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Abstract—Memristors are nanoscale resistive 
devices that can store and process information in 
the same place. They help address the von 
Neumann bottleneck. Because they perform 
analog computation with low energy, they are 
promising for in-memory and neuromorphic 
systems. This paper reviews recent progress in 
HfOx, TaOx, and OxRAM devices, as well as large-
scale crossbar demonstrations for neural network 
inference. Results show that memristor arrays can 
efficiently perform matrix–vector multiplication, 
but face challenges like device variability, 
nonlinear switching, and conductance drift. 
Improving materials, calibration, and CMOS-
compatible fabrication is important for making 
memristor-based computing reliable and scalable. 
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1. Introduction 

Traditional computers follow the von Neumann 
architecture. This is where memory and processors 
are separated, leading to bottlenecking. Energy and 
time are wasted moving data back and forth to 
compute, creating the need for new technology to 
solve this bottleneck. There are two main types of 
memory: volatile and non-volatile. Non-volatile memory 
(NVM) is useful because it retains data even when 
power is turned off, unlike volatile memory (like RAM), 
which loses all information when power is lost. This is 
commonly found in devices like SSDs, flash drives, 
and ROM. However, these types of devices can only 
read and/or write. The second component to 
computers is the processor, most commonly known as 
the CPU. The CPU strictly does computations; it takes 
input data, processes it according to a program’s 
commands, and produces output. Memristors have 
gained notability for their ability to not just read/write 
but also compute directly on stored data (which is non-
volatile), eliminating the “von Neumann bottleneck” [1], 
[2]. Because memristors operate at the nanoscale, 
billions can be integrated into a dense network that 
combines storage and computing, offering exceptional 
energy efficiency and speed [2], [7]. 

1.1 Memristors 

A memristor is an electronic device whose 
resistance depends on the past electrical signals 

applied to it. The idea was first introduced by Leon 
Chua in 1971, who proposed a missing circuit element 
linking charge and magnetic flux [1]. This theoretical 
model showed that resistance could depend on the 
history of charge flow, allowing a device to “remember” 
its previous state. 

In practical devices, this memory behavior comes 
from internal physical changes. When a voltage is 
applied, ions inside the material move, or conductive 
filaments grow and shrink. These changes modify the 
device’s resistance, and the new state remains even 
after power is removed [3], [7]. Because the internal 
configuration is preserved, memristors are non-volatile 
and can store information as stable resistance levels. 

Memristors are useful in systems where storage 
and computation needs to happen in the same 
location. Their ability to hold multiple resistance states 
and update those states with electrical pulses makes 
them suitable for applications such as non-volatile 
memory, in-memory computing, neuromorphic circuits, 
and artificial synapses in brain-inspired hardware [1], 
[6], [8]. 

1.2 Current Progress in Memristors 

In the United States, a team at the University of 
Michigan demonstrated a HfOx-based 64×64 RRAM 
crossbar array that was capable of performing analog 
matrix–vector multiplications for MNIST image 
classification [4]. Their system achieved 94–97% 
accuracy after device-aware training and it operated at 
significantly lower energy than a digital CPU baseline 
[4]. Similarly, U.S. national laboratories reported TaOx 
and HfOx devices with stable analog conductance 
tuning and multi-level weights suitable for IMC 
accelerators [6]. 

In Europe, IMEC and research groups in the 
Netherlands and Germany have developed foundry-
compatible RRAM arrays using materials and 
processes compatible with commercial CMOS 
fabrication [2], [3]. One demonstration used a 256×256 
1T1R OxRAM array that reached 8–10-bit effective 
precision in analog MAC operations through write–
verify programming and calibration, enabling deeper 
neural network inference on analog hardware [2]. 
European teams have also reported sub-picojoule 
programming energy and high device endurance that 
support scalable neuromorphic implementations [6]. 
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In Asia, researchers at Tsinghua University 
were able to build a 128×64 TaOx memristor array for 
keyword spotting operating under 200 μW, making it 
suitable for battery-powered edge-AI devices [5]. 
Additionally, Japanese and South Korean groups have 
demonstrated memristor-based convolution operations 
and spike-timing-dependent plasticity (STDP), 
enabling compact analog neural networks for low-
power pattern recognition tasks [7]. 

2. Implementation 

Memristors are built using a metal–insulator–metal 
(MIM) structure. This usually includes a top electrode, 
an oxide switching layer, and a bottom electrode (Fig. 
1. a-b). A voltage is then applied, and ions or oxygen 
vacancies move inside the oxide. This movement 
forms or breaks a conductive path, which causes a 
change in the resistance. The low-resistance state is 
called SET, and the high-resistance state is called 
RESET (Fig. 1.c). After switching, the resistance stays 
in its new state even with the power off; this is what 
makes memristors non-volatile [2], [3]. 

  

 

Figure 1. Memristor device structure, switching 
mechanism, I–V behavior, and crossbar operation [2]. 

