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Abstract—Nonlinear partial differential 
equations arise in many areas of science and 
engineering. The generalized Burgers–Fisher 
equation plays a significant role in modeling 
various physical and applied phenomena. This 
equation appears in fields such as financial 
mathematics, gas dynamics, traffic flow, applied 
mathematics, and physics. It serves as a 
prototypical model for describing the interaction 
among reaction mechanisms, convective effects, 
and diffusive transport. In this study, two implicit 
numerical methods are employed to solve the 
Burgers–Fisher equation 
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I.  INTRODUCTION  

We consider the following Burgers′-Fisher equation 
of the form 

𝜕𝑣

𝜕𝑡
−

𝜕2𝑣

𝜕𝑥2 + 𝛼𝑣
𝜕𝑣

𝜕𝑥
+ 𝛽𝑣(1 − 𝑣) = 0     𝑎 ≤ 𝑥 ≤ 𝑏, 𝑡 > 0 (1)   

 Where 𝛼 and 𝛽   are advection and source/sink 
constants. 

Initial and boundary conditions are as follow 

𝑣(𝑥, 0) = 𝑓(𝑥)   𝑓𝑜𝑟 𝑎 ≤ 𝑥 ≤ 𝑏 

𝑣(𝑎, 𝑡) = 𝑔(𝑡)   𝑓𝑜𝑟 𝑡 ≥ 0 

𝑣(𝑏, 𝑡) = ℎ(𝑡)   𝑓𝑜𝑟 𝑡 ≥ 0 

This paper focuses on the numerical solution of the 
Burgers–Fisher equation, a nonlinear parabolic partial 
differential equation. It represents a mathematical 
model for numerous physical phenomena encountered 
in various fields of science and engineering, including 
heat conduction, gas dynamics, chemical physics, and 
nonlinear optics. For instance, the equation is used to 
describe the velocity profile of a viscous fluid in fluid 
dynamics and gas flow behavior in exhaust pipes. The 
Burgers–Fisher equation serves as a prototypical 
model for capturing the interplay among convective 
effects, reaction mechanisms, and diffusive transport. 
Due to its fundamental role in nonlinear physics, the 

equation possesses considerable theoretical 
significance and practical relevance. 

Fisher proposed in 1937 that this equation models 
population dynamics explaining the spatial spread of 
an advantageous allele and discussing its travelling 
wave solutions. This equation was 

𝜕𝑣

𝜕𝑡
− 𝐷

𝜕2𝑣

𝜕𝑥2
= 𝐾𝑣(1 − 𝑣) 

The Burgers' equation, which was proposed by 
Johannes Martinus Burgers in 1948  modeling various 
physical phenomena such as gas dynamics, fluid 
mechanics, traffic flow, nonlinear acoustics, is given 
as: 

𝜕𝑣

𝜕𝑡
− 𝐷

𝜕2𝑣

𝜕𝑥2
+ 𝑣

𝜕𝑣

𝜕𝑥
= 0      

The combination of these two equations is commonly 
known as the Burgers′-Fisher equation (1). Recently,  
various numerical  and analytical methods have been 
used  by various researchers to deal with the Burgers′-
Fisher equation. 

In this paper, we address the numerical solution of the 
Burgers–Fisher equation using the well-known Crank–
Nicolson method. This method is straightforward to 
implement and provides reliable numerical results. We 
consider a representative example with prescribed 
initial and boundary conditions to demonstrate the 
effectiveness of the proposed approach.                             

                 

II. CRANK-NICOLSON METHOD FOR THE 

SOLUTION OF THE BURGERS–FISHER EQUATION  

Consider the problem below: 
 

𝜕𝑣

𝜕𝑡
−

𝜕2𝑣

𝜕𝑥2
+ 𝛼𝑣

𝜕𝑣

𝜕𝑥
+ 𝛽𝑣(1 − 𝑣) = 0 

 

With initial and boundary conditions 
 

𝑣(𝑥, 0) = 𝑓(𝑥)   𝑓𝑜𝑟 𝑎 ≤ 𝑥 ≤ 𝑏 

𝑣(𝑎, 𝑡) = 𝑔(𝑡)   𝑓𝑜𝑟 𝑡 ≥ 0 

𝑣(𝑏, 𝑡) = ℎ(𝑡)   𝑓𝑜𝑟 𝑡 ≥ 0 
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we replace in this equation the derivatives with the 
following differences. A more rewarding method can 
be derived by averaging the forward-difference 
method written at its jth step in t and sep (j+1). 

