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Abstract— In this paper two methods for optimization over 

polynomials are presented: Bernstein expansion and linear 
matrix inequalities approach. We mainly focus on the Bernstein 
expansion. 
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I. INTRODUCTION  
We give some examples from the control theory which are 

relevant to polynomial optimization. 

i) Consider the following nonlinear system ([1]) 

 𝑥̇𝑥 = 𝑓𝑓(𝑥𝑥)
𝑓𝑓(0) = 0 (1) 

where 𝑥𝑥 ∈ ℝ𝑛𝑛 , 𝑥𝑥 = 𝑥𝑥(𝑡𝑡) , 𝑡𝑡  is the time. Global asymptotic 
stability of the equilibrium solution 𝑥𝑥(𝑡𝑡) ≡ 0  can be 
investigated by looking for a Lyapunov function 𝑣𝑣:ℝ𝑛𝑛 → ℝ 
such that 

𝑣𝑣(0) = 0, 

𝑣𝑣(𝑥𝑥) > 0, 

< ∇𝑣𝑣(𝑥𝑥), 𝑓𝑓(𝑥𝑥) > < 0   (∀𝑥𝑥 ≠ 0) 

and 𝑣𝑣(𝑥𝑥) → ∞  as ‖𝑥𝑥‖ → ∞.  Here <∙,∙>  stands for the scalar 
product. If 𝑓𝑓  and 𝑣𝑣  are polynomial the problem reduces to 
polynomial optimization. 

ii) Let 𝐴𝐴 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑥𝑥=0

 be the Jacobian matrix of 𝑓𝑓 at 𝑥𝑥 = 0. Then 
in (1) the origin is globally asymptotically stable if there exists 
a matrix 𝑃𝑃 such that 

 𝑃𝑃 > 0, 𝐴𝐴𝑇𝑇𝑃𝑃 + 𝑃𝑃𝑃𝑃 < 0 (2) 
that is the matrix 𝐴𝐴 is Hurwitz stable (the eigenvalues lie in the 
open left-half plane), where matrix inequalities in (2) means 
positive and negative definiteness. After parametrization of 𝑃𝑃, 
condition (2) can be reduced to the feasibility problem of 
polynomial inequalities. 

iii) Consider third order uncertain polynomial 
 𝑠𝑠3 + 𝑎𝑎1(𝑞𝑞)𝑠𝑠2 + 𝑎𝑎2(𝑞𝑞)𝑠𝑠 + 𝑎𝑎3(𝑞𝑞) (3) 
where 𝑞𝑞 ∈ 𝑄𝑄  is an uncertainty vector from a box 𝑄𝑄 , the 
functions 𝑎𝑎𝑖𝑖(𝑞𝑞) are polynomially dependent on 𝑞𝑞. Is the family 

(3) robustly stable, i.e. all roots lie in the open left-half plane? 
Well known stability conditions ([2]) give 

𝑎𝑎1(𝑞𝑞) > 0, 𝑎𝑎2(𝑞𝑞) > 0, 𝑎𝑎3(𝑞𝑞) > 0, 

𝑎𝑎1(𝑞𝑞)𝑎𝑎2(𝑞𝑞) − 𝑎𝑎3(𝑞𝑞) > 0 

for all 𝑞𝑞 ∈ 𝑄𝑄 . The problem is reduced to positivity of four 
polynomials over 𝑄𝑄. 

iv) For the linear control system 𝑥̇𝑥 = 𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵  the feedback 
𝑢𝑢 = 𝐾𝐾𝐾𝐾 gives the closed loop system 𝑥̇𝑥 = (𝐴𝐴 + 𝐵𝐵𝐵𝐵)𝑥𝑥. Is there 
a feedback 𝐾𝐾  such that the obtained system is globally 
asymptotically stable? Treating the entries of 𝐾𝐾  as an 
uncertainty parameter 𝑞𝑞 , the problem can be reduced to the 
following: Is there 𝑞𝑞 = (𝑞𝑞1, 𝑞𝑞2, … , 𝑞𝑞𝑙𝑙)𝑇𝑇 such that the matrix 

 𝐴𝐴0 + 𝑎𝑎1𝐴𝐴1 +⋯+ 𝑞𝑞𝑙𝑙𝐴𝐴𝑙𝑙 (4) 
is stable? In the case of symmetric matrices 𝐴𝐴0 , 𝐴𝐴1 , …  , 𝐴𝐴𝑙𝑙 
stability is equivalent to negative definiteness. Therefore the 
above problem is reduced to the following: Is there 𝑞𝑞 such that 

