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Abstract— Small-scale photovoltaic (PV) parks 
increasingly connect to low-voltage (LV) feeders, 
yet many installations lack SCADA connectivity, 
limiting real-time observability and controllability 
during overvoltage events. This paper proposes 
an asynchronous deep reinforcement learning 
(ADRL) framework for autonomous active-power 
control of PV inverters. A low-cost edge controller 
(Raspberry Pi) acquires inverter measurements 
and issues setpoints, while a Pandapower-based 
digital twin provides fast power-flow feedback for 
training on a GPU-enabled high-performance 
computing (HPC) cluster. An actor–critic policy is 
trained with the Asynchronous Advantage Actor–
Critic (A3C) algorithm and a continuous Beta-
distributed action representing an active-power 
dispatch fraction. The reward heavily penalizes 
voltage-limit violations while minimizing 
unnecessary curtailment. Simulation studies on a 
weak LV feeder indicate that the learned policy 
maintains voltage within limits and produces 
smoother, less conservative curtailment than a 
rule-based baseline, improving renewable 
utilization. The proposed architecture supports 
centralized training and decentralized low-latency 
execution, providing a practical pathway for 
scalable DER management in weak distribution 
grids. 

Keywords—Grid stability; PV inverter control; 
asynchronous deep reinforcement learning; A3C; 
power curtailment; smart grids; high performance 
computing; 

I. INTRODUCTION  

High penetration of small-scale photovoltaic (PV) 
parks is increasingly challenging low-voltage (LV) 
distribution networks, especially in feeders with limited 
short-circuit capacity. During high irradiance and low 
demand, reverse power flow can cause local voltage 
rise, transformer and line loading, and nuisance 
inverter tripping. Effective mitigation requires fast 
inverter-level actions (e.g., active power curtailment 
and, where available, reactive power support), but 
many small PV parks lack Supervisory Control and 
Data Acquisition (SCADA) connectivity, limiting 
observability and controllability. 
 
Distribution network operators therefore rely on static 
rule-based schemes (Volt–VAR and Volt–Watt curves) 
and conservative protection settings. While these 
methods are simple and locally robust, they are rarely 

optimal at feeder level and often curtail more energy 
than necessary because they do not account for 
changing grid strength, topology, and co-located 
generation and load. 
 
In weak grids, stability depends not only on steady-
state voltage but also on dynamic interactions 
between inverter controls and grid impedance. 
Reviews and measurement studies show that short-
circuit power, frequency-dependent impedance, digital 
delays, and phase-locked loops can strongly influence 
inverter stability, and that simplified simulation tools 
may fail to capture such effects [1], [2]. These 
characteristics motivate data-driven control policies 
that can adapt to nonlinear, time-varying conditions. 
 
Deep reinforcement learning (DRL) provides a model-
free mechanism to learn control policies through 
interaction with a grid environment. Actor–critic 
methods are particularly attractive because they 
support continuous actions while maintaining stable 
learning through value-function baselines. 
 
This paper presents an ADRL-based control 
framework for PV inverter active-power curtailment. A 
Raspberry Pi edge unit acquires inverter 
measurements and executes a trained policy locally, 
while training is performed asynchronously on a GPU-
enabled HPC cluster using a Pandapower-based 
digital twin [3]. The learned policy is evaluated in a 
weak LV feeder and compared against a rule-based 
baseline, demonstrating smoother control actions and 
improved renewable utilization while respecting 
voltage limits. 
 
The remainder of this paper is organized as follows. 
Section II reviews related work and introduces the 
actor–critic formulation. Section III describes the 
proposed architecture, training procedure, and data 
generation. Section IV presents simulation results. 
Section V concludes the paper and outlines future 
work. 

 

II. LITERATURE REVIEW 

A. Reinforcement Learning 

Traditional approaches rely on deterministic, model-
based controllers and predefined Volt–VAR or 
curtailment curves; however, these methods are often 
inadequate in weak grids due to nonlinear inverter–
grid interactions, impedance variability, and rapidly 
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changing operating conditions. Prior studies show that 
inverter stability is highly sensitive to short-circuit 
capacity, grid impedance characteristics, and internal 
control delays, making accurate modelling and robust 
control particularly challenging in low-voltage 
networks [1], [2], [4]. 
 
