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Abstract— In this work, Graph Neural Network
(GNN) and Particle Swarm Optimization (PSO)
hybrid model for the optimization of the IEEE 14-
bus network reactive power is presented. This
hybrid strategy is particularly designed to
integrate the topological learning capacity of
GNNs with the population-based search capability
of PSO, aimed at reducing systemic deviations
across active and reactive power mismatches. The
results showed that the GNN + PSO hybrid model
shows notable improvements over the standalone
GNN model, with substantial reductions in Bus 1
active mismatch; dropping from 147.750 MW to
128.174 MW. The Q_mismatch profile also benefits
from the hybrid approach. Bus 1 exhibits a
mismatch of 48.841 MVAR, a reduction from
56.095 MVAR in the standalone GNN case. Across
the board, reactive mismatches fall within a
narrow band: between +4.494 MVAR (Bus 8) and
-17.901 MVAR (Bus 14). This uniformity suggests
that reactive support mechanisms (e.g., capacitor
banks or tap-changing transformers) could be
better coordinated using this hybrid setup. Also,
the hybrid model exhibits notable improvements
in energy loss reduction over the standalone GNN
model, primarily driven by the PSO layer’s fine-
tuning of line parameters.

Keywords—Graph Neural Network (GNN), IEEE
14-bus network, Particle Swarm Optimization
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1. Introduction

Across the globe, electric power transmission
networks are generally used to transfer the generated
energy from the generator system to the distribution point
or a long distance [1,2,3]. The transmission network
therefore has much impact on the quality of the power that
get delivered to the end user [4,5,6]. Notably, the power
transmission network has both active and reactive power
and a proper balance of the reactive and the active power is
required to ensure good quality and efficient delivery of the
power delivered to the load [7,8]. Ensuring the optimal
balance of the active and reactive power in a transmission
network has attracted several researches [9,10]. In recent
times, Artificial Intelligent (Al) models has been used for
the power system studies [11]. The Al models has
consistently demonstrated superior results when compared
with the typical analytical models-based solution [12,13].

Hence, in this work, the Graph Neural Network
and Particle Swarm Optimization hybrid model is employed
to optimize the reactive power flow in IEEE 14-bus
network [14,15]. The hybrid model hybrid aims to mitigate
the shortcomings of standalone GNNs, which tend to
underperform in precision-based optimization tasks due to
limited reward shaping and exploration diversity.

2. Methodology

The hybrid model approach is presented for the
optimization of the IEEE 14-bus network reactive power.
Specifically, the Graph Neural Network (GNN) and Particle
Swarm Optimization (PSO) hybrid model is used for the
reactive power control in the IEEE 14-bus network. This
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hybrid strategy is particularly designed to integrate the
topological learning capacity of GNNs with the population-
based search capability of PSO, aimed at reducing systemic
deviations across active and reactive power mismatches.

2.1 Development of Particle Swarm Optimization for
Reactive Power Optimization

In this work, the Particle Swarm Optimization
(PSO), inspired by the social behaviour of birds and fish
schools, is used in conjunction with  GNN model to
optimize reactive power dispatch by minimizing network
power losses, voltage deviations, and/or cost functions
under the constraints of electrical network operations.

The PSO is applied as a metaheuristic optimizer to
enhance voltage stability, minimize active power losses,
and ensure feasible operation of a smart grid through
reactive power compensation, tap changer control, and
capacitor switching. The flow diagram of a generic PSO
model for reactive power optimization is shown in Figurel.
Now, let the optimization goal be to minimize a multi-term
objective function J(x), where x is the decision variable
vector; then the objective function is defined as:

miny J(x) = Ay * Poss(x) + A3 * Ve (%) + 23 Cowiren (%)

@

Where, x is the decision variable vector, 4,, 1,, A5 are

trade-off weights, Cg,icn 1S @ penalty function for

switching operation, Py, and Vy,,, functions are defined in
Equation 2 and Equation 3, respectively.

Pi2'+Qi2'
Pioss = Xipec Rij (%) 2
v
Where, L is a set of lines, P is active power, Q is reactive
power, V is the bus voltage, and R is the line reactance.
Vier = ZiEB(Vi - 1)2 (3)
The decision matrix variable is defined as:
x =[Qc1, Qcz r Qens Te Ty . Ty, Sy, o2 Sp
(4)