 

𝜕𝑣

𝜕𝑡
=

𝑣(𝑥𝑖 , 𝑡𝑗+1) − 𝑣(𝑥𝑖 , 𝑡𝑗)

𝑘
+ 𝑂(𝑘) 

  (the forward difference method)   
                                                       

𝜕2𝑣

𝜕𝑥2
=

𝑣(𝑥𝑖+1, 𝑡𝑗) − 2𝑣(𝑥𝑖 , 𝑡𝑗) + 𝑣(𝑥𝑖−1, 𝑡𝑗)

ℎ2
+ 𝑂(ℎ2) 

   
 (the central difference method)                                          

𝜕𝑣

𝜕𝑥
=

𝑣(𝑥, 𝑡𝑗) − 𝑣(𝑥𝑖−1, 𝑡𝑗)

2ℎ
+ 𝑂(ℎ2) 

 (the central difference method) 

And in step j+1 can be written 

                                                       
𝜕2𝑣

𝜕𝑥2
=

𝑣(𝑥𝑖+1, 𝑡𝑗+1) − 2𝑣(𝑥𝑖 , 𝑡𝑗+1) + 𝑣(𝑥𝑖−1, 𝑡𝑗+1)

ℎ2

+ 𝑂(ℎ2) 
                                            

𝜕𝑣

𝜕𝑥
=

𝑣(𝑥𝑖+1, 𝑡𝑗+1) − 𝑣(𝑥𝑖−1, 𝑡𝑗+1)

2ℎ
+ 𝑂(ℎ2) 

A more rewarding method can be derived by 
averaging the forward-difference method written at its 
jth step and at the (j+1)st step in t. The averaged 
difference method has local truncation error of order 
O(k

2
 + h

2
). This method is known as Crank-Nicolson 

method. 

III. IMPLEMENTATION OF THE METHOD 

 
Consider the problem below: 

𝜕𝑣

𝜕𝑡
−

𝜕2𝑣

𝜕𝑥2
+ 𝛼𝑣

𝜕𝑣

𝜕𝑥
+ 𝛽𝑣(1 − 𝑣) = 0 

With initial and boundary conditions 
 

𝑣(𝑥, 0) = 𝑓(𝑥)   𝑓𝑜𝑟 𝑎 ≤ 𝑥 ≤ 𝑏 

𝑣(𝑎, 𝑡) = 𝑔(𝑡)   𝑓𝑜𝑟 𝑡 ≥ 0 

𝑣(𝑏, 𝑡) = ℎ(𝑡)   𝑓𝑜𝑟 𝑡 ≥ 0 

 
As a first step, the computational domain is 

discretized with respect to the independent variables 

x,t. 

𝑣𝑖,𝑗
 = 𝑣(𝑖ℎ, 𝑗𝑘, )   where  ℎ = ∆𝑥 𝑎𝑛𝑑 𝑘 = ∆𝑡  

 

The backward-difference method written at the (j+1)st 
step in t  
 
𝑣𝑖,𝑗+1 − 𝑣𝑖,𝑗

𝑘
−

𝑣𝑖+1,𝑗 − 2𝑣𝑖,𝑗 + 𝑣𝑖−1,𝑗

ℎ2
+ 𝛼𝑣𝑖,𝑗

𝑣𝑖+1,𝑗 − 𝑣𝑖−1,𝑗

2ℎ
+ 𝛽𝑣𝑖,𝑗(1 − 𝑣𝑖,𝑗) = 0 

and the backward-difference method written at the 
(j+1)st step in t. 

 
𝑣𝑖,𝑗+1 − 𝑣𝑖,𝑗

𝑘
−

𝑣𝑖+1,𝑗+1 − 2𝑣𝑖,𝑗+1 + 𝑣𝑖−1,𝑗+1

ℎ2

+ 𝛼𝑣𝑖,𝑗+1

𝑣𝑖+1,𝑗+1 − 𝑣𝑖−1,𝑗+1

2ℎ
+ 𝛽𝑣𝑖,𝑗+1(1 − 𝑣𝑖,𝑗+1) = 0 

 
The Crank-Nicolson method can be written; 
 
𝑣𝑖,𝑗+1 − 𝑣𝑖,𝑗

𝑘
−

1

2ℎ2
[𝑣𝑖+1,𝑗 − 2𝑣𝑖,𝑗 + 𝑣𝑖−1,𝑗 + 𝑣𝑖+1,𝑗+1

− 2𝑣𝑖,𝑗+1 + 𝑣𝑖−1,𝑗+1]

+
𝛼

4ℎ
[𝑣𝑖,𝑗(𝑣𝑖+1,𝑗 − 𝑣𝑖−1,𝑗)

+ 𝑣𝑖,𝑗+1(𝑣𝑖+1,𝑗+1 − 𝑣𝑖−1,𝑗+1)]

+
𝛽

2
[(𝑣𝑖,𝑗 − 𝑣𝑖,𝑗

2) + (𝑣𝑖,𝑗+1 − 𝑣𝑖,𝑗+1
2)]

= 0 

If we keep the terms 𝑣(𝑗+1)on the left-hand side and 

𝑣(𝑗) on the right-hand side, the equation takes the 
form: 