Recent advances in artificial intelligence have led to 
growing interest in reinforcement learning (RL) and 
deep reinforcement learning (DRL) for inverter-
dominated power systems. Reviews report that 
learning-based controllers can outperform 
conventional proportional–integral, droop-based, and 
model-predictive control in adaptability and 
robustness, especially under uncertainty and 
nonstationary conditions [5], [4]. Actor–critic 
architectures (e.g., A2C/A3C, DDPG, TD3) and their 
multi-agent variants have been applied to Volt–VAR 
control, current regulation, and stability enhancement, 
improving voltage profiles and reducing losses while 
meeting grid-code constraints. 
 

i)  Actor-Critic Methods in Grid Applications 

Actor-critic algorithms combine the benefits of policy-
based and value-based reinforcement learning, 
making them particularly suitable for continuous 
control problems like inverter management. Recent 
research demonstrates the effectiveness of various 
actor-critic variants in power system applications. 
Ioannou et al. [6] evaluated multiple RL strategies for 
autonomous microgrid energy management, including 
Advantage Actor-Critic (A2C) alongside Deep Q-
Networks (DQN) and Proximal Policy Optimization 
(PPO). While DQN achieved superior performance 
with 73-95% cost reduction and near-zero state-of-
charge imbalance across seasonal conditions, A2C 
demonstrated the synchronous policy-gradient 
approach's viability for real-time control with 
competitive computational efficiency. The Multi-Agent 
Actor-Critic (MAAC) framework has shown particular 
promise for coordinating multiple PV inverters. 
Rehman et al. [7] applied MAAC reinforcement 
learning to reactive power and voltage regulation in 
the IEEE-33 bus test system, achieving voltage 
controllable ratios of 0.6850 under decentralized 
control while maintaining grid voltage within ±5% limits 
and reducing voltage out-of-control ratios to 0.0275. 
This demonstrates the scalability of actor-critic 
methods to multi-agent coordination problems 
essential for distributed PV systems [8,9]. 

 

ii)  Advanced Policy Gradient Approaches 

Building on foundational actor-critic concepts, more 
sophisticated algorithms have emerged. Rajamallaiah 
et al. [10] implemented Twin Delayed Deep 
Deterministic Policy Gradient (TD3) control for three-
phase grid-connected inverters with LCL filters, 
achieving 2.93% total harmonic distortion under 
nominal conditions with zero overshoot during 
transients. The TD3 approach, with its twin critics and 

delayed actor updates, demonstrated superior 
robustness to parameter mismatch, maintaining THD 
below 5% even with 50% inductance variation, 
outperforming both proportional-integral and model 
predictive control. For volt-var control applications, 
Beyer et al. [11] applied Deep Deterministic Policy 
Gradient (DDPG) to enable online learning in smart 
inverters using only local voltage measurements. The 
approach achieved voltage regulation to 1 ± 0.002 pu 
and reduced line voltage differences by up to 50% 
without requiring communication infrastructure, 
demonstrating the potential for decentralized learning 
with actor-critic methods. 
 
These gaps highlight the need for scalable, learning-
based control frameworks that combine centralized 
training with decentralized execution and are 
specifically tailored to the operational constraints of 
small PV installations in weak low-voltage networks. 
Recent related work further supports learning-based 
inverter and PV control, including deep reinforcement 
learning for transient stability improvement in grid-tied 
photovoltaics [12], comparative analyses of 
reinforcement learning versus neural-network 
controllers for inverter regulation [13], multi-objective 
DRL frameworks for adaptive power control in grid-
forming inverters [14], learning Volt–VAR droop 
curves for coordinating PV smart inverters [15], and 
reinforcement-learning controllers augmented with 
short-term PV forecasts for voltage stability [16]. 
 