Where, Q.; denotes the reactive power injected by capacitor
bank i, T; is tap position of transformer j, Sy is the switch
status (on or off) for capacitor k. Some constraints are
outlined for the objective function as follows:
Voltage Limits: V™™ <V, < V/"*, Vi€ B
Reactive Power Limits: QM" < Q,; < QM
Tap Settings: T; € {iji", ...T]-ma"}
Thermal Limits: |I;;| < I}, V(i,j) € L
(5)
Where, B is a set of buses, £ is a set of lines, and I;; is the
line current magnitude. Each particle i in the swarm
represents a candidate solution x;. The swarm evolves by
updating the position and velocity of each particle based on
local and global best solutions. If there are n particles in the
swarm, each particle i is initialized with position x € R4,
velocity v? € R%. Personal best position is defined as:
pi =x{ (6)
Global best position is defined as:
g = argmin; J(p;) )
At each iteration t, each particle updates its velocity and
position using the following expressions;
vttt =wevf + o (p— x{) + e (g — xf) )
X = xf + ot ©)
Where, w is the inertia weight (exploration vs exploitation),
ci,Cc, are acceleration coefficients (personal vs social),
1, ,~U(0,1) are random scalars for stochasticity. To
ensure feasible solutions, infeasible solutions are penalized
using a high cost and projection methods are applied to map
x; back into feasible set: x; « clip(x;, x™", x™3¥), PSO is
integrated with Newton-Raphson load flow (Figure 2)
solver for computing power losses and voltages after each
particle's configuration.
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Figure 1 The flow diagram of a generic PSO model for reactive power optimization [16]
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Output load flow results

Figure 2 The flowc_r-lart of the Newton Raphson Load Flow Model [17]
the performance of the GNN model. The architecture of a

2.2 The hybrid GNN + PSO model generic the GNN model is presented in Figure 3 while the
In this work, the Graph Neural Network (GNN) is flow diagram of the reactive power flow optimization
the base model for optimization of the IEEE 14-bus model based on the GNN model is shown in Figure 4.

network reactive power while the PSO is used to enhance
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Figure 3: The architecture of a generic the GNN model. [18]
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Figure 4 The flow diagram of the reactive power flow optimization model based on the GNN model [19]

By blending PSO into GNN, PSO leverage grid
topology (nodes = buses, edges = lines) for spatially
coordinated control of voltage/reactive flows. GNN model
maps V = f;yn(G, X,0), where G is the graph (IEEE 14-
bus), X is node-wise input, and 6 is hyperparameters. PSO
is used to: optimize graph signal Qc(capacitor settings),
tune node-wise input weights and adjacency thresholds and
select GNN architecture (depth, aggregation rules). The
optimization function is formulated as:

ming,J = A1 * ||V = Vies||* + Az - GNNpss (10)
Each particle represents a set of node level QX values to
inject or absorb reactive power. This hybrid GNN + PSO
enables graph-structured control, ensuring coordinated
decision-making across spatially distributed buses with
minimal communication latency. The single line model of
the IEEE 14-transmission network is presented in Figure 5.
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Figure 5 The single line model of the IEEE 14-transmission network [20]

3. Results and discussion
The power mismatch data result from the GNN +
PSO model are presented in Table 1 and visualized in
Figure 6. The results offer in-depth view into the behavior
of the Graph Neural Network (GNN) model when enhanced

with the Particle Swarm Optimization (PSO) algorithm for
load flow refinement. The GNN + PSO hybrid model
shows notable improvements over the standalone GNN
model, with substantial reductions in Bus 1 active
mismatch; dropping from 147.750 MW to 128.174 MW.

Table 1: Per-Bus Power Mismatch (GNN + PSO Hybrid)

Bus ID P_mismatch (MW) Q_mismatch (MVAR)
1 128.174 48.841
2 62.283 19.227
3 54.133 15.700
4 -41.151 -17.731
5 -40.315 -17.809
6 45.895 11.872
7 -40.947 -17.814
8 46.023 4.494
9 -40.753 -17.745
10 -41.150 -17.807
11 -40.983 -17.667
12 -40.738 -17.681
13 -40.583 -17.806
14 -40.890 -17.901

The Q_mismatch profile also benefits from the hybrid
approach. Bus 1 exhibits a mismatch of 48.841 MVAR, a
reduction from 56.095 MVAR in the standalone GNN case.
Across the board, reactive mismatches fall within a narrow
band: between +4.494 MVAR (Bus 8) and -17.901
MVAR (Bus 14). This uniformity suggests that reactive
support mechanisms (e.g., capacitor banks or tap-changing

transformers) could be better coordinated using this hybrid
setup. The relatively flat profile seen in Figure 6 supports
this conclusion. The bar chart in Figure 6 graphically
depicts the active and reactive mismatches per bus, clearly
reflecting the structured power balancing strategy induced
by the GNN + PSO model: The blue bars (active mismatch)
and red bars (reactive mismatch) are nearly symmetric. The
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fluctuations across buses are moderate and consistent,
especially when compared to the raw GNN model. This
visual evidence supports the idea that PSO has effectively

guided GNN’s learned weights toward lower-cost mismatch
configurations, despite  GNN’s known limitations in
numeric convergence.

