
Journal of Multidisciplinary Engineering Science and Technology (JMEST)
ISSN: 3159-0040

Vol. 1 Issue 4, November - 2014

Threads Scheduling on Linux Operating
Systems

Igli Tafa1, Stavri Thomollari2, Julian Fejzaj3

Polytechnic University of Tirana, Faculty of Information Technology1,2

University of Tirana, Faculty of Natural Science3

itafaj@gmail.com1 stavrithomollari@hotmail.com2 Julian.fejzaj@fshn.edu.al3

Abstract - The future of computing is definitely multi-core.
Multi-core and multi-threading. Using multi-threads
significantly decrease execution time of a application , but
also make it more difficult to manage a process, especially in
multi-cores, raising the need for better schedulers. How
does Linux operating systems cope with it? How are threads
handled? What types of scheduling algorithms are
implemented in the schedulers? Which one is faster?
By performing a simple experiment in this paper we describe
Linux from a different of view , scheduling.

Keywords - multithreading, FIFO, Round-Robin, real-
time scheduling, experimental evaluation.

I. Introduction

Single-core processor performance has reached the
power limit. Currently there are two methods used to
achieve better performance, less CPU time and less
memory usage:

1) Using several cores
as a single processor (multi-core), using them to
process tasks simultaneously.

2) Using threads to split the work of a process into
several small tasks that are performed
simultaneously, thus virtually creating parallelism. One
of the most important tasks performed by an operating
system is to allocate ready processes or threads to the
available and less busy processors/cores. This task
can be divided into two parts. The first part, known as
process scheduling, consists of decision-making
policies to determine in which order should active
tasks compete for the use of processors. Different
from
windows and other OS, Linux does not use a special
separate module to schedule threads. It considers
both of them as tasks and use the same schedulers.
The actual binding of a selected task to a processor,
which consists in removing the tasks from the queue,
change its status, and load the processor state, is
performed by a process dispatcher This two parts are

usually done by two components of the operating
system. These components can be part of the kernel,
but they could also be part of higher operating system
levels and applications code. In more complex
designs, several elements of the system may even
have their own schedulers so that task scheduling can
be distributed throughout. Unless explicitly stated, we
are going to refer to both modules jointly as the
scheduler and to both tasks as scheduling. Like nearly
all other OS schedulers Linux scheduler use the
concept of task priority when it needs to decide which
should be running next. It can be static which means
that once the priority of a task is decided ,it cannot be
changed or dynamic, the priority can change every
time the scheduler is involved. Each task has its
priority level.
Higher priority means that the task, thread or process,
will be performed earlier than tasks with lower priority.
For the experiment I am using Ubuntu 12.04 which
has three standard schedulers :

1. The First-In/First-Out, in Ubuntu called
SCHED_FIFO, can only be used with static priorities
higher than 0, which means that when a
SCHED_FIFO thread becomes runnable, it is going to
preempt any currently running SCHED_OTHER
which has always priority zero. SCHED_FIFO is a
scheduling algorithm without time division. If
SCHED_FIFO task has been preempted by another
task of higher priority, it will stay on top of the list for its
priority and will continue execution as soon as all
tasks of higher priority are blocked again. When it
becomes runnable, it will be put at the bottom of the
list for its priority.

2. Round-Robin, in Ubuntu is called SCHED_RR It is a
simple improvement of SCHED_FIFO. Everything
said for FIFO can also said to SCHED_RR, except
that each task is allowed to run for a maximum time
quantum. If a SCHED_RR task has been running for a
time period longer than the established time , it will
be inserted at the bottom of the list for its priority. A

www.jmest.org
JMESTN42350110 147

http://www.jmest.org/
mailto:itafaj@gmail.com
mailto:stavrithomollari@hotmail.com
mailto:Julian.fejzaj@fshn.edu.al

Journal of Multidisciplinary Engineering Science and Technology (JMEST)
ISSN: 3159-0040

Vol. 1 Issue 4, November - 2014

SCHED_RR task that was preempted by a higher
priority task and then resumes its execution, will
complete the portion of its round robin time quantum
left.

