.
Anyhow even after much research being done in this
stream, various challenges got to be resolved still such
as making agent based comp ting’s acceptance wide in
the practice of software engineering, for turning agent
oriented software abstractions in to tools that are
practical to face the complicated nature of the current day
areas of application [36].

Today’s complicated systems and our expectations
regarding the have rose to a level where a social
paradigm for modeling as well as analysis is of
appropriate than the conventional paradigms [28].

A needs modeling method focusing on a concept of
agent can give string new methods for characterizing and
analyzing the links and interactions between the various
semi-autonomous system entities and in the
environment. As per literatures regarding the varying
requirements of needs modeling, we put forward the
crucial characteristics for software engineering agent
which are desirable for a concept of agent methodology
for software engineering- reactivity of termed as
situatedness, autonomy, acting or sensing, goal oriented
behavior of being pro-active, collaborating or
cooperation, coordination, adaptability or learning,
flexibility, social ability, temporal continuity, rationality,
limitation of resource, reusability, veracity, inferential
capability, benevolence, communication ability and ability
of prediction [ibid], [24].

REFERENCES
[1] M. Wooldridge, Agent-Based software engineering, IEE Proc.

Software Engineering 144 (1) (1997) 26-37.
[2] Alvaro Magri, AOSE - Agent Oriented Software Engineering, ppt.
[3] N. R. Jennings. An agent-based approach for building complex

software systems. Commun. ACM, 44(4):35–41,2001.
[4] M. Wooldridge. An Introduction to Multi-Agent Systems. John

Wiley & Sons, Ltd, 2002.
[5] S. Russell and P. Norvig. Artificial Intelligence, A Modern

Approach (second edition). Prentice Hall, 2010.
[6] Ricci, A., & Santi, A. (2011, September). Agent-oriented

computing: Agents as a paradigm for computer programming and
software development. In FUTURE COMPUTING 2011, The Third
International Conference on Future Computational Technologies
and Applications (pp. 42-51).

[7] Arora, S., Sasikala, P., Agrawal, C. P., & Sharma, A. (2012,
September). Developmental approaches for Agent Oriented
system—A critical review. InSoftware Engineering (CONSEG),
2012 CSI Sixth International Conference on(pp. 1-5). IEEE.

[8] Iglesias, C. A., Garijo, M., & González, J. C. (1999). A survey of
agent-oriented methodologies. In Intelligent Agents V: Agents
Theories, Architectures, and Languages: 5th International
Workshop, ATAL’98 Paris, France, July 4–7, 1998 Proceedings
(pp. 317-330), Springer Berlin Heidelberg.

[9] Wooldridge M, Jennings NR, Kinny D (1999). A methodology for
agentoriented analysis and design, In Proceedings of the Third
International Conference on Autonomous Agents (Agents 99),
69–76, Seattle, WA.

[10] Genesereth MR, Ketchpel SP (1994). Software agents,
Communications of the ACM, 37, 7, pp. 48-53.

[11] Jennings N, Wooldridge M (1996). Software Agents, IEEE Rev.
17-20.

[12] Jennings NR, Wooldridge M (2000). Agent-Oriented Software
Engineering, In Handbook of Agent Technology (ed. Bradshaw
J.),AAAI/MIT Press.

www.jmest.org
JMESTN42350127 179

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)
ISSN: 3159-0040

Vol. 1 Issue 4, November - 2014

[13] Shoham Y (1990). Agent-Oriented Programming, Technical
Report STAN-CS-1335-90, Computer Science Department,
Stanford University, Stanford, CA 94305.

[14] Shoham Y (1993).Agent-Oriented Programming, Artif. Intell.
60(1):51-92

[15] Akbari, O. Z. (2010). A survey of agent-oriented software
engineering paradigm: Towards its industrial acceptance. J.
Comput. Engg. Res, 1(2), 14-28.

[16] Onn Shehory, (2008) ,Agent-Oriented Software Engineering, IBM
Haifa Research Lab

[17] Jennings, N.R., Sycara, K., & Wooldridge, M. (1998). A Roadmap
of Agent Research and Development. Autonomous Agents and
Multi-Agent Systems, 1, 7-38.

