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Abstract—Memristors are nanoscale resistive
devices that can store and process information in
the same place. They help address the von
Neumann bottleneck. Because they perform
analog computation with low energy, they are
promising for in-memory and neuromorphic
systems. This paper reviews recent progress in
HfOx, TaOx, and OXRAM devices, as well as large-
scale crossbar demonstrations for neural network
inference. Results show that memristor arrays can
efficiently perform matrix—vector multiplication,
but face challenges like device variability,
nonlinear switching, and conductance drift.
Improving materials, calibration, and CMOS-
compatible fabrication is important for making
memristor-based computing reliable and scalable.
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1. Introduction

Traditional computers follow the von Neumann
architecture. This is where memory and processors
are separated, leading to bottlenecking. Energy and
time are wasted moving data back and forth to
compute, creating the need for new technology to
solve this bottleneck. There are two main types of
memory: volatile and non-volatile. Non-volatile memory
(NVM) is useful because it retains data even when
power is turned off, unlike volatile memory (like RAM),
which loses all information when power is lost. This is
commonly found in devices like SSDs, flash drives,
and ROM. However, these types of devices can only
read and/or write. The second component to
computers is the processor, most commonly known as
the CPU. The CPU strictly does computations; it takes
input data, processes it according to a program’s
commands, and produces output. Memristors have
gained notability for their ability to not just read/write
but also compute directly on stored data (which is non-
volatile), eliminating the “von Neumann bottleneck” [1],
[2]. Because memristors operate at the nanoscale,
billions can be integrated into a dense network that
combines storage and computing, offering exceptional
energy efficiency and speed [2], [7].

1.1 Memristors

A memristor is an electronic device whose
resistance depends on the past electrical signals
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applied to it. The idea was first introduced by Leon
Chua in 1971, who proposed a missing circuit element
linking charge and magnetic flux [1]. This theoretical
model showed that resistance could depend on the
history of charge flow, allowing a device to “remember”
its previous state.

In practical devices, this memory behavior comes
from internal physical changes. When a voltage is
applied, ions inside the material move, or conductive
filaments grow and shrink. These changes modify the
device’s resistance, and the new state remains even
after power is removed [3], [7]. Because the internal
configuration is preserved, memristors are non-volatile
and can store information as stable resistance levels.

Memristors are useful in systems where storage
and computation needs to happen in the same
location. Their ability to hold multiple resistance states
and update those states with electrical pulses makes
them suitable for applications such as non-volatile
memory, in-memory computing, heuromorphic circuits,
and artificial synapses in brain-inspired hardware [1],
[6]. [8].

1.2 Current Progress in Memristors

In the United States, a team at the University of
Michigan demonstrated a HfOx-based 64x64 RRAM
crossbar array that was capable of performing analog
matrix—vector multiplications for MNIST image
classification [4]. Their system achieved 94-97%
accuracy after device-aware training and it operated at
significantly lower energy than a digital CPU baseline
[4]. Similarly, U.S. national laboratories reported TaOx
and HfOx devices with stable analog conductance
tuning and multi-level weights suitable for IMC
accelerators [6].

In Europe, IMEC and research groups in the
Netherlands and Germany have developed foundry-
compatible RRAM arrays using materials and
processes compatible with commercial CMOS
fabrication [2], [3]. One demonstration used a 256x256
1T1IR OxRAM array that reached 8-10-bit effective
precision in analog MAC operations through write—
verify programming and calibration, enabling deeper
neural network inference on analog hardware [2].
European teams have also reported sub-picojoule
programming energy and high device endurance that
support scalable neuromorphic implementations [6].
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In Asia, researchers at Tsinghua University
were able to build a 128x64 TaOx memristor array for
keyword spotting operating under 200 pW, making it
suitable for battery-powered edge-Al devices [5].
Additionally, Japanese and South Korean groups have
demonstrated memristor-based convolution operations
and  spike-timing-dependent  plasticity  (STDP),
enabling compact analog neural networks for low-
power pattern recognition tasks [7].

2. Implementation

Memristors are built using a metal-insulator-metal
(MIM) structure. This usually includes a top electrode,
an oxide switching layer, and a bottom electrode (Fig.
1. a-b). A voltage is then applied, and ions or oxygen
vacancies move inside the oxide. This movement
forms or breaks a conductive path, which causes a
change in the resistance. The low-resistance state is
called SET, and the high-resistance state is called
RESET (Fig. 1.c). After switching, the resistance stays
in its new state even with the power off; this is what
makes memristors non-volatile [2], [3].
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Figure 1. Memristor device structure, switching
mechanism, I-V behavior, and crossbar operation [2].