Per-Bus Power Mismatch - GNN + PSO
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Figure 6: Per-Bus Power Mismatch (GNN + PSO Hybrid)

The results from Table 2 indicate that the GNN +
PSO model successfully allocates load across major
transmission corridors. Notably, the heaviest load paths
include:
i Line 1-5 with an active flow of 216.207
MW,
ii. Line 2—4 with 130.114 MW, and
iii. Line 6-11 with 113.412 MW.

Peripheral lines such as 4-7, 4-9, and 7-9 still maintain
nominal flow levels, suggesting appropriate reactive
distribution to fringe buses. Mid-network lines like 2-5, 3—
4, and 6-12 also reflect steady power movement,
confirming that the GNN has correctly learned the
topological influence of each bus on regional dispatch.
Figure 7 visually supports these findings by mapping
directional active and reactive power across the grid with

balanced gradient intensities, affirming the network's
operational stability.

The hybrid model exhibits notable improvements in energy
loss reduction over the standalone GNN model, primarily
driven by the PSO layer’s fine-tuning of line parameters:

i.  The line with the highest total loss is again 1-5,
recording 12,447.800 MVA, a clear reduction
compared to the pure GNN model (13,238.815
MVA in Table 4.12).

ii. Major improvements are observed in: Line 2-5:
reduced to 3408.504 MVA, Line 6-12: now at
3802.265 MVA, and Line 6-13: optimized to
1976.095 MVA.

iii. Low-voltage, low-load lines, such as 7-9, 9-10,
and 13-14, continue to display negligible losses,
supporting the efficiency and fidelity of power
routing even at the distribution tails.

These patterns are clearly illustrated in Figure 8.

Table 2: GNN + PSO based line flow demand and loss

From- | Active Power Flow | Reactive Power Flow | Active Power Loss Reactive Power Loss Total Power
To (MW) (MVAR) (MWwW) (MVAR) Loss
1-2 82.591 36.004 140.315 479.001 498.155
1-5 216.207 84.221 2860.770 12010.203 12447.800
2-3 8.934 4,103 5.012 21.084 22.462
2-4 130.114 46.334 1110411 3402.118 3525.379
2-5 128.951 47.031 1071.323 3293.401 3408.504
3-4 119.915 42.406 1098.018 2883.199 2999.608
4-5 -1.011 0.096 0.013 0.041 0.045
4-7 -0.261 0.105 0.000 0.015 0.015
4-9 -0.497 0.020 0.000 0.129 0.129
5-6 -112.810 -37.781 0.000 3580.613 3580.613
6-11 113.412 37.660 1358.001 2863.303 3021.304
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6-12 113.090 37.800 1745.110 3652.312 3802.265
6-13 112.981 38.066 934.019 1855.789 1976.095
7-8 -112.096 -28.235 0.000 2421.701 2421.701
7-9 -0.227 -0.081 0.000 0.006 0.006
9-10 0.491 0.072 0.008 0.021 0.023
9-14 0.136 0.203 0.008 0.016 0.018
10-11 -0.212 -0.185 0.006 0.015 0.017
12-13 -0.189 0.160 0.014 0.013 0.018
13-14 0.360 0.136 0.026 0.053 0.059
. GNN + PSO - Line Active and Reactive Power Flow
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Figure 7: GNN + PSO based line flow demand

GNN + PSO - Line Power Losses
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4 Conclusion

A hybrid model approach for the optimization of
the IEEE 14-bus network reactive power is presented.
Specifically, the Graph Neural Network (GNN) and Particle
Swarm Optimization (PSO) hybrid model is used for the
reactive power control in the IEEE 14-bus network. The
combination of Graph Neural Networks (GNNs) with
Particle Swarm Optimization (PSO) brings together two
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Figure 8: GNN + PSO based line losses

complementary paradigms; GNNs for spatial feature
learning over topologically structured grid data, and PSO
for global exploration of parameter configurations that
minimize network inefficiencies. This hybrid aims to
mitigate the shortcomings of standalone GNNs, which tend
to underperform in precision-based optimization tasks due
to limited reward shaping and exploration diversity. The
results show that the GNN + PSO hybrid model shows
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notable improvements over the standalone GNN model,
with substantial reductions in Bus 1 active mismatch;
dropping from 147.750 MW to 128.174 MW. Also, the
hybrid model exhibits notable improvements in energy loss
reduction over the standalone GNN model, primarily driven
by the PSO layer’s fine-tuning of line parameters.

References

11.

Alhamrouni, I., Abdul Kahar, N. H., Salem, M.,
Swadi, M., Zahroui, Y., Kadhim, D. J, .. &
Alhuyi Nazari, M. (2024). A comprehensive
review on the role of artificial intelligence in
power system stability, control, and protection:
Insights and future directions. Applied
Sciences, 14(14), 6214.

