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Abstract— Small-scale photovoltaic (PV) parks
increasingly connect to low-voltage (LV) feeders,
yet many installations lack SCADA connectivity,
limiting real-time observability and controllability
during overvoltage events. This paper proposes
an asynchronous deep reinforcement learning
(ADRL) framework for autonomous active-power
control of PV inverters. A low-cost edge controller
(Raspberry Pi) acquires inverter measurements
and issues setpoints, while a Pandapower-based
digital twin provides fast power-flow feedback for
training on a GPU-enabled high-performance
computing (HPC) cluster. An actor—critic policy is
trained with the Asynchronous Advantage Actor—
Critic (A3C) algorithm and a continuous Beta-
distributed action representing an active-power
dispatch fraction. The reward heavily penalizes
voltage-limit violations while minimizing
unnecessary curtailment. Simulation studies on a
weak LV feeder indicate that the learned policy
maintains voltage within limits and produces
smoother, less conservative curtailment than a
rule-based baseline, improving renewable
utilization. The proposed architecture supports
centralized training and decentralized low-latency
execution, providing a practical pathway for
scalable DER management in weak distribution
grids.
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. INTRODUCTION

High penetration of small-scale photovoltaic (PV)
parks is increasingly challenging low-voltage (LV)
distribution networks, especially in feeders with limited
short-circuit capacity. During high irradiance and low
demand, reverse power flow can cause local voltage
rise, transformer and line loading, and nuisance
inverter tripping. Effective mitigation requires fast
inverter-level actions (e.g., active power curtailment
and, where available, reactive power support), but
many small PV parks lack Supervisory Control and
Data Acquisition (SCADA) connectivity, limiting
observability and controllability.

Distribution network operators therefore rely on static
rule-based schemes (Volt-VAR and Volt-Watt curves)
and conservative protection settings. While these
methods are simple and locally robust, they are rarely

optimal at feeder level and often curtail more energy
than necessary because they do not account for
changing grid strength, topology, and co-located
generation and load.

In weak grids, stability depends not only on steady-
state voltage but also on dynamic interactions
between inverter controls and grid impedance.
Reviews and measurement studies show that short-
circuit power, frequency-dependent impedance, digital
delays, and phase-locked loops can strongly influence
inverter stability, and that simplified simulation tools
may fail to capture such effects [1], [2]. These
characteristics motivate data-driven control policies
that can adapt to nonlinear, time-varying conditions.

Deep reinforcement learning (DRL) provides a model-
free mechanism to learn control policies through
interaction with a grid environment. Actor—critic
methods are particularly attractive because they
support continuous actions while maintaining stable
learning through value-function baselines.

This paper presents an ADRL-based control
framework for PV inverter active-power curtailment. A
Raspberry Pi edge unit acquires inverter
measurements and executes a trained policy locally,
while training is performed asynchronously on a GPU-
enabled HPC cluster using a Pandapower-based
digital twin [3]. The learned policy is evaluated in a
weak LV feeder and compared against a rule-based
baseline, demonstrating smoother control actions and
improved renewable utilization while respecting
voltage limits.

The remainder of this paper is organized as follows.
Section Il reviews related work and introduces the
actor—critic formulation. Section Il describes the
proposed architecture, training procedure, and data
generation. Section IV presents simulation results.
Section V concludes the paper and outlines future
work.

1. LITERATURE REVIEW
A. Reinforcement Learning

Traditional approaches rely on deterministic, model-
based controllers and predefined Volt—VAR or
curtailment curves; however, these methods are often
inadequate in weak grids due to nonlinear inverter—
grid interactions, impedance variability, and rapidly
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changing operating conditions. Prior studies show that
inverter stability is highly sensitive to short-circuit
capacity, grid impedance characteristics, and internal
control delays, making accurate modelling and robust
control particularly challenging in low-voltage
networks [1], [2], [4].