 𝐴𝐴0 + 𝑞𝑞1𝐴𝐴1 + ⋯+ 𝑞𝑞𝑙𝑙𝐴𝐴𝑙𝑙 < 0 ? (5) 
Leading principal minor condition gives 𝑛𝑛  polynomial 
inequalities. 

v) Matrix root clustering problem seeks a criterion for a matrix 
to have its eigenvalues in a prescribed subregion of the 
complex plane. Consider the following region 

Ω = {𝑧𝑧 ∈ ℂ: Re 𝑓𝑓𝑖𝑖(𝑧𝑧) < 0,  𝑖𝑖 = 1,2, … ,𝑚𝑚} 

where 𝑓𝑓𝑖𝑖(𝑧𝑧)  are polynomials. A necessary and sufficient 
condition for 𝐴𝐴  to have all its eigenvalues in Ω is that there 
exists 𝑃𝑃 > 0 satisfying 

{𝑓𝑓𝑖𝑖(𝐴𝐴)}𝑇𝑇𝑃𝑃 + 𝑃𝑃𝑓𝑓𝑖𝑖(𝐴𝐴) < 0   (𝑖𝑖 = 1,2, … ,𝑚𝑚) 

([3]). Parametrization of 𝑃𝑃  gives a feasibility problem for 
polynomial inequalities. 

II. BERNSTEIN EXPANSION 
Let 𝐿𝐿 = (𝑖𝑖1, 𝑖𝑖2, … , 𝑖𝑖𝑚𝑚) be 𝑚𝑚-tuple of nonnegative integers 

and for 𝑥𝑥 = (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑚𝑚) 
𝑥𝑥𝐿𝐿 = 𝑥𝑥1

𝑖𝑖1𝑥𝑥2
𝑖𝑖2 ⋯𝑥𝑥𝑚𝑚

𝑖𝑖𝑚𝑚 . 
For 𝑁𝑁 = (𝑛𝑛1,𝑛𝑛2, … ,𝑛𝑛𝑚𝑚) 

𝐿𝐿 ≤ 𝑁𝑁 ⇔ 0 ≤ 𝑖𝑖𝑘𝑘 ≤ 𝑛𝑛𝑘𝑘   (𝑘𝑘 = 1,2, … ,𝑚𝑚). 
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An 𝑚𝑚-variate polynomial 𝑝𝑝(𝑥𝑥) is defined as 
 𝑝𝑝(𝑥𝑥) = �𝑎𝑎𝐿𝐿𝑥𝑥𝐿𝐿

𝐿𝐿≤𝑁𝑁

   (𝑥𝑥 ∈ ℝ𝑚𝑚). (6) 

Here 𝑑𝑑 = 𝑛𝑛1 + 𝑛𝑛2 + ⋯+ 𝑛𝑛𝑚𝑚  is called the degree of the 
polynomial 𝑝𝑝(𝑥𝑥). 

The 𝐿𝐿th Bernstein polynomial of degree 𝑑𝑑 is defined by 
 𝐵𝐵𝑁𝑁,𝐿𝐿(𝑥𝑥) = 𝑏𝑏𝑛𝑛1,𝑖𝑖1(𝑥𝑥1)⋯𝑏𝑏𝑛𝑛𝑚𝑚,𝑖𝑖𝑚𝑚(𝑥𝑥𝑚𝑚)    

(𝑥𝑥 ∈ ℝ𝑚𝑚) 
(7) 

where 𝑏𝑏𝑛𝑛,𝑖𝑖(𝑡𝑡) = �𝑛𝑛𝑖𝑖 � 𝑡𝑡
𝑖𝑖(1 − 𝑡𝑡)𝑛𝑛−𝑖𝑖 . The transformation of a 

polynomial from its power form (6) into its Bernstein form 
result in 
 𝑝𝑝(𝑥𝑥) = �𝑝𝑝𝐿𝐿(𝑈𝑈)𝐵𝐵𝑁𝑁,𝐿𝐿(𝑥𝑥)