3. SCHED_OTHER, can only be used at static priority
0. SCHED_OTHER is the
standard Linux time-sharing scheduler that is used
for all tasks that do not require any sort of static
real-time priority . The task to execute is chosen from
the priority list based on a dynamic priority that is
given only inside this list. The dynamic priority is
based on the nice level and increased for every time-
quantum the task is ready to be executed, but refused
by the scheduler. This ensures fairness among all
SCHED_OTHER tasks.

II. Related works

There are several articles with a particular interest that
gave us the idea to write this study.
Earlier works on the the field include article[1] about
thread scheduling in real time Linux, which is what we
experimented with fifo and round robin. Since for
testing schedulers we created threads on quadcore
pc, of great help were article [2] and article [3], where
on the former is explained how linux kernel handles
threads on a multicore computer. It also explains how
fairness is achieved, how to prevent starvation and
how to achieve highest efficiency on linux operating
system. On article [3] it is explained and given
examples how pthreads can be created, set priorities
and policies. Article [5] explains how multithreading
can be programmed to work efficiently on a Linux
environment.
Article [4] attempts to do an experimental comparison
of different real-time schedulers on multicore systems
where a similar experiment to ours is performed,
comparing the performance of two schedulers EDF
and Rate Monotonic.
Similar to [4] but more tecnical, article[6] describes
EDF scheduling class for the Linux kernel, implements
an EDF scheduler and analyzing time of performance.
On study [7] a comparison of scheduling algorithms for
multiprocessors like: partition schedulers vs global
schedulers and dynamic vs static schedulers are
discussed. The schedulers implemented are PF,
LLREF, global EDF, static RTSIM.
Two articles[8] and [9] are really helpfull
for understanding how linux handles scheduling
jobs.The first one[8] takes varius Linux schedulers
like: sched_FIFO, sched_RR, sched_other,
sched_batch and explaines them theoretically.The
other [9] gives a full view on how are threads really
handled on linux, like explaining thread dispatcher,
thread scheduler.

Among others studies worth mentioning is the
article[10] which explains several scheduling
algorithms for multiprogramming in a hard real-time
environment.All this studies gave us a better
understanding on multithreading and a more clear
view on schedulers,making us more prepared for our
study.

III. Theory of experiment

In this section we will describe schedulers in a more
scientific way and attempt to analyze them.

3.1 Environment

By the term environment we mean operating system
on which we executed our code. We used on Ubuntu
OS 12.04.

3.2 Programming languages

To experimentally compare Ubuntu's schedulers, we
created two tasks and executed them on different
scheduling order. The tasks were threads created
using POTIX pthreads, implemented in C language
which is good because in same cases JVM, the
platform where Java runs, is independent from OS.
It could interfere with the time of execution
measurements.

3.3 Necessary conditions

To correctly measure the time of the threads
performing on a scheduling we need several
conditions:
1. Threads need to have both of them set on either
FIFO or OTHER or Round Robin policies .
2. For threads to be executed on same
real-time FIFO or Round-Robin scheduler stack , the
threads need to have the same priority level.
3.On real time scheduling the priority is from 0 to 99.
Higher priority means that the probability of being
preempt will be smaller. We used high priorities so
our threads would not be preempted.

Fig. 1: Threads of same priority using FIFO

www.jmest.org
JMESTN42350110 148

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)
ISSN: 3159-0040

Vol. 1 Issue 4, November - 2014

IV. Experimental phase

In the next section of the article a quick view of the
experimental phase is presented. As discussed before
we created two threads that perform two different task,
with two different time of execution and schedule
them to be performed on three Ubuntu schedulers. We
measured their order and time of execution.
4.1 Algorithm of the experiment

First thread is assigned to do this job:
 After setting the priority and policy, it enters loop from
0 to 100 and prints the incremented thread->value.
Second thread is assigned to do this job :
After setting the priority and policy, it
enters two loops from 100 to 0 and does four
arithmetic operations. Then it enter a loop again from
0 to 100 where it prints the incremented thread value.