B. Asynchronous Deep Reinforcement Learning 

The Actor-Critic algorithms integrate value-based and 
policy-based reinforcement learning methodologies 
within a unified framework, thereby leveraging the 
complementary strengths of both approaches. This 
hybrid architecture addresses fundamental limitations 
inherent to purely value-based or policy-based 
methods. The actor component employs a policy-
based approach that naturally supports continuous 
action spaces, overcoming the discretization 
challenges that constrain traditional value-based 
methods such as Q-learning when applied to 
continuous control problems. Concurrently, the critic 
component provides value function estimates that 
serve to reduce the high variance characteristic of 
pure policy gradient methods, thereby stabilizing the 
training process and improving convergence reliability. 
This dual-network architecture enables the algorithm 
to optimize control policies for continuous photovoltaic 
dispatch factors while maintaining stable gradient 
estimates throughout the learning process, making it 
particularly well-suited for grid stability applications 
requiring precise, continuous actuation. 
 
The Asynchronous Advantage Actor-Critic algorithm, 
widely known as A3C, represents a parallel 
reinforcement learning paradigm that leverages 
multiple asynchronous worker threads to accelerate 
policy learning while maintaining computational 
efficiency. In the context of power system control, 
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asynchronous training across multi-GPU nodes 
accelerates convergence and enhances robustness 
against highly dynamic grid conditions. The distributed 
architecture enables parallel exploration of the state 
space, allowing multiple workers to simultaneously 
interact with independent instances of the power 
system environment. This parallelization not only 
reduces overall training time but also exposes the 
learning agent to a diverse range of operational 
scenarios concurrently, thereby improving the policy's 
generalization capabilities under varying grid 
conditions such as fluctuating photovoltaic generation, 
load variations, and topology changes. Unlike 
synchronous training methods that require all workers 
to complete their trajectories before updating shared 
parameters, A3C permits workers to compute and 
transmit gradients asynchronously, eliminating idle 
time and synchronization bottlenecks. This 
asynchronous paradigm is particularly advantageous 
for power system applications, where environmental 
dynamics exhibit high variability and computational 
resources must be utilized efficiently to achieve real-
time control performance. 

III. METHODOLOGY 

A. Model Design and Architecture  

The overall control architecture is organized in four 
steps: 
(a) Edge sensing and local actuation. 
Each PV park is equipped with a smart inverter and a 
local embedded controller (e.g., a Raspberry Pi 5). 
The controller continuously acquires measurements 
including local voltage magnitude, active and reactive 
power, and inverter status indicators (e.g., connection 
state and limits). At each control interval, the controller 
executes the trained policy and computes a 

continuous active-power dispatch factor u ∈ [0,1] (u = 
1 indicates no curtailment). The resulting setpoint is 
sent to the inverter through a standard control 
interface (e.g., Modbus/SunSpec or vendor-specific 
APIs). 
(b) State augmentation with a digital twin. 
Real-time measurements are augmented by fast 
power-flow simulations using Pandapower [3]. This 
digital twin provides feeder-level indicators (e.g., bus 
voltages and transformer/line loading) and enables 
systematic generation of weak/strong grid operating 
scenarios for policy training and evaluation. 
(c) Centralized asynchronous training. 
Training is performed on a GPU-enabled HPC 
backend using the Asynchronous Advantage Actor–
Critic (A3C) algorithm. Multiple worker processes 
interact with parallel simulation environments and 
asynchronously update a shared global actor–critic 
network, as illustrated in Figure 1. 
(d) Decentralized deployment and online execution.  
After training, the actor network is deployed to the 
edge controller, where inference runs locally with low 
latency and without requiring continuous 
communication. The backend can periodically retrain 
the policy using updated data and redeploy improved 
parameters. 

 
Figure 1: Proposed ADRL architecture with edge controllers, 
a Pandapower digital twin, and asynchronous A3C training. 

At each discrete control time step, the agent observes 
a state vector constructed from local inverter 
measurements and Pandapower simulation outputs. 
Based on the observed state, the actor selects a 
continuous control action 𝑢𝑡 ∈ [0,1] representing the 

fraction of available PV power to inject. 𝑢𝑡= 1 indicates 
no curtailment or equivalently, an active-power 
curtailment command. The action is applied to the 
network model through a power-flow calculation, 
which determines the resulting grid state and the 
reward signal. The reward evaluates system 
performance with respect to voltage-limit compliance 
and minimization of unnecessary curtailment. 
 