Recent advances in artificial intelligence have led to
growing interest in reinforcement learning (RL) and
deep reinforcement learning (DRL) for inverter-
dominated power systems. Reviews report that
learning-based controllers can outperform
conventional proportional-integral, droop-based, and
model-predictive  control in  adaptability and
robustness, especially under uncertainty and
nonstationary  conditions [5], [4]. Actor—critic
architectures (e.g., A2C/A3C, DDPG, TD3) and their
multi-agent variants have been applied to Volt—VAR
control, current regulation, and stability enhancement,
improving voltage profiles and reducing losses while
meeting grid-code constraints.

i) Actor-Critic Methods in Grid Applications

Actor-critic algorithms combine the benefits of policy-
based and value-based reinforcement learning,
making them particularly suitable for continuous
control problems like inverter management. Recent
research demonstrates the effectiveness of various
actor-critic variants in power system applications.
loannou et al. [6] evaluated multiple RL strategies for
autonomous microgrid energy management, including
Advantage Actor-Critic (A2C) alongside Deep Q-
Networks (DQN) and Proximal Policy Optimization
(PPO). While DQN achieved superior performance
with 73-95% cost reduction and near-zero state-of-
charge imbalance across seasonal conditions, A2C
demonstrated the synchronous policy-gradient
approach's viability for real-time control with
competitive computational efficiency. The Multi-Agent
Actor-Critic (MAAC) framework has shown particular
promise for coordinating multiple PV inverters.
Rehman et al. [7] applied MAAC reinforcement
learning to reactive power and voltage regulation in
the IEEE-33 bus test system, achieving voltage
controllable ratios of 0.6850 under decentralized
control while maintaining grid voltage within +5% limits
and reducing voltage out-of-control ratios to 0.0275.
This demonstrates the scalability of actor-critic
methods to multi-agent coordination problems
essential for distributed PV systems [8,9].

i) Advanced Policy Gradient Approaches

Building on foundational actor-critic concepts, more
sophisticated algorithms have emerged. Rajamallaiah
et al. [10] implemented Twin Delayed Deep
Deterministic Policy Gradient (TD3) control for three-
phase grid-connected inverters with LCL filters,
achieving 2.93% total harmonic distortion under
nominal conditions with zero overshoot during
transients. The TD3 approach, with its twin critics and

delayed actor updates, demonstrated superior
robustness to parameter mismatch, maintaining THD
below 5% even with 50% inductance variation,
outperforming both proportional-integral and model
predictive control. For volt-var control applications,
Beyer et al. [11] applied Deep Deterministic Policy
Gradient (DDPG) to enable online learning in smart
inverters using only local voltage measurements. The
approach achieved voltage regulation to 1 + 0.002 pu
and reduced line voltage differences by up to 50%
without requiring communication infrastructure,
demonstrating the potential for decentralized learning
with actor-critic methods.

These gaps highlight the need for scalable, learning-
based control frameworks that combine centralized
training with decentralized execution and are
specifically tailored to the operational constraints of
small PV installations in weak low-voltage networks.
Recent related work further supports learning-based
inverter and PV control, including deep reinforcement
learning for transient stability improvement in grid-tied
photovoltaics [12], comparative analyses of
reinforcement  learning  versus  neural-network
controllers for inverter regulation [13], multi-objective
DRL frameworks for adaptive power control in grid-
forming inverters [14], learning Volt-VAR droop
curves for coordinating PV smart inverters [15], and
reinforcement-learning controllers augmented with
short-term PV forecasts for voltage stability [16].

B. Asynchronous Deep Reinforcement Learning

The Actor-Critic algorithms integrate value-based and
policy-based reinforcement learning methodologies
within a unified framework, thereby leveraging the
complementary strengths of both approaches. This
hybrid architecture addresses fundamental limitations
inherent to purely value-based or policy-based
methods. The actor component employs a policy-
based approach that naturally supports continuous
action spaces, overcoming the discretization
challenges that constrain traditional value-based
methods such as Q-learning when applied to
continuous control problems. Concurrently, the critic
component provides value function estimates that
serve to reduce the high variance characteristic of
pure policy gradient methods, thereby stabilizing the
training process and improving convergence reliability.
This dual-network architecture enables the algorithm
to optimize control policies for continuous photovoltaic
dispatch factors while maintaining stable gradient
estimates throughout the learning process, making it
particularly well-suited for grid stability applications
requiring precise, continuous actuation.

The Asynchronous Advantage Actor-Critic algorithm,
widely known as A3C, represents a parallel
reinforcement learning paradigm that leverages
multiple asynchronous worker threads to accelerate
policy learning while maintaining computational
efficiency. In the context of power system control,
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asynchronous training across multi-GPU nodes
accelerates convergence and enhances robustness
against highly dynamic grid conditions. The distributed
architecture enables parallel exploration of the state
space, allowing multiple workers to simultaneously
interact with independent instances of the power
system environment. This parallelization not only
reduces overall training time but also exposes the
learning agent to a diverse range of operational
scenarios concurrently, thereby improving the policy's
generalization capabilities under varying grid
conditions such as fluctuating photovoltaic generation,
load variations, and topology changes. Unlike
synchronous training methods that require all workers
to complete their trajectories before updating shared
parameters, A3C permits workers to compute and
transmit gradients asynchronously, eliminating idle
time and synchronization Dbottlenecks.  This
asynchronous paradigm is particularly advantageous
for power system applications, where environmental
dynamics exhibit high variability and computational
resources must be utilized efficiently to achieve real-
time control performance.