𝐿𝐿≤𝑁𝑁

, (8) 

where the Bernstein coefficients 𝑝𝑝𝐿𝐿(𝑈𝑈)  of 𝑝𝑝  over the 𝑚𝑚 -
dimensional unit box 𝑈𝑈 = [0,1] × ⋯× [0,1] are given by 
 

𝑝𝑝𝐿𝐿(𝑈𝑈) = �
�𝐿𝐿𝐽𝐽�

�𝑁𝑁𝐽𝐽 �
𝑎𝑎𝐽𝐽

𝐽𝐽≤𝑁𝑁

    (𝐿𝐿 ≤ 𝑁𝑁) (9) 

Here �𝑁𝑁𝐿𝐿� is defined as �
𝑛𝑛1
𝑖𝑖1 �⋯ �

𝑛𝑛𝑚𝑚
𝑖𝑖𝑚𝑚 �. In [4], a difference table 

method for computing the Bernstein coefficients efficiently 
that avoids the binomial coefficients and product appearing in 
(9) is described. 

Denote 
𝑚𝑚 = min{𝑝𝑝(𝑥𝑥): 𝑥𝑥 ∈ 𝑈𝑈}, 
𝑚𝑚 = max{𝑝𝑝(𝑥𝑥):  𝑥𝑥 ∈ 𝑈𝑈}, 
𝛼𝛼 = min{𝑝𝑝𝐿𝐿(𝑈𝑈):  𝐿𝐿 ≤ 𝑁𝑁}, 
𝛽𝛽 = max{𝑝𝑝𝐿𝐿(𝑈𝑈):  𝐿𝐿 ≤ 𝑁𝑁}. 

Theorem 1 ([5]). The inequalities 
 𝛼𝛼 ≤ 𝑚𝑚 ≤ 𝑚𝑚 ≤ 𝛽𝛽 (10) 
are satisfied. 

Theorem 1 gives the bounds for the range of (6) over the 
unit box 𝑈𝑈. In order to obtain the Bernstein coefficients and 
bounds over an arbitrary box 𝐷𝐷, the box 𝐷𝐷 should be affinely 
mapped onto 𝑈𝑈. To obtain convergent bounds for the range of 
the polynomial (6) over the box 𝑈𝑈 , the box 𝑈𝑈  should be 
divided into two boxes. If the division is continued and one 
calculates the minimal and maximal Bernstein coefficients in 
each subdivision step, the calculated bounds converge to the 
exact bounds (provided that the diameter of subboxes tends to 
zero). 

If 𝛼𝛼 > 0 (𝛽𝛽 < 0) then the polynomial is positive (negative) 
on 𝑈𝑈 . If 𝛼𝛼 ≤ 0 , 𝛽𝛽 ≥ 0  then by the bisection in the chosen 
coordinate direction the box 𝑈𝑈 is divided into two boxes. A 
new box on which the inequality 𝛼𝛼 > 0 or 𝛽𝛽 < 0 is satisfied 
should be eliminated, since our polynomial has constant sign 
on this box. Otherwise the box should be divided into two new 
boxes. 

If a multivariate polynomial is positive (negative) on the 
box 𝐷𝐷 the algorithm gives an affirmative answer after a finite 
number of steps 
Example 1. Consider the following matrix family 

𝐴𝐴(𝑞𝑞) = �𝑞𝑞1 + 0.2 𝑞𝑞2
𝑞𝑞3 𝑞𝑞1 − 𝑞𝑞2

�, 
𝑞𝑞1 ∈ [−0.3,0.4], 𝑞𝑞2 ∈ [0,0.3], 𝑞𝑞3 ∈ [−1,0]. 

𝐴𝐴(0,0,0) = �0.2 0
0 0� is Schur stable (all eigenvalues lie in the 

unit open disc). Then the family 𝐴𝐴(𝑞𝑞) is robust Schur stable if 
and only if the determinant function 
𝑓𝑓(𝑡𝑡, 𝑞𝑞1, 𝑞𝑞2, 𝑞𝑞3) = det(𝐴𝐴(𝑞𝑞)2 − 2𝑡𝑡𝑡𝑡(𝑞𝑞) + 𝐼𝐼)