Each state transition, comprising the state, selected 
action, received reward, and subsequent state, is 
stored within the worker rollout buffer and used to 
compute policy and value gradients for A3C updates. 
During training, multiple asynchronous workers 
explore independent environment instances and 
update shared global parameters, enabling efficient 
learning under diverse operating conditions. 
 
This architectural design separates the training and 
execution phases. Training leverages centralized 
information and HPC resources to learn control 
policies across diverse operating conditions. 
Execution runs on embedded edge controllers, where 
each PV park executes the policy using local 
measurements and a minimal set of global indicators. 
In the experiments reported in Section IV, the PV park 
is modeled as a single aggregated controllable unit 
(single agent) for clarity; the same framework extends 
to multiple parks through parameter sharing or multi-
agent actor-critic training. 
 

 
Figure 2: Actor–critic neural network used in A3C with 

separate actor and critic output heads. 

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 13 Issue 1, January - 2026  

www.jmest.org 

JMESTN42354620 17957 

B. Training 

Each worker operates autonomously to collect rollout 
trajectories through asynchronous interaction with its 
dedicated environment instance. The rollout collection 
process involves three sequential stages executed 
independently by each worker thread. First, the 
worker samples actions from the current policy 
distribution based on observed grid states, 
determining appropriate control decisions for 
photovoltaic curtailment. Second, these sampled 
actions are applied to the worker's local power system 
environment, which executes the corresponding state 
transitions and computes the resulting grid conditions 
through power flow calculations. Third, the worker 
systematically stores all rollout data, including state 
observations, selected actions, received rewards, 
successor states, and auxiliary information such as 
policy log-probabilities and value estimates. This 
stored trajectory data serves as the basis for 
subsequent gradient computation and asynchronous 
parameter updates to the global network. 
 
The rollout collection process employs a continuous 
action space parameterized by a Beta distribution. 
The policy network outputs are transformed using the 
Softplus activation function to obtain strictly positive 
parameters α and β, which define the Beta distribution 
from which actions are sampled: u ~ Beta(α,β). The 
critic network provides state value estimates through a 
neural network approximation: V(s) = NN(s). 
 
Action selection proceeds by sampling from the 
parameterized Beta distribution, yielding a continuous 

dispatch factor u ∈ [0,1] (u = 1 indicates no 
curtailment). This action is subsequently applied to the 
power-flow simulation environment via Pandapower, 
where the PV output is reduced according to u, 
resulting in a new grid state characterized by updated 
voltage profiles and power flows. 
 
Curtailment cost: 

                                 𝐿𝑐(t) = (1 − 𝑢𝑡)𝑃𝑎𝑣𝑎𝑖(𝑡)                   (1) 
, where Pavail(t) is the available PV power before 

curtailment and ut ∈ [0,1] is the dispatched fraction (ut 
= 1 indicates no curtailment). 
The reward function is formulated to balance voltage 
regulation objectives against economic 
considerations. The curtailment cost is computed from 
the reduction in PV output, while voltage violations are 
assessed relative to the operating limits (Vmin, Vmax). 
The total reward is calculated as: 

                        𝑟(t) = −λ 𝐿𝑉(t) −  ω 𝐿𝑐(t)                   
(2) 
 
             𝐿_𝑉(t) = Σ{b∈B}[max (0, 𝑉{𝑏,𝑡} − 𝑉𝑚𝑎𝑥) +

                                            max (0, 𝑉𝑚𝑖𝑛  − 𝑉{𝑏,𝑡}) ]               (3)      

 
In this study, Vmin = 0.95 pu and Vmax = 1.02 pu 
(adjustable per grid code), where λ >> ω, ensuring 
that voltage-limit violations dominate the objective 
relative to curtailment. This reflects the operational 

priority that voltage violations are unacceptable 
constraint breaches, whereas PV curtailment is a 
tolerable corrective action. All state transitions, 
actions, and rewards are stored as rollout data for 
subsequent gradient computation. 
 