(a) Oxygen-vacancy distribution in high-resistance 
(HRS) and low-resistance (LRS) states. (b) A 
memristor integrated with a transistor (1T1R structure). 
(c) Typical memristor I–V curve showing SET and 
RESET transitions. (d) Crossbar array) 

 

The hysteresis loop in Fig. 1c shows the 
typical I–V response during switching. When many 
memristors are placed in a crossbar array (Fig. 1d), 
each one acts as a programmable conductance for 
matrix–vector multiplication [2]. 

Most practical systems use either a 1T1R or 
1S1R structure. In a 1T1R, each memristor is paired 
with a transistor, making it common in in-memory 
computing (IMC) because it provides better control 
over programming and reduces sneak currents [4], [6]. 
A 1S1R structure uses a selector instead of a 
transistor; it’s used in more compact designs where 
density is prioritized [3]. In both cases, devices are 
arranged into crossbar arrays so that each cell acts 
like a programmable conductance (Fig. 1d). 

Implementations follow a similar design across 
different research groups. The University of Michigan 
used a 64×64 HfOx 1T1R array to perform analog 
matrix–vector multiplication for MNIST classification 

[4]. Their system relied on applying small voltage 
pulses to gradually tune each device to a target 
conductance. This closed-loop “write–verify” style 
programming is common because individual devices 
vary from one another [2], [3], [6]. IMEC’s 256×256 
OxRAM array used a similar approach, but with 
additional calibration steps to reach 8–10-bit effective 
precision for larger networks [2]. These steps adjust for 
nonlinear switching and drift so the array can maintain 
stable weights. 

Other implementations focus on low-power 
edge computing. Tsinghua University was able to run a 
TaOx array running keyword spotting at under 200 µW 
by simplifying the readout circuits and reducing ADC 
resolution [5]. Groups in Japan and South Korea have 
used related structures for neuromorphic learning [7]. 

3. Review and Discussion 

There are several shared patterns across 
previously discussed memristor-based systems. Most 
arrays use incremental programming, where small 
pulses gradually shift the conductance until it reaches 
a target value. This is usually paired with a write–verify 
step because individual devices vary and can over- or 
undershoot the intended state if programmed in a 
single pulse [2], [4], [6]. 1T1R structures remain the 
most reliable option for IMC applications since the 
transistor helps block unwanted currents and improve 
control during programming [3], [6]. 

Another common trend is the use of per-column 
ADCs to read analog currents from crossbars. Even 
though ADCs add overhead, they are necessary to 
convert the accumulated current into a digital value for 
further processing [2], [5]. Larger arrays and analog 
tasks often require calibration cycles to manage drift, 
nonlinearity, and device aging [3], [6]. These 
techniques appear consistent across different 
materials (HfOx, TaOx, OxRAM) and array sizes. 

3.1 Observed Strengths 

One of the main strengths of memristor arrays is 
that they naturally perform matrix–vector multiplication 
in one step; it is the core operation in neural networks 
[1], [2]. By computing inside the array, the need to 
shuttle data back and forth between memory and 
processor is greatly reduced. 

Another strength is compatibility with CMOS build 
processes, especially in OxRAM arrays demonstrated 
by IMEC and other fabrication-focused groups [2], [3], 
[6]. This improves the likelihood of future commercial 
adoption because the devices can be integrated using 
established manufacturing steps. 

3.2 Limitations and Challenges 

Despite the advantages, challenges remain across 
all systems. Device variability being one of the most 
common issues. Conductance changes in different 
devices can happen due to identical programming 
pulses, which is why write–verify and calibration steps 
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are needed [4], [6]. However, this adds time and 
complexity to the overall system. 

Another limitation is nonlinear switching behavior; 
this makes it difficult to achieve high precision without 
closed-loop tuning [3]. Drift over time can shift 
conductance away from the desired value [6]. 

3.3 Future Systems 

A hybrid approach may solve some challenges. 
Memristors can handle analog MAC operations while 
digital logic does control and corrections [2], [8]. This 
reduced ADC overhead and low-precision inference 
can also enable more efficient designs. 

4. Conclusion 

Based on current designs and data, memristors 
show promising results to significantly reduce the von 
Neumann bottleneck by combining storage and 
computation in the same location [1], [2]. Recent work 
shows that memristor arrays can perform core 
operations like matrix–vector multiplication with lower 
energy, making them useful for in-memory computing 
and neuromorphic tasks [4]. 

At the same time, several challenges remain. 
Variability, nonlinear switching, drift, and the need for 
calibration all affect accuracy and reliability [3], [6]. 
Large arrays also face issues with sneak currents and 
circuit overhead. These must be addressed before 
memristor technologies can be used at a commercial 
scale. 

Progress across materials, programming schemes, 
and CMOS-compatible fabrication is validation for 
continuation of this research in the future of 
memristors and their development. 
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