Fig. 2: Thread 1 algorithm

Here is its c code:
void print_message_function (void *ptr) {
thdata *data;
data = (thdata *) ptr;
struct sched_param param;
int priority=10;
param.sched_priority = priority;
int policy = SCHED_RR;
pthread_setschedparam(pthread_self(),policy,¶m)
printf("Thread %d says sched policy %d \n", data-
>thread_no, SCHED_RR);

pthread_getschedparam(pthread_self(),&policy,
¶m);
printf("Thread %d says %s %d \n", data->thread_no,
data->message,policy);
int i=0;
printf("Thread %d says %s %d \n", data->thread_no,
data->message,(int)pthread_self());
for(i=0;i<100;i++)
printf("Thread %d says %d \n", data->thread_no,data-
>thread_value++);
pthread_exit(0); /* exit */ }

Fig. 3 : Thread 2 algorithm

Here is second thread c code:
void print_message_function1 (void *ptr) {
thdata *data;
data = (thdata *) ptr;
struct sched_param param;
int priority=30;

 i++

 End

Thread_value++

int i=0

i <100

 Begin
 h--

 Int i,h,p =0;

 Begin

 h>0
h h

 p--

 p>0
0

 m=m/50;m=m*50;
 m=m/50;m=m*50;

 i<100

i++

End

 Thread_value++

www.jmest.org
JMESTN42350110 149

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)
ISSN: 3159-0040

Vol. 1 Issue 4, November - 2014

param.sched_priority = priority;
int policy = SCHED_RR;
pthread_setschedparam(pthread_self(), policy,
¶m);
printf("Thread %d says sched policy %d \n", data-
>thread_no, SCHED_RR);
pthread_getschedparam(pthread_self(),&policy,¶
m);
printf("Thread %d says %s %d \n", data->thread_no,
data>message,policy);
int p,h;
int m=100;
int i=0;
for (h=100;h>=0;h--){
for (p=100;p>=0;p--){
m=m/50;m=m*50;m=m/50;m=m*50;}}
printf("Thread %d says %s %d \n", data->thread_no,
data->message,(int)pthread_self());
for(i=0;i<100;i++)
printf("Thread %d says %d \n", data ->thread_no,data-
>thread_value++);
pthread_exit(0);}
Both threads are included in a single process which
creates ,call them and wait until both of them are done
to exit.
We also included the library <time.h> to be able to call
the function clock_gettime() so we can measure their
time of execution. This function first argument is
CLOCK_MONOTONIC, it directly counts the internal
clock pulses
and gives an extremely accurate time count.
4.2 Experimental environment
By term surroundings we refer to:
1.Enabling all cores of the processor
2.Installing a C language compiler, gcc
Both tasks are done as we checked them. To execute
the program the following commands are needed :
1.Open terminal
2. cc -pthread proc.c -lrt -o proc.out
3. /proc.out and press enter
This will appear on the screen:

Fig. 4 : Print Screen of thread exec.