Moreover, for each temporal step within a worker's 
rollout trajectory, the Generalized Advantage Estimate 
(GAE) and return targets are computed locally using 
the following formulations in their simplified form. 
The temporal-difference error, which serves as the 
foundation for critic updates, is defined as: 
 

𝛿𝑡 = 𝑟𝑡 + 𝛾𝑉(𝑠𝑡+1) − 𝑉(𝑠𝑡)     (4) 

 

, where rₜ represents the immediate reward, γ denotes 
the discount factor, and V(s) is the critic's value 
estimate. 
 
The Generalized Advantage Estimate, utilized for 
policy gradient computation, incorporates 
exponentially-weighted temporal-difference errors: 
 

      𝐴𝑡 = 𝛿𝑡 + 𝛾𝜆𝐴𝑡+1      (5) 

 
, where λ is the GAE parameter controlling the bias-
variance trade-off between Monte Carlo and temporal-
difference estimation. 
The return target for critic training is computed as: 
 

        𝐺𝑡 = 𝐴𝑡 + 𝑉(𝑠𝑡)      (6) 
 
These quantities are computed locally within each 
worker process prior to gradient computation and 
synchronization. 
 
Each worker thread independently computes 
gradients using the standard Asynchronous 
Advantage Actor-Critic loss formulation, comprising 
three components: 
1. Policy Loss (Actor): The policy gradient loss 
maximizes the expected advantage-weighted log-
probability of selected actions: 

                   𝐿𝜋 = − log 𝜋𝑡 ⋅ 𝐴𝑡           (7) 
 
2. Value Loss (Critic): The value function loss 
minimizes the mean squared error between predicted 
values and computed returns:  

                                𝐿𝑉 = (𝑉(𝑠𝑡) − 𝐺𝑡)2
            (8) 

 
3. Entropy Bonus: An entropy regularization term 
encourages exploration by penalizing overly 
deterministic policies. 
 
Finally, the total worker loss is computed as the 
combined objective function of the three above losses. 
 
Furthermore, the parameter synchronization 
procedure implements the standard Asynchronous 
Advantage Actor-Critic paradigm through a four-stage 
asynchronous update protocol. Each worker thread 
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independently computes the gradients of the total loss 
function with respect to its local network parameters 
using the accumulated rollout data from the worker's 
trajectory. Computed gradients are then transmitted to 
the global network via an asynchronous push 
operation without synchronization barriers, allowing 
workers to operate independently and avoiding the 
computational overhead associated with synchronized 
batch updates. Upon receipt of worker gradients, the 
global network applies these gradients to update the 
shared parameters using the Adam optimization 
algorithm. Following the global update, the worker 
reloads the updated global parameters by copying 
them to its local network and resumes trajectory 
collection from its current environmental state using 
the refreshed policy and value function 
approximations. This asynchronous update 
mechanism enables parallel exploration across 
multiple workers while maintaining a single shared 
network, thereby improving sample efficiency and 
training stability compared to fully independent 
learning agents. 

 

C. Data  

1) Grid data 

The proposed control framework targets weak low-
voltage (LV) distribution feeders with high PV 
penetration. In general, the approach supports 
multiple small PV parks connected at different nodes 
along the feeder. For clarity, the case study used in 
this paper employs the simplified feeder shown in 
Figure 3 with a single representative aggregated PV 
park and an aggregated load, while preserving the 
same measurement-simulation-training workflow. 
 
PV generation profiles at each park are derived either 
from real inverter measurements or from synthetic 
irradiance curves that capture typical clear-sky and 
partially cloudy conditions. Load profiles reflect 
realistic residential and commercial consumption 
patterns, including daily and seasonal variations. 
Voltage limits are imposed at all buses according to 
grid codes, and line and transformer ratings are 
explicitly modelled to capture thermal constraints and 
network losses. 
 