. METHODOLOGY
A. Model Design and Architecture

The overall control architecture is organized in four
steps:

(a) Edge sensing and local actuation.

Each PV park is equipped with a smart inverter and a
local embedded controller (e.g., a Raspberry Pi 5).
The controller continuously acquires measurements
including local voltage magnitude, active and reactive
power, and inverter status indicators (e.g., connection
state and limits). At each control interval, the controller
executes the trained policy and computes a
continuous active-power dispatch factor u € [0,1] (u =
1 indicates no curtailment). The resulting setpoint is
sent to the inverter through a standard control
interface (e.g., Modbus/SunSpec or vendor-specific
APIs).

(b) State augmentation with a digital twin.

Real-time measurements are augmented by fast
power-flow simulations using Pandapower [3]. This
digital twin provides feeder-level indicators (e.g., bus
voltages and transformer/line loading) and enables
systematic generation of weak/strong grid operating
scenarios for policy training and evaluation.

(c) Centralized asynchronous training.

Training is performed on a GPU-enabled HPC
backend using the Asynchronous Advantage Actor—
Critic (A3C) algorithm. Multiple worker processes
interact with parallel simulation environments and
asynchronously update a shared global actor—critic
network, as illustrated in Figure 1.

(d) Decentralized deployment and online execution.
After training, the actor network is deployed to the
edge controller, where inference runs locally with low
latency and without requiring continuous
communication. The backend can periodically retrain
the policy using updated data and redeploy improved
parameters.

Environment 1 Environment 2 E 3 Er 4

! ! ! !

Nulwurkl

| . J
output output I output output

Network Network

Figure 1: Proposed ADRL architecture with edge controllers,
a Pandapower digital twin, and asynchronous A3C training.

At each discrete control time step, the agent observes
a state vector constructed from local inverter
measurements and Pandapower simulation outputs.
Based on the observed state, the actor selects a
continuous control action u,€ [0,1] representing the
fraction of available PV power to inject. u,= 1 indicates
no curtailment or equivalently, an active-power
curtailment command. The action is applied to the
network model through a power-flow calculation,
which determines the resulting grid state and the
reward signal. The reward evaluates system
performance with respect to voltage-limit compliance
and minimization of unnecessary curtailment.

Each state transition, comprising the state, selected
action, received reward, and subsequent state, is
stored within the worker rollout buffer and used to
compute policy and value gradients for A3C updates.
During training, multiple asynchronous workers
explore independent environment instances and
update shared global parameters, enabling efficient
learning under diverse operating conditions.

This architectural design separates the training and
execution phases. Training leverages centralized
information and HPC resources to learn control
policies across diverse operating conditions.
Execution runs on embedded edge controllers, where
each PV park executes the policy using local
measurements and a minimal set of global indicators.
In the experiments reported in Section 1V, the PV park
is modeled as a single aggregated controllable unit
(single agent) for clarity; the same framework extends
to multiple parks through parameter sharing or multi-
agent actor-critic training.

Input Layer Hidden Layers Output Layer
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Figure 2: Actor—critic neural network used in A3C with
separate actor and critic output heads.
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B. Training

Each worker operates autonomously to collect rollout
trajectories through asynchronous interaction with its
dedicated environment instance. The rollout collection
process involves three sequential stages executed
independently by each worker thread. First, the
worker samples actions from the current policy
distribution based on observed grid states,
determining appropriate  control decisions for
photovoltaic curtailment. Second, these sampled
actions are applied to the worker's local power system
environment, which executes the corresponding state
transitions and computes the resulting grid conditions
through power flow calculations. Third, the worker
systematically stores all rollout data, including state
observations, selected actions, received rewards,
successor states, and auxiliary information such as
policy log-probabilities and value estimates. This
stored trajectory data serves as the basis for
subsequent gradient computation and asynchronous
parameter updates to the global network.