4.3 Results of the experiments

By changing the policy from sched_FIFO to sched_RR
and to sched_OTHER, we noticed three different time
and order of execution.
If both threads have a fifo policy, the first thread that
goes to the queue get executed first, which always is
thread1.
We put a priority 70 which is high (99 is the
maximum) and observed that thread1 finished first
and thread2 finished second. Thread1 finished for
0.003550s and thread2 for 0.003719s. Although the
results are very close,they clearly demonstrated that
thread1 and thread2 were put to the same queue,
because of their same priority, but thread1 arrived first
to the queue and was executed first for less time.
If both threads have round-robin policy , same as fifo
but we saw that the first thread was executed for only
70 of the “printf” instructions, then started thread2
for twenty “printf” instructions then again to thread1
and so on until both of them finished. The time of the
execution were respectively 0.001596
and 0.001590.This suggest that both of them were
performed with equal turns for the same amount of
time.
If both of threads have a other policy then then priority
is zero. We observed that it behaved very similar to
Round-Robin but with smaller turns. This suggest that
since our program was the only one opened the
weren't other processes to interfere and the niceness
didn't increase so basically it acted as a round-robin.
When we performed it a second time, the time of
thread1 was 0.001693 and of the second thread was
0.004164 bigger difference than fifo.
Total time of the process was always around
0.574675 and 0.575761.

V. Conclusion
On section 4 we described a experiment and we
made several observations. As a conclusion:
1.Ubuntu 12.04 has three standard
schedulers:sched_FIFO, sched_RR and
sched_OTHER. Sched_fifo executed the first task
was put to the queue and after it finished ,executed
the second.
2.Sched_RR executed both threads with turns for
equal timeslices and both of them were finished for
the same amount of time.
3.Sched_OTHER has priority 0 and is a dynamic
scheduler. It acted as a round-robin but it could also
have a difference of time between the threads worse
than fifo.
VI. Future works

As a future work we see the extension not only to the
standard schedulers but also the new experimental

www.jmest.org
JMESTN42350110 150

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)
ISSN: 3159-0040

Vol. 1 Issue 4, November - 2014

dynamic scheduler such as sched_deadline that
implements Earliest Deadline First (EDF) and many
others , creating a full picture of all schedulers.

REFERENCES

[1]Kernel Thread Scheduling in Real-Time Linux for
Wearable Computers
[2]joshaas.net/linux/linux_cpu_scheduler.pdf
[3]computing.llnl.gov/tutorials/pthreads/
#Compiling
[4]An Experimental Comparison of Different Real-Time
Schedulers on Multicore Systems

[5]advancedlinuxprogramming.com/
alp-folder/alp-ch04-threads.pdf
[6]lwn.net/images/conf/rtlws11/papers/proc/p16.pdf
[7]pages.cs.wisc.edu/~markus/750/smp_scheduling.p
df
[8]computing.llnl.gov/tutorials/pthreads/man/sched_set
scheduler.txt
[9] ics.uci.edu/~bic/courses/JaverOS/ch5.pdf
[10]Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time
Environment C.LIU & JAMES LAYLAND

www.jmest.org
JMESTN42350110 151

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)
ISSN: 3159-0040

Vol. 1 Issue 4, November - 2014

Appendix

/* Includes */
#include <unistd.h> /* Symbolic Constants */
#include <sys/types.h> /* Primitive System Data Types */
#include <errno.h> /* Errors */
#include <stdio.h> /* Input/Output */
#include <stdlib.h> /* General Utilities */
#include <pthread.h> /* POSIX Threads */
#include <string.h> /* String handling */
#include <sched.h>
#include <time.h>
/* prototype for thread routine */
void print_message_function (void *ptr);
void print_message_function1 (void *ptr);

/* struct to hold data to be passed to a thread
this shows how multiple data items can be passed to a thread */
typedef struct str_thdata
{
int thread_no;
int thread_value;
char message[100];
 } thdata;

struct timespec start, finish,start1,finish1,start2,finish2;

int main() {
pthread_t thread1, thread2; /* thread variables */
thdata data1, data2; /* structs to be passed to threads */

/* initialize data to pass to thread 1 */
data1.thread_no = 1;
data1.thread_value = 0;
strcpy(data1.message, "Hello!");