(&) Oxygen-vacancy distribution in high-resistance
(HRS) and low-resistance (LRS) states. (b) A
memristor integrated with a transistor (1T1R structure).
(c) Typical memristor |-V curve showing SET and
RESET transitions. (d) Crossbar array)

The hysteresis loop in Fig. 1c shows the
typical -V response during switching. When many
memristors are placed in a crossbar array (Fig. 1d),
each one acts as a programmable conductance for
matrix—vector multiplication [2].

Most practical systems use either a 1T1R or
1S1R structure. In a 1T1R, each memristor is paired
with a transistor, making it common in in-memory
computing (IMC) because it provides better control
over programming and reduces sneak currents [4], [6].
A 1S1R structure uses a selector instead of a
transistor; it's used in more compact designs where
density is prioritized [3]. In both cases, devices are
arranged into crossbar arrays so that each cell acts
like a programmable conductance (Fig. 1d).

Implementations follow a similar design across
different research groups. The University of Michigan
used a 64x64 HfOx 1T1R array to perform analog
matrix—vector multiplication for MNIST classification

[4]. Their system relied on applying small voltage
pulses to gradually tune each device to a target
conductance. This closed-loop “write—verify” style
programming is common because individual devices
vary from one another [2], [3], [6]. IMEC’s 256%x256
OxRAM array used a similar approach, but with
additional calibration steps to reach 8-10-bit effective
precision for larger networks [2]. These steps adjust for
nonlinear switching and drift so the array can maintain
stable weights.

Other implementations focus on low-power
edge computing. Tsinghua University was able to run a
TaOx array running keyword spotting at under 200 pwW
by simplifying the readout circuits and reducing ADC
resolution [5]. Groups in Japan and South Korea have
used related structures for neuromorphic learning [7].

3. Review and Discussion

There are several shared patterns across
previously discussed memristor-based systems. Most
arrays use incremental programming, where small
pulses gradually shift the conductance until it reaches
a target value. This is usually paired with a write—verify
step because individual devices vary and can over- or
undershoot the intended state if programmed in a
single pulse [2], [4], [6]. 1T1R structures remain the
most reliable option for IMC applications since the
transistor helps block unwanted currents and improve
control during programming [3], [6].

Another common trend is the use of per-column
ADCs to read analog currents from crossbars. Even
though ADCs add overhead, they are necessary to
convert the accumulated current into a digital value for
further processing [2], [5]. Larger arrays and analog
tasks often require calibration cycles to manage drift,
nonlinearity, and device aging [3], [6]. These
techniques appear consistent across different
materials (HfOx, TaOx, OXRAM) and array sizes.

3.1 Observed Strengths

One of the main strengths of memristor arrays is
that they naturally perform matrix—vector multiplication
in one step; it is the core operation in neural networks
[1], [2]. By computing inside the array, the need to
shuttle data back and forth between memory and
processor is greatly reduced.

Another strength is compatibility with CMOS build
processes, especially in OXRAM arrays demonstrated
by IMEC and other fabrication-focused groups [2], [3],
[6]. This improves the likelihood of future commercial
adoption because the devices can be integrated using
established manufacturing steps.

3.2 Limitations and Challenges

Despite the advantages, challenges remain across
all systems. Device variability being one of the most
common issues. Conductance changes in different
devices can happen due to identical programming
pulses, which is why write—verify and calibration steps

Www.jmest.org

JMESTN42354610

17893


http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403
Vol. 12 Issue 12, December - 2025

are needed [4], [6]. However, this adds time and
complexity to the overall system.

Another limitation is nonlinear switching behavior;
this makes it difficult to achieve high precision without
closed-loop tuning [3]. Drift over time can shift
conductance away from the desired value [6].

3.3 Future Systems

A hybrid approach may solve some challenges.
Memristors can handle analog MAC operations while
digital logic does control and corrections [2], [8]. This
reduced ADC overhead and low-precision inference
can also enable more efficient designs.

4. Conclusion

Based on current designs and data, memristors
show promising results to significantly reduce the von
Neumann bottleneck by combining storage and
computation in the same location [1], [2]. Recent work
shows that memristor arrays can perform core
operations like matrix—vector multiplication with lower
energy, making them useful for in-memory computing
and neuromorphic tasks [4].

At the same time, several challenges remain.
Variability, nonlinear switching, drift, and the need for
calibration all affect accuracy and reliability [3], [6].
Large arrays also face issues with sneak currents and
circuit overhead. These must be addressed before
memristor technologies can be used at a commercial
scale.

Progress across materials, programming schemes,
and CMOS-compatible fabrication is validation for
continuation of this research in the future of
memristors and their development.
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