= 𝑡𝑡2𝑞𝑞12 − 𝑡𝑡2𝑞𝑞1𝑞𝑞2 − 𝑡𝑡2𝑞𝑞2𝑞𝑞3 − 2𝑡𝑡𝑞𝑞13 + 3𝑡𝑡𝑞𝑞13
+ 3𝑡𝑡𝑞𝑞12𝑞𝑞2 − 𝑡𝑡𝑞𝑞1𝑞𝑞22 + 2𝑡𝑡𝑞𝑞1𝑞𝑞2𝑞𝑞3 − 𝑡𝑡𝑞𝑞22𝑞𝑞3
+ 𝑞𝑞14 − 2𝑞𝑞13𝑞𝑞2 + 𝑞𝑞12𝑞𝑞22 − 2𝑞𝑞12𝑞𝑞2𝑞𝑞3
+ 2𝑞𝑞1𝑞𝑞22𝑞𝑞3 + 𝑞𝑞22𝑞𝑞32 + 0.2𝑡𝑡2𝑞𝑞1 − 0.2𝑡𝑡2𝑞𝑞2
− 0.6𝑡𝑡𝑞𝑞12 + 0.8𝑡𝑡𝑞𝑞1𝑞𝑞2 − 0.2𝑡𝑡𝑞𝑞22 + 0.2𝑡𝑡𝑞𝑞2𝑞𝑞3
+ 0.4𝑞𝑞13 − 0.8𝑞𝑞12𝑞𝑞2 + 0.4𝑞𝑞1𝑞𝑞22 − 0.4𝑞𝑞1𝑞𝑞2𝑞𝑞3
+ 0.4𝑞𝑞22𝑞𝑞3 − 2.04𝑡𝑡𝑞𝑞1 + 1.04𝑡𝑡𝑞𝑞2 + 2.04𝑞𝑞12
− 2.08𝑞𝑞1𝑞𝑞2 + 1.04𝑞𝑞22 + 2𝑞𝑞2𝑞𝑞3 − 0.2𝑡𝑡
+ 0.4𝑞𝑞1 + 1.04 

is nonzero, where 𝑡𝑡 ∈ [−1,1]  ([6]). After 15 bisection and 
eliminations, we decide that 𝑓𝑓 > 0 and this family is robust 
Schur stable. 

III. LINEAR MATRIX INEQUALITIES (LMI) 
LMI is an expression of the form ([7]) 

 𝐹𝐹(𝑥𝑥) = 𝐹𝐹0 + 𝑥𝑥1𝐹𝐹1 + ⋯+ 𝑥𝑥𝑛𝑛𝐹𝐹𝑛𝑛 < 0 (11) 
or equivalently 

𝜆𝜆max�𝐹𝐹(𝑥𝑥)� < 0. 
Here 𝑥𝑥𝑖𝑖  (𝑖𝑖 = 1,2, … ,𝑛𝑛)  are scalars, 𝐹𝐹𝑖𝑖  (𝑖𝑖 = 0,1, … ,𝑛𝑛)  are 
symmetric matrices. 

More generally, LMI is the inequality 
 𝐹𝐹(𝑥𝑥) < 0,  𝑥𝑥 ∈ 𝑀𝑀 (12) 
where 𝐹𝐹:𝒳𝒳 → 𝒮𝒮, 𝒳𝒳 is finite dimensional, 𝑀𝑀 is an affine set, 𝒮𝒮 
is the space of real symmetric 𝑛𝑛 × 𝑛𝑛  matrices and 𝐹𝐹  is an 
affine function. 

The main advantages of this problem are: 
1) Convexity 
2) The gradient vector of the function 𝜆𝜆max(𝐹𝐹(𝑥𝑥)) 

can be evaluated by involving eigenvectors of 
𝐹𝐹(𝑥𝑥). 

For example, if 𝜆𝜆max(𝐹𝐹(𝑥𝑥∗)) is unique then 
∇𝜆𝜆max�𝐹𝐹(𝑥𝑥∗)� = 𝑢𝑢𝑇𝑇∇𝐹𝐹(𝑥𝑥∗)𝑢𝑢 

where 𝑢𝑢 is the unit eigenvector corresponding to 𝜆𝜆max. 
The solution algorithms of LMI are based mainly on 

interior point method for convex optimization. 
A primary issue in control systems concerns positivity of 

polynomials and this issue can be investigated via LMI 
techniques. 

An interesting way of establishing whether 𝑝𝑝  is positive 
consists of establishing whether 𝑝𝑝 is SOS, i.e. can be written 
as 

𝑝𝑝(𝑥𝑥) = �𝑝𝑝𝑖𝑖(𝑥𝑥)2
𝑖𝑖

. 