1. Gonen, T., Ten, C. W., & Mehrizi-Sani, A. 12. Mansouri, S. S., Sivaram, A., Savoie, C. J., &
(2024). Electric power distribution engineering. Gani, R. (2024). Models, modeling and model-
CRC press. based systems in the era of computers, machine

2. Singh, R., & Powar, V. (2024). The Future of learning and Al. Computers & Chemical
Generation, Transmission, and Distribution of Engineering, 108957.

Electricity. In The Advancing World of Applied 13. Wei, Y. (2024). Development of novel
Electromagnetics: In Honor and Appreciation of computational models based on artificial
Magdy Fahmy Iskander (pp. 349-383). Cham: intelligence technique to predict liquids mixtures
Springer International Publishing. separation via vacuum membrane

3. Von Meier, A. (2024). Electric power systems: a distillation. Scientific Reports, 14(1), 24121.
conceptual introduction. John Wiley & Sons. 14. Al Butti, O. S. T., Burunkaya, M., Rahebi, J., &

4. Adewumi, O. B., Fotis, G., Vita, V., Nankoo, D., Lopez-Guede, J. M. (2024). Optimal power flow
& Ekonomou, L. (2022). The impact of distributed using PSO algorithms based on artificial neural
energy storage on distribution and transmission networks. IEEE Access, 12, 154778-154795.
networks’ power quality. Applied Sciences, 12(13), 15. Abdel-Basset, M., Mohamed, R., Hezam, I. M.,
6466. Sallam, K. M., Alshamrani, A. M., & Hameed, I.

5. Ma, S., Chou, Y. C., Zhao, H., Chen, L., Ma, X, A. (2024). Atrtificial intelligence-based
& Liu, J. (2023, May). Network characteristics of optimization techniques for optimal reactive power
leo satellite constellations: A starlink-based dispatch problem: a contemporary survey,
measurement from end users. In IEEE INFOCOM experiments, and analysis. Artificial Intelligence
2023-IEEE Conference on Computer Review, 58(1), 2.

Communications (pp. 1-10). IEEE. 16. Manasvi, K., Venkateswararao, B., Devarapalli,

6. Gonen, T., Ten, C. W., & Mehrizi-Sani, A. R., & Prasad, U. (2020). PSO Based Optimal
(2024). Electric power distribution engineering. Reactive Power Dispatch for the Enrichment of
CRC press. Power System Performance. In Recent Advances

7. Razmi, D, Lu, T., Papari, B., Akbari, E., Fathi, G., in Power Systems: Select Proceedings of EPREC
& Ghadamyari, M. (2023). An overview on power 2020 (pp.  267-276).  Singapore:  Springer
quality issues and control strategies for distribution Singapore.
networks with the presence of distributed 17. Ukut, U. I, Okpura, N., & Umoette, A. T. (2023).
generation resources. IEEE access, 11, 10308- Comparison Of Load Flow Analysis On IEEE 33
10325. Bus System Based On Newton Raphson And Fast

8. Rehman, A., Koondhar, M. A., Ali, Z., Jamali, M., Decoupled Methods. Science and Technology
& El-Sehiemy, R. A. (2023). Critical issues of Publishing (SCI&TECH), 7(2).
optimal reactive power compensation based on an 18. Hansen, J. B., Anfinsen, S. N., & Bianchi, F. M.
HVAC transmission system for an offshore wind (2022). Power flow balancing with decentralized
farm. Sustainability, 15(19), 14175. graph neural networks. IEEE Transactions on

9. Mehbodniya, A., Paeizi, A., Rezaie, M., Azimian, Power Systems, 38(3), 2423-2433.

M., Masrur, H., & Senjyu, T. (2022). Active and 19. Tuo, M., Li, X., Zhao, T.-Q. (2023): Graph neural
reactive power management in the smart network-based power flow model. 2023 North
distribution network enriched with wind turbines American Power Symposium (NAPS), 1-5
and photovoltaic systems. Sustainability, 14(7), (2023) https://doi.org/10.
4273. 1109/NAPS58826.2023.10318768

10. Kumar, C., Lakshmanan, M., Jaisiva, S, 20. Talebi, S., & Zhou, K. (2025). Graph Neural
Prabaakaran, K., Barua, S., & Fayek, H. H. (2023). Networks for Efficient AC Power Flow Prediction
Reactive power control in renewable rich power in Power Grids. arXiv preprint arXiv:2502.05702.
grids: A literature review. IET Renewable Power
Generation, 17(5), 1303-1327.

WwWw.jmest.org
JMESTN42354598 17889


http://www.jmest.org/
https://doi.org/10.%201109/NAPS58826.2023.10318768
https://doi.org/10.%201109/NAPS58826.2023.10318768