/* initialize data to pass to thread 2 */
data2.thread_no = 2;
data2.thread_value = 10000;
strcpy(data2.message, "Hi!");

double elapsed,elapsed1,elapsed2;

clock_gettime(CLOCK_MONOTONIC, &start);
/* create threads 1 and 2 */
clock_gettime(CLOCK_MONOTONIC, &start1);
pthread_create (&thread1, NULL, (void *) &print_message_function, (void *) &data1);
clock_gettime(CLOCK_MONOTONIC, &start2);
pthread_create (&thread2, NULL, (void *) &print_message_function1, (void *) &data2);
/* End Threads 1 and 2*/
pthread_join(thread1, NULL);clock_gettime(CLOCK_MONOTONIC, &finish1);
pthread_join(thread2, NULL);clock_gettime(CLOCK_MONOTONIC, &finish2);
/*Time thread1*/
elapsed1 = (finish1.tv_sec - start1.tv_sec);elapsed1 += (finish1.tv_nsec - start1.tv_nsec) / 1000000000.0;
/*Time thread2*/
elapsed2 = (finish2.tv_sec - start2.tv_sec);elapsed2 += (finish2.tv_nsec - start2.tv_nsec) / 1000000000.0;
/*Time Total*/
clock_gettime(CLOCK_MONOTONIC, &finish);
elapsed = (finish.tv_sec - start.tv_sec);elapsed += (finish.tv_nsec - start.tv_nsec) / 1000000000.0;
printf("thread1 time:%f\nthread2 time:%f\ntotal time:%f\n ",elapsed1,elapsed2,elapsed);
exit(0);
}

/*
 print_message_function is used as the start routine for the threads used
 it accepts a void pointer
*/

void print_message_function (void *ptr)

www.jmest.org
JMESTN42350110 152

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)
ISSN: 3159-0040

Vol. 1 Issue 4, November - 2014

{

thdata *data;
data = (thdata *) ptr; /* type cast to a pointer to thdata */

struct sched_param param;
int priority=10;
/* sched_priority will be the priority of the thread */
param.sched_priority = priority;
/* only supported policy, others will result in ENOTSUP */

int policy = SCHED_RR;
/* scheduling parameters of target thread */
pthread_setschedparam(pthread_self(), policy, ¶m);
printf("Thread %d says sched policy %d \n", data->thread_no, SCHED_RR);
pthread_getschedparam(pthread_self(),&policy,¶m);

printf("Thread %d says %s %d \n", data->thread_no, data->message,policy);

/* do the work */
int i=0;
printf("Thread %d says %s %d \n", data->thread_no, data->message,(int)pthread_self());
for(i=0;i<100;i++)

printf("Thread %d says %d \n", data->thread_no,data->thread_value++);
pthread_exit(0); /* exit */
} /* print_message_function (void *ptr) */

void print_message_function1 (void *ptr)
{

thdata *data;
data = (thdata *) ptr; /* type cast to a pointer to thdata */

struct sched_param param;
int priority=30;
/* sched_priority will be the priority of the thread */
param.sched_priority = priority;
/* only supported policy, others will result in ENOTSUP * /
/* scheduling parameters of target thread */int policy = SCHED_RR;
pthread_setschedparam(pthread_self(), policy, ¶m);
printf("Thread %d says sched policy %d \n", data->thread_no, SCHED_RR);

pthread_getschedparam(pthread_self(),&policy,¶m);

printf("Thread %d says %s %d \n", data->thread_no, data->message,policy);
int p,h;
int m=100;
int i=0;
for (h=100;h>=0;h--){
for (p=100;p>=0;p--){
m=m/50;m=m*50;m=m/50;m=m*50;}}
/* do the work */
printf("Thread %d says %s %d \n", data->thread_no, data->message,(int)pthread_self());
for(i=0;i<100;i++)
printf("Thread %d says %d \n", data->thread_no,data->thread_value++);
pthread_exit(0);/* exit */
}

www.jmest.org
JMESTN42350110 153

http://www.jmest.org/

	I. Introduction
	II. Related works

	III. Theory of experiment
	IV. Experimental phase
	V. Conclusion
	VI. Future works