If a polynomial 𝑝𝑝(𝑥𝑥) is the sum of monomials of the same 
degree then 𝑝𝑝(𝑥𝑥) is called homogenous. Any polynomial can 
be viewed as a homogenous polynomial with one more 
variable set to 1.  Establishing whether a homogenous 
polynomial is SOS amount to solving a convex optimization 
problem. Indeed, any homogenous 𝑝𝑝(𝑥𝑥) of degree 2𝑑𝑑 can be 
represented via 

𝑝𝑝(𝑥𝑥) = 𝑥𝑥{𝑑𝑑}𝑇𝑇�𝐻𝐻 + 𝐿𝐿(𝛼𝛼)�𝑥𝑥{𝑑𝑑} 

where 𝜎𝜎 = �𝑑𝑑 + 𝑛𝑛 − 1
𝑑𝑑 � , 𝑥𝑥 ∈ ℝ𝑛𝑛  and 𝑥𝑥{𝑑𝑑} ∈ ℝ𝜎𝜎  is a power 

vector for the polynomials of degree 𝑑𝑑  and is a vector 
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containing a basis for such polynomials. For example, if 
𝑑𝑑 = 2 , 𝑥𝑥{𝑑𝑑} = (𝑥𝑥12, 𝑥𝑥1𝑥𝑥2, 𝑥𝑥22 )𝑇𝑇 . Here 𝐻𝐻  is any symmetric 
matrix satisfying 

ℎ(𝑥𝑥) = 𝑥𝑥{𝑑𝑑}𝑇𝑇𝐻𝐻𝑥𝑥{𝑑𝑑}, 
𝐿𝐿(𝛼𝛼) is a linear parametrization of the linear space 

ℒ = �𝐿𝐿 = 𝐿𝐿𝑇𝑇:  𝑥𝑥{𝑑𝑑}𝑇𝑇𝐿𝐿𝑥𝑥{𝑑𝑑} = 0�. 
Theorem 2 ([8]). 𝑝𝑝(𝑥𝑥) is SOS if and only if there exists 𝛼𝛼 
such that 
 𝐻𝐻 + 𝐿𝐿(𝛼𝛼) ≥ 0. (13) 

The condition (13) is an LMI feasibility test. 
Example 2. Consider SOS polynomial 

𝑝𝑝(𝑥𝑥1, 𝑥𝑥2) = 𝑥𝑥14 − 3𝑥𝑥12𝑥𝑥22 + 4𝑥𝑥22. 
In this example 

𝐻𝐻 = �
1 0 0
0 −3 0
0 0 4

� , 𝐿𝐿(𝛼𝛼) = �
0 0 𝛼𝛼
0 −2𝛼𝛼 0
𝛼𝛼 0 0

� 

and 𝐻𝐻 + 𝐿𝐿(𝛼𝛼) is positive definite for 𝛼𝛼 = −7/4. 

IV. POSITIVITY OVER THE SIMPLEX 
There are many problems from linear system theory which 

can be reduced to positivity of a multivariate polynomial over 
the simplex set 

𝑆𝑆 = �𝑥𝑥 ∈ ℝ𝑛𝑛 : �𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1

= 1,  𝑥𝑥𝑖𝑖 ≥ 0 �. 

For example, nonsingularity problem of a matrix polytope 
𝒜𝒜 = conv{𝐴𝐴1,𝐴𝐴2, … ,𝐴𝐴𝑛𝑛+1} 

is equivalent to 
𝑝𝑝(𝑥𝑥) = 𝑝𝑝(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛)
= det(𝑥𝑥1𝐴𝐴1 + ⋯+ 𝑥𝑥𝑛𝑛𝐴𝐴𝑛𝑛 + (1 − 𝑥𝑥1 −⋯− 𝑥𝑥𝑛𝑛)𝐴𝐴𝑛𝑛+1) ≠ 0 

over the set 𝑆𝑆. Positivity (or negativity) of 𝑝𝑝(𝑥𝑥) over 𝑆𝑆 can be 
tested by the following algorithm. 
Algorithm 1. 