The rollout collection process employs a continuous
action space parameterized by a Beta distribution.
The policy network outputs are transformed using the
Softplus activation function to obtain strictly positive
parameters a and 3, which define the Beta distribution
from which actions are sampled: u ~ Beta(a,3). The
critic network provides state value estimates through a
neural network approximation: V(s) = NN(s).

Action selection proceeds by sampling from the
parameterized Beta distribution, yielding a continuous
dispatch factor u € [0,1] (u = 1 indicates no
curtailment). This action is subsequently applied to the
power-flow simulation environment via Pandapower,
where the PV output is reduced according to u,
resulting in a new grid state characterized by updated
voltage profiles and power flows.

Curtailment cost:

Le(t) = (1 — u)Papai(t) (1)
, Where P,.i(t) is the available PV power before
curtailment and u; € [0,1] is the dispatched fraction (u,
=1 indicates no curtailment).
The reward function is formulated to balance voltage
regulation objectives against economic
considerations. The curtailment cost is computed from
the reduction in PV output, while voltage violations are
assessed relative to the operating limits (Vimin, Vimax)-
The total reward is calculated as:

r(t) = —AL,(t) — w L ()

(2)

LV = Z{beB} [max(O, V{b,t} = Vinax) +
max(0, Vipin — Vip,ey) | 3)

In this study, Vmin = 0.95 pu and Vo = 1.02 pu
(adjustable per grid code), where A >> w, ensuring
that voltage-limit violations dominate the objective
relative to curtailment. This reflects the operational

priority that voltage violations are unacceptable
constraint breaches, whereas PV curtailment is a
tolerable corrective action. All state transitions,
actions, and rewards are stored as rollout data for
subsequent gradient computation.

Moreover, for each temporal step within a worker's
rollout trajectory, the Generalized Advantage Estimate
(GAE) and return targets are computed locally using
the following formulations in their simplified form.

The temporal-difference error, which serves as the
foundation for critic updates, is defined as:

6y =1+ yV(sHl) —V(s) 4)

, Where r, represents the immediate reward, y denotes
the discount factor, and V(s) is the critic's value
estimate.

The Generalized Advantage Estimate, utilized for
policy gradient computation, incorporates
exponentially-weighted temporal-difference errors:

Al’ = 6f + ylAt‘f'l (5)

, Wwhere A is the GAE parameter controlling the bias-
variance trade-off between Monte Carlo and temporal-
difference estimation.

The return target for critic training is computed as:

Ge=A;+V(s) (6)

These quantities are computed locally within each
worker process prior to gradient computation and
synchronization.

Each worker thread independently computes
gradients using the standard Asynchronous
Advantage Actor-Critic loss formulation, comprising
three components:
1. Policy Loss (Actor): The policy gradient loss
maximizes the expected advantage-weighted log-
probability of selected actions:

L,=—logm; - A; (7

2. Value Loss (Critic): The value function loss
minimizes the mean squared error between predicted
values and computed returns:

Ly = (V(s) = 6)’ (®)

3. Entropy Bonus: An entropy regularization term
encourages exploration by penalizing overly
deterministic policies.

Finally, the total worker loss is computed as the
combined objective function of the three above losses.

Furthermore, the  parameter  synchronization
procedure implements the standard Asynchronous
Advantage Actor-Critic paradigm through a four-stage
asynchronous update protocol. Each worker thread
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independently computes the gradients of the total loss
function with respect to its local network parameters
using the accumulated rollout data from the worker's
trajectory. Computed gradients are then transmitted to
the global network via an asynchronous push
operation without synchronization barriers, allowing
workers to operate independently and avoiding the
computational overhead associated with synchronized
batch updates. Upon receipt of worker gradients, the
global network applies these gradients to update the
shared parameters using the Adam optimization
algorithm. Following the global update, the worker
reloads the updated global parameters by copying
them to its local network and resumes trajectory
collection from its current environmental state using
the refreshed policy and value function
approximations. This asynchronous update
mechanism enables parallel exploration across
multiple workers while maintaining a single shared
network, thereby improving sample efficiency and
training stability compared to fully independent
learning agents.

C. Data
1) Grid data

The proposed control framework targets weak low-
voltage (LV) distribution feeders with high PV
penetration. In general, the approach supports
multiple small PV parks connected at different nodes
along the feeder. For clarity, the case study used in
this paper employs the simplified feeder shown in
Figure 3 with a single representative aggregated PV
park and an aggregated load, while preserving the
same measurement-simulation-training workflow.