[18] Wooldridge, M., & Ciancarini, P. (2001). Agent-oriented software
engineering.Handbook of Software Engineering and Knowledge
Engineering, 1, 507-522.

[19] Chira, C. (2003). Software Agents, IDIMS Report, 2/21/03,
http://pan.nuigalway,ie/code/docs/agents.pdf

[20] Alonso, E. (2002). Al and agents: State of the art. Al
Magazine,23(3), 25-29.

[21] Wooldrige, M., & Jennings, N. R. (1995). Inteligent agents: theory
and practice. The Knowledge Engineering Review 10(2), 115-152.

[22] Jennings, N.R., Norman T.J., & Faratin, P.(1998). ADAPT: An
Agent-Based Approach to Business Process Management ACM
SIGMOD Record, 27(4), 32-39

[23] Wooldridge, M. (1998). Agent-based computing. Interoperbale
Communicatop Networks, 1 (1), 71-97.

[24] Georgakarakou, C. Ε., & Economides, A. A. (2009).Software
Agent Technology: an Overview Application to Virtual Enterprises

[25] Newell, A. (1982) The Knowledge Level. Artificial Intelligence 18:
87-127.

[26] Bobrow, D.G. (1991) Dimensions of Interaction: AAAI-90
Presidential Address. AI Magazine 12(3): 64-80.

[27] Wegner, P. (1997) Why Interaction Is More Powerful Than
Algorithms, Communications of the ACM., 40(5): 80-91. May
1997.

[28] Yu, E. (2001). Agent orientation as a modelling
paradigm.Wirtschaftsinformatik, 43(2), 123-132.

[29] van Lamsweerde, A. (2000) Requirements Engineering in the
Year 2000: A Research Perspective. Proc. Int. Conf. on Software
Engineering, June 2000, Limerick, Ireland.

[30] Nuseibeh, B. A. & Easterbrook, S. M.. (2000) Requirements
Engineering: A Roadmap. Proceedings, 22nd International
Conference on Software Engineering (ICSE'00), Limerick, Ireland,
5-9 June, 2000. IEEE Computer Society Press.

[31] Debenham JK, Henderson-Sellers B (2002). Full lifecycle
methodologies for agent-oriented systems – the extended OPEN
process framework, In Proceedings of Agent-Oriented Information
Systems (Eds. Giorini P, Lespreance Y, Wagner G, Yu E),
Toronto pp. 87-101

[32] Bond AH, Gasser L (1988). A Survey of Distributed Artificial
Intelligence, Readings in Distributed Artificial Intelligence, Morgan
Kaufmann Publishers: San Mateo, CA.

[33] Henderson-Sellers B, Giorgini P, Bresciani P (2003). Enhancing
Agent OPEN with concepts used in the Tropos methodology, in
Proceedings of the Fourth International Workshop Engineering
Societies in the Agents World, Imperial College London, UK.

[34] Dam KH, Winikoff M (2003). Comparing agent-oriented
methodologies, Proceedings of the 5th Int Bi-Conference
Workshop on Agent- Oriented Information Systems (AOIS),
Melbourne, Australia.

[35] Lind, J. (2001, January). Issues in agent-oriented software
engineering. InAgent-Oriented Software Engineering (pp. 45-58).
Springer Berlin Heidelberg.

[36] Zambonelli, F., & Omicini, A. (2004). Challenges and research
directions in agent-oriented software engineering. Autonomous
Agents and Multi-Agent Systems, 9(3), 253-283.

www.jmest.org
JMESTN42350127 180

http://www.jmest.org/

	I. Introduction
	II. Reasons that Agent-Based System Is Seen as a Critical New Direction
	A. Natural Metaphor
	B. Distribution of Data
	C. Legacy Systems
	D. Open Systems

	III. Agent-Oriented Software Engineering
	A. The requirement for Agent-Oriented Software Engineering
	B. Key Software Engineering Agents’ Characteristics
	C. Agent-Oriented Software Engineering (AOSE) Paradigm

	IV. Discussion And Conclusion
	References