1) Consider the unit box 
𝐵𝐵 = {(𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑛𝑛):  0 ≤ 𝑥𝑥𝑖𝑖 ≤ 1  (𝑖𝑖 = 1,2, … ,𝑛𝑛)}  
which is the minimal box containing the set 𝑆𝑆 . 
Define the Bernstein coefficients over 𝐵𝐵 . If the 
array of Bernstein coefficients is positive then stop. 
Otherwise go to 2). 

2) Divide 𝐵𝐵 in two subboxes in the chosen coordinat 
direction and repeat 1) for both subboxes. 

3) If the Bernstein coefficients over a subbox 
𝐷𝐷 = [𝛼𝛼1,𝛽𝛽1] × ⋯× [𝛼𝛼𝑛𝑛,𝛽𝛽𝑛𝑛]  are positive or 
𝛼𝛼1 + ⋯+ 𝛼𝛼𝑛𝑛 ≥ 1 then eliminate the subbox 𝐷𝐷 (in 
the last case 𝐷𝐷 remains outside 𝑆𝑆). 

Example 3. Consider nonsingularity problem of the polytope 
𝒜𝒜 = conv{𝐴𝐴1,𝐴𝐴2,𝐴𝐴3}, where 

𝐴𝐴1 = �
0 −2 3
3 −4 −3
−1 1 0

�, 𝐴𝐴2 = �
−3 −3 −3
1 −2 1
−1 −2 −2

�, 

𝐴𝐴3 = �
−2 −3 3
−1 −3 0
−1 1 −1

�. 

We have 
𝛬𝛬 = {(𝜆𝜆1, 𝜆𝜆2): 𝜆𝜆1 ∈ [0,1], 𝜆𝜆2 ∈ [0,1], 𝜆𝜆1 + 𝜆𝜆2 ≤ 1}, 
𝒜𝒜 = {𝜆𝜆1𝐴𝐴1 + 𝜆𝜆2𝐴𝐴2 + (1 − 𝜆𝜆1 − 𝜆𝜆2)𝐴𝐴3: (𝜆𝜆1, 𝜆𝜆2) ∈ 𝛬𝛬} 

and the determinant function of this family is 
𝑓𝑓(𝜆𝜆1, 𝜆𝜆2) = 6𝜆𝜆13 + 11𝜆𝜆12𝜆𝜆2 − 85𝜆𝜆1𝜆𝜆22 − 34𝜆𝜆23 − 24𝜆𝜆12

+ 45𝜆𝜆1𝜆𝜆2 + 65𝜆𝜆22 + 12𝜆𝜆1 − 37𝜆𝜆2 + 15. 

 
Figure 1. Bisection of rectangles. 

The array of Bernstein coefficients (9) is 

𝐵𝐵(𝑈𝑈) = �

15 8 3⁄ 12 9
19 35 3⁄ 149 9⁄ − 1 3⁄
15 125 9⁄ 140 9⁄ −14
9 46 3⁄ 15 −26

� 

and has no constant sign. Therefore the bisection procedure 
must be applied to this problem. The algorithm reports after 
0.187 s that the determinant function 𝑓𝑓(𝜆𝜆1, 𝜆𝜆2) is positive on 
the set 𝛬𝛬. It requires 8 bisection steps (Fig. 1). Note that 𝑓𝑓 is 
negative for 𝜆𝜆1 = 0.7, 𝜆𝜆2 = 0.8. 

LMI approach gives the following result for this problem 
([8]): 

A homogenous polynomial 𝑝𝑝(𝑥𝑥) is positive on 𝑆𝑆 ⇔ there 
exists natural number 𝑘𝑘 such that 

𝑝𝑝(𝑥𝑥)(𝑥𝑥1 + 𝑥𝑥2 + ⋯+ 𝑥𝑥𝑛𝑛)𝑘𝑘 > 0 
for all 𝑥𝑥 ∈ ℝ𝑛𝑛. 

As we can see this condition increases the degree and 
contains an uncertain parameter 𝑘𝑘. 

V. FEASIBILITY OF A SYSTEM OF POLYNOMIAL 
INEQUALITIES 

As pointed out in the Introduction there are many control 
problems which can be formulated as a feasibility problem of 
a system of polynomial inequalities. 