PV generation profiles at each park are derived either
from real inverter measurements or from synthetic
irradiance curves that capture typical clear-sky and
partially cloudy conditions. Load profiles reflect
realistic residential and commercial consumption
patterns, including daily and seasonal variations.
Voltage limits are imposed at all buses according to
grid codes, and line and transformer ratings are
explicitly modelled to capture thermal constraints and
network losses.

This distribution network model serves as the
environment for reinforcement learning (RL) agents
during training and as the benchmark for evaluating
the performance of the proposed controller. It allows
the study of high PV penetration scenarios, including
operating conditions where conventional rule-based
control leads to voltage violations or excessive
curtailment.

MV bus MV bus
11 kV 11 kV

250 kVA
11/0.4 kV

Transformer bus

T
0.35 Q/km 0.35 Q/km

PV plant Aggregated
load

Figure 3: Simplified LV feeder model used as the
Pandapower simulation environment.

2) Weather data

A synthetic irradiance-based model was developed to
generate realistic photovoltaic power output profiles
throughout diurnal cycles. The model employs a
sinusoidal function to replicate the natural progression
of solar irradiance, characterized by a gradual
increase from sunrise, reaching maximum intensity at
solar noon, followed by a symmetric decline toward
sunset. During nighttime hours, photovoltaic
generation is constrained to zero, reflecting the
absence of incident solar radiation. This fundamental
sinusoidal structure provides a physically consistent
baseline representation of clear-sky solar resource
availability.

To capture the stochastic variability inherent in real-
world meteorological conditions, different noise
patterns were superimposed on the baseline
sinusoidal curve to simulate three distinct weather
scenarios. Clear day conditions are characterized by
high photovoltaic output with minimal variance,
representing stable atmospheric conditions with
unobstructed solar radiation. Partially cloudy
conditions exhibit reduced mean generation levels
punctuated by intermittent, short-duration power
reductions corresponding to transient cloud cover
obscuring solar panels. Cloudy day scenarios
demonstrate persistently low generation levels with
sustained high-frequency fluctuations, reflecting
diffuse  radiation  conditions and continuous
atmospheric attenuation. Regardless of the weather
classification during daylight hours, photovoltaic
output is uniformly set to zero during nighttime periods
when solar radiation is unavailable. This multi-
scenario approach ensures that the training dataset
encompasses the full spectrum of generation
variability encountered in operational distribution
networks, thereby enhancing the robustness and
generalization capability of the learned control policy.

3) Training data

The training dataset was generated through time-
series power-flow simulations corresponding to
approximately 266 day-equivalents of 5-minute
operation when aggregating across all parallel
environments. Four parallel environment instances
were executed concurrently; each rollout consisted of
32 control timesteps at 5-minute resolution (160
minutes). Over the course of training, 600
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asynchronous parameter updates were performed,
yielding 4 x 32 x 600 = 76,800 agent-environment
interactions. This dataset provides coverage of
diverse operating conditions and facilitates robust
policy learning across varying photovoltaic generation
profiles and load demand patterns.

Two distinct grid strength scenarios were investigated
to evaluate the control policy's adaptability to different
network impedance characteristics. The weak grid
scenario represents distribution networks with high
feeder impedance relative to the short-circuit capacity
at the point of common coupling. In such networks,
even moderate photovoltaic power injections can
induce significant voltage rise at low-voltage buses
due to the predominantly resistive nature of voltage
drops along distribution feeders. Conversely, the
strong grid scenario characterizes networks with low
feeder impedance or high short-circuit capacity, where
the grid exhibits minimal voltage deviations in
response to distributed generation variations. These
contrasting  scenarios enable  comprehensive
assessment of the learned control policy's
performance across the spectrum of grid conditions
encountered in practical distribution  network
operations.

The final dataset comprises features extracted from
the Pandapower simulation environment [3], which
collectively characterize the electrical behavior and
operational state of the distribution network. The
feature set encompasses short-circuit power at the
point of common coupling, photovoltaic bus voltages,
load power demand, transformer loading levels, and
network impedance ratios. Additionally, the available
active power capacity of each inverter, derived from
the physics-based irradiance model, is incorporated to
represent the potential generation prior to any
curtailment actions. To capture temporal patterns and
introduce continuity between daily operational cycles,
time-based features including the day index and
sinusoidal transformations of the time of day are
included. These ten features collectively serve as
inputs to the reinforcement learning model,
comprehensively representing both the physical grid
state and solar generation variability.