This distribution network model serves as the 
environment for reinforcement learning (RL) agents 
during training and as the benchmark for evaluating 
the performance of the proposed controller. It allows 
the study of high PV penetration scenarios, including 
operating conditions where conventional rule-based 
control leads to voltage violations or excessive 
curtailment. 
 
 
 
 
 
 
 

 
 

 

 

 

 

Figure 3: Simplified LV feeder model used as the 
Pandapower simulation environment. 

2) Weather data 

A synthetic irradiance-based model was developed to 

generate realistic photovoltaic power output profiles 

throughout diurnal cycles. The model employs a 

sinusoidal function to replicate the natural progression 

of solar irradiance, characterized by a gradual 

increase from sunrise, reaching maximum intensity at 

solar noon, followed by a symmetric decline toward 

sunset. During nighttime hours, photovoltaic 

generation is constrained to zero, reflecting the 

absence of incident solar radiation. This fundamental 

sinusoidal structure provides a physically consistent 

baseline representation of clear-sky solar resource 

availability. 

To capture the stochastic variability inherent in real-
world meteorological conditions, different noise 
patterns were superimposed on the baseline 
sinusoidal curve to simulate three distinct weather 
scenarios. Clear day conditions are characterized by 
high photovoltaic output with minimal variance, 
representing stable atmospheric conditions with 
unobstructed solar radiation. Partially cloudy 
conditions exhibit reduced mean generation levels 
punctuated by intermittent, short-duration power 
reductions corresponding to transient cloud cover 
obscuring solar panels. Cloudy day scenarios 
demonstrate persistently low generation levels with 
sustained high-frequency fluctuations, reflecting 
diffuse radiation conditions and continuous 
atmospheric attenuation. Regardless of the weather 
classification during daylight hours, photovoltaic 
output is uniformly set to zero during nighttime periods 
when solar radiation is unavailable. This multi-
scenario approach ensures that the training dataset 
encompasses the full spectrum of generation 
variability encountered in operational distribution 
networks, thereby enhancing the robustness and 
generalization capability of the learned control policy. 

3) Training data 

The training dataset was generated through time-
series power-flow simulations corresponding to 
approximately 266 day-equivalents of 5-minute 
operation when aggregating across all parallel 
environments. Four parallel environment instances 
were executed concurrently; each rollout consisted of 
32 control timesteps at 5-minute resolution (160 
minutes). Over the course of training, 600 
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asynchronous parameter updates were performed, 
yielding 4 x 32 x 600 = 76,800 agent-environment 
interactions. This dataset provides coverage of 
diverse operating conditions and facilitates robust 
policy learning across varying photovoltaic generation 
profiles and load demand patterns. 
 
Two distinct grid strength scenarios were investigated 
to evaluate the control policy's adaptability to different 
network impedance characteristics. The weak grid 
scenario represents distribution networks with high 
feeder impedance relative to the short-circuit capacity 
at the point of common coupling. In such networks, 
even moderate photovoltaic power injections can 
induce significant voltage rise at low-voltage buses 
due to the predominantly resistive nature of voltage 
drops along distribution feeders. Conversely, the 
strong grid scenario characterizes networks with low 
feeder impedance or high short-circuit capacity, where 
the grid exhibits minimal voltage deviations in 
response to distributed generation variations. These 
contrasting scenarios enable comprehensive 
assessment of the learned control policy's 
performance across the spectrum of grid conditions 
encountered in practical distribution network 
operations. 
 
The final dataset comprises features extracted from 
the Pandapower simulation environment [3], which 
collectively characterize the electrical behavior and 
operational state of the distribution network. The 
feature set encompasses short-circuit power at the 
point of common coupling, photovoltaic bus voltages, 
load power demand, transformer loading levels, and 
network impedance ratios. Additionally, the available 
active power capacity of each inverter, derived from 
the physics-based irradiance model, is incorporated to 
represent the potential generation prior to any 
curtailment actions. To capture temporal patterns and 
introduce continuity between daily operational cycles, 
time-based features including the day index and 
sinusoidal transformations of the time of day are 
included. These ten features collectively serve as 
inputs to the reinforcement learning model, 
comprehensively representing both the physical grid 
state and solar generation variability. 
 