Consider the following system of inequalities 
 𝑝𝑝𝑖𝑖(𝑥𝑥) > 0  (𝑖𝑖 = 1,2, … ,𝑘𝑘),  𝑥𝑥 ∈ 𝑄𝑄 (14) 
where 𝑝𝑝𝑖𝑖(𝑥𝑥) are multivariate polynomials and 𝑄𝑄  is a box in 
ℝ𝑛𝑛. Is there 𝑥𝑥∗ ∈ 𝑄𝑄 such that 𝑝𝑝𝑖𝑖(𝑥𝑥∗) > 0 for all = 1,2, … , 𝑘𝑘 ? 

Using the fact that the Bernstein expansion and division 
procedure gives outer approximation of the range set 
(Theorem 1) and this approximate range tends to the exact 
range the following algorithm is suggested: 
Algorithm 2. 

1) Consider (14). Calculate the intervals which 
contain the images 𝑝𝑝𝑖𝑖(𝑄𝑄) by using the Bernstein 
expansion. 

2) If all left bounds are greater than zero then stop: 
𝑝𝑝𝑖𝑖(𝑥𝑥) > 0  for all 𝑖𝑖 = 1,2, … , 𝑘𝑘  and 𝑥𝑥 ∈ 𝑄𝑄 . 
If at least one upper bound is less than or equal to 
zero, then stop: the feasible set of (14) is empty. 
Otherwise apply the next step. 

3) Divide the box 𝑄𝑄 into two subboxes in the chosen 
coordinate direction. For each subbox repeat 1) - 
2). 

www.jmest.org 
JMESTN42350106   141 

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 
ISSN: 3159-0040 

Vol. 1 Issue 4, November - 2014 

4) Eliminate a subbox on which at least one upper 
bound is less or equal than zero. 

The algorithm is finished if all subboxes are eliminated 
(the feasibility set is empty) or all left bounds are greater than 
zero (the subbox satisfies (14)). 
Example 4. 

𝑝𝑝1(𝑥𝑥) = 𝑥𝑥12𝑥𝑥2𝑥𝑥3 − 2𝑥𝑥2𝑥𝑥3 + 6𝑥𝑥1𝑥𝑥2 + 3𝑥𝑥1𝑥𝑥3, 
𝑝𝑝2(𝑥𝑥) = 𝑥𝑥12𝑥𝑥22𝑥𝑥3 − 𝑥𝑥22𝑥𝑥3 − 𝑥𝑥1𝑥𝑥2. 

Is there 𝑥𝑥 ∈ [−3,3] × [−3,3] × [−3,3]  such that 𝑝𝑝1(𝑥𝑥) > 0 , 
𝑝𝑝2(𝑥𝑥) > 0? 

Figure 2 shows feasible set obtained by Algorithm 2. 

 
Figure 2. Feasible set. 

LMI result for this problem is the following: Consider the 
set 

𝒳𝒳 = {𝑥𝑥 ∈ ℝ𝑛𝑛: 𝑝𝑝1(𝑥𝑥) ≥ 0, … , 𝑝𝑝𝑘𝑘(𝑥𝑥) ≥ 0}, 
where 𝑝𝑝𝑖𝑖(𝑥𝑥)  are polynomials. Then 𝒳𝒳 = ∅  ⇔  there exists 
𝑝𝑝 ∈ 𝐶𝐶(𝑝𝑝1, … , 𝑝𝑝𝑘𝑘)  such that 𝑝𝑝(𝑥𝑥) + 1 ≡ 0  where 𝐶𝐶(𝑝𝑝1 , … , 𝑝𝑝𝑘𝑘) 
is the cone generated by polynomials 𝑝𝑝1, … , 𝑝𝑝𝑘𝑘 (see [8]). We 
can see from this that the use of this result is not convenient. 

VI. ROBUST STABILITY OF POLYNOMIAL MATRIX FAMILY 
Consider a matrix family 𝐴𝐴(𝑞𝑞)  where all entries depend 

polynomially on a scalar parameter 𝑞𝑞 ∈ [0,1]. Is the family 
{𝐴𝐴(𝑞𝑞): 𝑞𝑞 ∈ [0,1]} robust stable, i.e. all matrices are stable? As 
proved in [9] the family 𝐴𝐴(𝑞𝑞) is robustly stable if and only if 
specially constructed two polynomials 𝑓𝑓1(𝑞𝑞)  and 𝑓𝑓2(𝑞𝑞)  are 
positive on [0,1] . LMI approach gives the following result 
([9]): The problem can be reduced to LMI feasibility test, 
namely the family 𝐴𝐴(𝑞𝑞) is robust stable if and only if there 
exist numbers 𝛽𝛽1 , 𝛽𝛽2 , matrices Γ1 , Γ2 , vectors Δ1 ∈ ℝ𝑐𝑐1 , 
Δ2 ∈ ℝ𝑐𝑐2  satisfying the following LMIs 