The PV bus voltage is included to reflect the local
voltage magnitude at each generation connection
point, enabling the detection of voltage rise
phenomena associated with distributed generation.
The load bus voltage provides visibility into voltage
conditions at demand nodes, facilitating identification
of overvoltage or undervoltage violations that may
compromise power quality or equipment operation.
Transformer loading indicates the utilization level of
distribution transformers, revealing network stress and
potential thermal or capacity constraints. Short-circuit
power serves as an indicator of grid strength and fault
current capability, which fundamentally influences
voltage stability characteristics. Real-time load power
informs the control policy of instantaneous demand

conditions, while the available photovoltaic power
before curtailment, extracted from the irradiance-
based generation model, quantifies the potential
renewable energy output. Finally, the impedance ratio
captures the relationship between network resistance
and reactance, which governs voltage drop behaviour
and determines the effectiveness of reactive power
control for voltage regulation.

Altogether, these 10 features are used as inputs to the
proposed model, as they capture both the physical
grid state and solar variability.

V. RESULTS/DISCUSSION

The proposed controller is evaluated through time-
series (quasi-static) power-flow simulations using the
Pandapower digital twin and the simplified feeder of
Figure 3. A rule-based baseline curtailment controller
is used for comparison (labelled "teacher" in the
plots). Performance is assessed using bus-voltage
behavior, dispatched PV power, and control
smoothness.

Weak Grid — Week-long PV/Load, Teacher Curtailment

P aval (kW)
P dispatched (kW

A Vi
I RN | A‘ m

18h ved 06h 120 18h Thy O Lh 18h n O6h 120 18h it O 1h 18h S OSn 12 18 mon O6h 12h I8h we O6h 120 1Sh weg OGh

Figure 4: Weak-grid Week-lon(j profiles under a rule-based
baseline controller (labelled "teacher” in the plot): available
PV power, dispatched PV power, and bus voltages.

=== PV avail (kw)
—— Teacher disp. (kW)
— RLdisp. (kW)

o (60 20 1 Thy ®h h 1h g 06h 12h 181 sar  06h 1h 18h S;n  O6h 12h 18h
Figure 5: Comparison of ADRL and the rule-based baseline
on a representative day in a weak grid: dispatched PV
power and the dispatch action u (u = 1 indicates no
curtailment).

Figure 4 illustrates that in weak-grid conditions, the
baseline controller frequently curtails PV output during
midday periods to keep the PV-bus voltage close to
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the upper limit (around 1.02 pu). The resulting
dispatched power exhibits step-like behavior,
indicating frequent control interventions. While this
strategy maintains the voltage constraint, it can be
overly conservative and may lead to unnecessary
energy curtailment.

As shown in Figure 5, the ADRL policy produces
smoother curtailment actions than the baseline and
dispatches PV power closer to the available profile. In
contrast, the baseline action exhibits rapid transitions
between strong curtailment and no curtailment. The
smoother ADRL behavior is desirable for practical
deployment as it reduces setpoint chatter and can
improve energy utilization while still respecting voltage
constraints through the reward prioritization (A >> w).

Training remained stable with four parallel worker
environments and 600 parameter updates (76,800
interactions), and the learned policy generalized
across the considered irradiance patterns. Overall,
these results indicate that actor—critc ADRL can
provide a practical alternative to fixed Volt—-Watt
curtailment curves, particularly in feeders where grid
strength and operating conditions vary over time. Field
validation and explicit safety constraints (e.g., ramp-
rate limits and communication delays) remain
important next steps.

V. CONCLUSIONS/FUTURE WORK

This paper presented an asynchronous deep
reinforcement learning (ADRL) framework for
autonomous, voltage-aware PV inverter curtailment in
small-scale LV installations that lack SCADA
connectivity. The proposed architecture combines
low-cost edge execution on a Raspberry Pi controller
with centralized training on a GPU-enabled HPC
backend using a Pandapower digital twin. Simulation
results on a weak LV feeder show that the learned
A3C policy can maintain voltages within limits while
producing smoother and less conservative curtailment
actions than a rule-based baseline.

Future work will focus on extending the action space
to include reactive power support and coordinated
multi-inverter control, integrating explicit safety
constraints (e.g., ramp-rate limits, communication
delays, and fail-safe fallback control), and validating
the approach on larger feeders and field data.
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