The PV bus voltage is included to reflect the local 
voltage magnitude at each generation connection 
point, enabling the detection of voltage rise 
phenomena associated with distributed generation. 
The load bus voltage provides visibility into voltage 
conditions at demand nodes, facilitating identification 
of overvoltage or undervoltage violations that may 
compromise power quality or equipment operation. 
Transformer loading indicates the utilization level of 
distribution transformers, revealing network stress and 
potential thermal or capacity constraints. Short-circuit 
power serves as an indicator of grid strength and fault 
current capability, which fundamentally influences 
voltage stability characteristics. Real-time load power 
informs the control policy of instantaneous demand 

conditions, while the available photovoltaic power 
before curtailment, extracted from the irradiance-
based generation model, quantifies the potential 
renewable energy output. Finally, the impedance ratio 
captures the relationship between network resistance 
and reactance, which governs voltage drop behaviour 
and determines the effectiveness of reactive power 
control for voltage regulation. 
Altogether, these 10 features are used as inputs to the 
proposed model, as they capture both the physical 
grid state and solar variability. 
 

IV. RESULTS/DISCUSSION 

The proposed controller is evaluated through time-
series (quasi-static) power-flow simulations using the 
Pandapower digital twin and the simplified feeder of 
Figure 3. A rule-based baseline curtailment controller 
is used for comparison (labelled "teacher" in the 
plots). Performance is assessed using bus-voltage 
behavior, dispatched PV power, and control 
smoothness. 
 

 
Figure 4: Weak-grid week-long profiles under a rule-based 
baseline controller (labelled "teacher" in the plot): available 
PV power, dispatched PV power, and bus voltages. 

 

 
Figure 5: Comparison of ADRL and the rule-based baseline 
on a representative day in a weak grid: dispatched PV 
power and the dispatch action u (u = 1 indicates no 
curtailment). 

Figure 4 illustrates that in weak-grid conditions, the 
baseline controller frequently curtails PV output during 
midday periods to keep the PV-bus voltage close to 
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the upper limit (around 1.02 pu). The resulting 
dispatched power exhibits step-like behavior, 
indicating frequent control interventions. While this 
strategy maintains the voltage constraint, it can be 
overly conservative and may lead to unnecessary 
energy curtailment. 
 
As shown in Figure 5, the ADRL policy produces 
smoother curtailment actions than the baseline and 
dispatches PV power closer to the available profile. In 
contrast, the baseline action exhibits rapid transitions 
between strong curtailment and no curtailment. The 
smoother ADRL behavior is desirable for practical 
deployment as it reduces setpoint chatter and can 
improve energy utilization while still respecting voltage 
constraints through the reward prioritization (λ >> ω). 
 
Training remained stable with four parallel worker 
environments and 600 parameter updates (76,800 
interactions), and the learned policy generalized 
across the considered irradiance patterns. Overall, 
these results indicate that actor–critic ADRL can 
provide a practical alternative to fixed Volt–Watt 
curtailment curves, particularly in feeders where grid 
strength and operating conditions vary over time. Field 
validation and explicit safety constraints (e.g., ramp-
rate limits and communication delays) remain 
important next steps. 
 

V. CONCLUSIONS/FUTURE WORK 

This paper presented an asynchronous deep 
reinforcement learning (ADRL) framework for 
autonomous, voltage-aware PV inverter curtailment in 
small-scale LV installations that lack SCADA 
connectivity. The proposed architecture combines 
low-cost edge execution on a Raspberry Pi controller 
with centralized training on a GPU-enabled HPC 
backend using a Pandapower digital twin. Simulation 
results on a weak LV feeder show that the learned 
A3C policy can maintain voltages within limits while 
producing smoother and less conservative curtailment 
actions than a rule-based baseline. 
 
Future work will focus on extending the action space 
to include reactive power support and coordinated 
multi-inverter control, integrating explicit safety 
constraints (e.g., ramp-rate limits, communication 
delays, and fail-safe fallback control), and validating 
the approach on larger feeders and field data. 
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