 
1

𝑘
𝑣𝑖,𝑗+1 −

1

2ℎ2 (𝑣𝑖+1,𝑗+1 − 2𝑣𝑖,𝑗+1 + 𝑣𝑖−1,𝑗+1) +
𝛼

4ℎ
[𝑣𝑖,𝑗+1(𝑣𝑖+1,𝑗+1 − 𝑣𝑖−1,𝑗+1)] +

𝛽

2
(𝑣𝑖,𝑗+1 − 𝑣𝑖,𝑗+1

2) = 

1

𝑘
𝑣𝑖,𝑗 +

1

2ℎ2
(𝑣𝑖+1,𝑗 − 2𝑣𝑖,𝑗 + 𝑣𝑖−1,𝑗) −

𝛼

4ℎ
[𝑣𝑖,𝑗(𝑣𝑖+1,𝑗

− 𝑣𝑖−𝑖,𝑗)] −
𝛽

2
(𝑣𝑖,𝑗 − 𝑣𝑖,𝑗

2) 

 
 

𝑣𝑖,𝑗+1 (
1

𝑘
+

1

ℎ2 +
𝛽

2
(1 − 𝑣𝑖,𝑗+1)) + 𝑣𝑖+1,𝑗+1 (−

1

2ℎ2 +

𝛼

4ℎ
𝑣𝑖,𝑗+1) + 𝑣𝑖−1,𝑗+1 (−

1

2ℎ2 −
𝛼

4ℎ
𝑣𝑖,𝑗+1) =

𝑣𝑖,𝑗 (
1

𝑘
−

1

ℎ2 −
𝛽

2
(1 − 𝑣𝑖,𝑗)) + 𝑣𝑖+1,𝑗 (

1

2ℎ2 −
𝛼

4ℎ
𝑣𝑖,𝑗) +

𝑣𝑖−𝑖,𝑗 (
1

2ℎ2 +
𝛼

4ℎ
𝑣𝑖,𝑗)  

 
Define coefficients 

𝑎𝑖 =
1

𝑘
+

1

ℎ2
+

𝛽

2
(1 − 𝑣𝑖,𝑗+1) 

 

𝑏𝑖 = −
1

2ℎ2
+

𝛼

4ℎ
𝑣𝑖,𝑗+1 

𝑐𝑖 = −
1

2ℎ2
−

𝛼

4ℎ
𝑣𝑖,𝑗+1 

 

𝑑𝑖 =
1

𝑘
−

1

ℎ2
−

𝛽

2
(1 − 𝑣𝑖,𝑗) 

𝑓𝑖 =
1

2ℎ2
−

𝛼

4ℎ
𝑣𝑖,𝑗 

 

𝑔𝑖 =
1

2ℎ2
+

𝛼

4ℎ
𝑣𝑖,𝑗 

The matrix form is 

𝐴𝑣(𝑗+1) = 𝐵𝑣(𝑗) 
Where A and B  are tridiagonal matrix. 
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IV. NUMERICAL EXPERIMENTS AND 

DISCUSSIONS 

The exact solution of the Burgers-Fisher equation 
over the domain [0,1]x[0,T] is: 
 

𝑣(𝑥, 𝑡) =
1

2
+

1

2
tanh (

−𝛼

4
[𝑥 − (

𝛼

2
−

2𝛽

𝛼
) 𝑡]) 

This solution is obtained from the existing literature. 
Initial and boundary conditions are as follows 

𝑣(𝑥, 0) =
1

2
+

1

2
tanh (

−𝛼𝑥

4
) 

 

𝑣(0, 𝑡) =
1

2
+

1

2
tanh (

𝛼

4
[(

𝛼

2
−

2𝛽

𝛼
) 𝑡]) 

𝑣(1, 𝑡) =
1

2
+

1

2
tanh (

−𝛼

4
[1 − (

𝛼

2
−

2𝛽

𝛼
) 𝑡]) 

In order to test the accuracy and efficiency of the 
proposed scheme, comparisons of the obtained 
results are made with the above exact solution. 
 
Example 1. Numerical results are computed for 
𝛼 = −1 and 𝛽 = −1 at different time livels. Figure 4.1 
presents the computed solutions in three-dimensional 
form for T=0.01. Figure 4.2 illustrates the comparison 
of absolute errors at grid points for the time levels 
T=0.001, 0.005 and 0.01. 
It is observed that the absolute error decreases as the 
time step is reduced. Moreover, the proposed method 
exhibits high accuracy, particularly at the interior grid 
points. Figure 4.2 also shows the corresponding error 
profiles. 
 
 
 
 
 
 

 
Fig. 1. Solutions of  excemple 1 with space and time variables for 

T=0.01.  
 

 
Fig. 2. Absolute errors of excemple 1 for 𝛼 = −1 and 𝛽 = −1 

at different times T. 
 

V. CONCLUSION 

The Crank–Nicolson method is employed for temporal 
discretization, while the quasi-linearization technique 
is used to handle the nonlinear nature of the equation. 
Several examples with varying parameter values are 
considered to demonstrate the effectiveness of the 
proposed method.  
The numerical results obtained are consistent with the 
inherent behavior of the Burgers–Fisher equation and 
show improved accuracy compared to results reported 
in the existing literature. Furthermore, the method is 
computationally efficient, relatively simple to 
implement, and can be readily extended to higher-
dimensional partial differential equations.   
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