𝛽𝛽1 > 0, 𝛽𝛽2 > 0, Γ1 ≥ 0, Γ2 ≥ 0, 
𝐹𝐹1 − 𝛽𝛽1𝑅𝑅1 − 𝑆𝑆1(Γ1) + 𝑇𝑇1(Δ1) ≥ 0, 
𝐹𝐹2 − 𝛽𝛽2𝑅𝑅2 − 𝑆𝑆2(Γ2) + 𝑇𝑇2(Δ2) ≥ 0. 

Here 𝐹𝐹1 , 𝐹𝐹2 , 𝑅𝑅1,  𝑅𝑅2 , 𝑆𝑆1(Γ1) , 𝑆𝑆2(Γ2) , 𝑇𝑇1(Δ1) , 𝑇𝑇2(Δ2)  are 
symmetric matrices related to the polynomials 𝑓𝑓1 and 𝑓𝑓2. The 
total number of LMI scalar variables is given by 

𝜂𝜂 = ��1 +
𝑚𝑚𝑖𝑖(𝑚𝑚𝑖𝑖 + 1)

2
+ 𝑐𝑐𝑖𝑖�

2

𝑖𝑖=1

 

where 𝑚𝑚𝑖𝑖 is the degree of the polynomial 𝑓𝑓𝑖𝑖 and 𝑐𝑐𝑖𝑖 = 𝑚𝑚𝑖𝑖(𝑚𝑚𝑖𝑖−1)
2

. 
An example of 4 × 4 matrix polynomial with scalar 𝑞𝑞 ∈ [0,1] 
requires 210 parameters. 

For the above mentioned example LMI relations give 
negative answer on robust stability. On the other hand the 
Bernstein expansion gives whole stability regions in 𝑞𝑞 ∈ [0,1]. 
Example 5. 

Consider the same family from [9] 

𝐴𝐴(𝑞𝑞) =

⎝

⎛

0 1 0 2 − 𝑞𝑞
−1 − 𝑞𝑞2 −2 7𝑞𝑞 − 1 0
−𝑞𝑞3 1 − 𝑞𝑞 −1 0
𝑞𝑞 0 𝑞𝑞4 −1 ⎠

⎞, 

and 𝑞𝑞 ∈ [0,1]. For this family 
𝑓𝑓1(𝑞𝑞) = −𝑞𝑞8 + 𝑞𝑞7 + 3𝑞𝑞6 − 3𝑞𝑞5 + 16𝑞𝑞4 − 23𝑞𝑞3 + 20𝑞𝑞2

− 6𝑞𝑞 + 1, 
𝑓𝑓2(𝑞𝑞) = −𝑞𝑞16 + 4𝑞𝑞15 − 4𝑞𝑞14 + 14𝑞𝑞12 − 30𝑞𝑞11 − 8𝑞𝑞10

+ 36𝑞𝑞9 − 75𝑞𝑞8 + 34𝑞𝑞7 + 35𝑞𝑞6 − 48𝑞𝑞5
+ 170𝑞𝑞4 − 298𝑞𝑞3 + 440𝑞𝑞2 − 356𝑞𝑞 + 99. 

Bernstein coefficients of 𝑓𝑓1(𝑞𝑞) are: 

1,
1
4

,
3

14
,
27
56

,
61
70

,
11
8

,
31
14

,
33
8

, 8 
and we conclude that 𝑓𝑓1(𝑞𝑞)  is positive for all 𝑞𝑞 ∈ [0,1]  by 
Theorem 1. For the polynomial 𝑓𝑓2(𝑞𝑞), after 4 bisection steps 
we decide that 𝑓𝑓2(𝑞𝑞) < 0 for all 𝑞𝑞 ∈ �5

8
, 11
16
� = [0.625,0.6875]. 

That is, the family {𝐴𝐴(𝑞𝑞): 𝑞𝑞 ∈ [0,1]}  is not robust stable. 
Additionally, Bernstein expansion gives the following stability 
intervals: 

�0,
1
2
� ∪ �

3
4

, 1� 
whereas above LMI relations can not give such regions. 
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