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Abstract— In this work, Graph Neural Network 

(GNN) and Particle Swarm Optimization (PSO) 
hybrid model for the optimization of the IEEE 14-
bus network reactive power is presented. This 
hybrid strategy is particularly designed to 
integrate the topological learning capacity of 
GNNs with the population-based search capability 
of PSO, aimed at reducing systemic deviations 
across active and reactive power mismatches. The 
results showed that the GNN + PSO hybrid model 
shows notable improvements over the standalone 
GNN model, with substantial reductions in Bus 1 
active mismatch; dropping from 147.750 MW to 
128.174 MW. The Q_mismatch profile also benefits 
from the hybrid approach. Bus 1 exhibits a 
mismatch of 48.841 MVAR, a reduction from 
56.095 MVAR in the standalone GNN case. Across 
the board, reactive mismatches fall within a 
narrow band: between +4.494 MVAR (Bus 8) and 
–𝟏𝟏𝟏𝟏.𝟗𝟗𝟗𝟗𝟗𝟗 MVAR (Bus 14). This uniformity suggests 
that reactive support mechanisms (e.g., capacitor 
banks or tap-changing transformers) could be 
better coordinated using this hybrid setup. Also, 
the hybrid model exhibits notable improvements 
in energy loss reduction over the standalone GNN 
model, primarily driven by the PSO layer’s fine-
tuning of line parameters. 
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1. Introduction 
Across the globe, electric power transmission 

networks are generally used to transfer the generated 
energy from the generator system to the distribution point 
or a long distance [1,2,3]. The transmission network 
therefore has much impact on the quality of the power that 
get delivered to the end user [4,5,6]. Notably, the power 
transmission network has both active and reactive power 
and a proper balance of the reactive and the active power is 
required to ensure good quality and efficient delivery of the 
power delivered to the load [7,8]. Ensuring the optimal 
balance of the active and reactive power in a transmission 
network has attracted several researches [9,10]. In recent 
times, Artificial Intelligent (AI) models has been used for 
the power system studies [11]. The AI models has 
consistently demonstrated superior results when compared 
with the typical analytical models-based solution [12,13].  

Hence, in this work, the Graph Neural Network 
and Particle Swarm Optimization hybrid model is employed 
to optimize the reactive power flow in IEEE 14-bus 
network [14,15]. The hybrid model hybrid aims to mitigate 
the shortcomings of standalone GNNs, which tend to 
underperform in precision-based optimization tasks due to 
limited reward shaping and exploration diversity. 

2. Methodology 
The hybrid model approach is presented for the 

optimization of the IEEE 14-bus network reactive power. 
Specifically, the Graph Neural Network (GNN) and Particle 
Swarm Optimization (PSO) hybrid model is used for the 
reactive power control in the IEEE 14-bus network.  This 
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hybrid strategy is particularly designed to integrate the 
topological learning capacity of GNNs with the population-
based search capability of PSO, aimed at reducing systemic 
deviations across active and reactive power mismatches. 
2.1 Development of Particle Swarm Optimization for 
Reactive Power Optimization 

In this work, the Particle Swarm Optimization 
(PSO), inspired by the social behaviour of birds and fish 
schools, is used in conjunction with GNN model to 
optimize reactive power dispatch by minimizing network 
power losses, voltage deviations, and/or cost functions 
under the constraints of electrical network operations.  

The PSO is applied as a metaheuristic optimizer to 
enhance voltage stability, minimize active power losses, 
and ensure feasible operation of a smart grid through 
reactive power compensation, tap changer control, and 
capacitor switching. The flow diagram of a generic PSO 
model for reactive power optimization is shown in Figure1. 
Now, let the optimization goal be to minimize a multi-term 
objective function 𝐽𝐽(𝑥𝑥) , where 𝑥𝑥  is the decision variable 
vector; then the objective function is defined as: 

min𝑥𝑥 𝐽𝐽(𝑥𝑥) = 𝜆𝜆1 ∙ 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥) + 𝜆𝜆2 ∙ 𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥) + 𝜆𝜆3 ∙ 𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ(𝑥𝑥)
 (1) 

Where, 𝑥𝑥  is the decision variable vector, 𝜆𝜆1 , 𝜆𝜆2 , 𝜆𝜆3  are 
trade-off weights, 𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ  is a penalty function for 
switching operation, 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 and 𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑 functions are defined in 
Equation 2 and Equation 3, respectively. 

𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = ∑ 𝑅𝑅𝑖𝑖𝑖𝑖 �
𝑃𝑃𝑖𝑖𝑖𝑖
2+𝑄𝑄𝑖𝑖𝑖𝑖

2

𝑉𝑉𝑖𝑖
2 �(𝑖𝑖,𝑗𝑗)∈ℒ   (2) 

Where, ℒ is a set of lines, 𝑃𝑃 is active power, 𝑄𝑄 is reactive 
power, 𝑉𝑉 is the bus voltage, and 𝑅𝑅 is the line reactance. 

𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑 = ∑ (𝑉𝑉𝑖𝑖 − 1)2𝑖𝑖∈𝐵𝐵    (3) 
The decision matrix variable is defined as: 

𝑥𝑥 = �𝑄𝑄𝑐𝑐1,𝑄𝑄𝑐𝑐2, … ,𝑄𝑄𝑐𝑐𝑐𝑐,𝑇𝑇1,𝑇𝑇2, …𝑇𝑇𝑚𝑚, 𝑆𝑆1, … 𝑆𝑆𝑝𝑝�  
 (4) 

Where, 𝑄𝑄𝑐𝑐𝑐𝑐 denotes the reactive power injected by capacitor 
bank 𝑖𝑖, 𝑇𝑇𝑗𝑗  is tap position of transformer 𝑗𝑗, 𝑆𝑆𝑘𝑘 is the switch 
status (on or off) for capacitor 𝑘𝑘 . Some constraints are 
outlined for the objective function as follows: 

𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿:   𝑉𝑉𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑉𝑉𝑖𝑖 ≤ 𝑉𝑉𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 ,   ∀𝑖𝑖 ∈ 𝐵𝐵
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿:   𝑄𝑄𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑄𝑄𝑐𝑐𝑐𝑐 ≤ 𝑄𝑄𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚

𝑇𝑇𝑇𝑇𝑇𝑇 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆:  𝑇𝑇𝑗𝑗 ∈ �𝑇𝑇𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚, …𝑇𝑇𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚� 
𝑇𝑇ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿:   �𝐼𝐼𝑖𝑖𝑖𝑖� ≤ 𝐼𝐼𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 ,   ∀(𝑖𝑖, 𝑗𝑗) ∈ ℒ ⎭

⎪
⎬

⎪
⎫

 

 (5) 
Where, 𝐵𝐵 is a set of buses, ℒ is a set of lines, and 𝐼𝐼𝑖𝑖𝑖𝑖 is the 
line current magnitude. Each particle 𝑖𝑖  in the swarm 
represents a candidate solution  𝑥𝑥𝑖𝑖. The swarm evolves by 
updating the position and velocity of each particle based on 
local and global best solutions. If there are 𝑛𝑛 particles in the 
swarm, each particle 𝑖𝑖 is initialized with position 𝑥𝑥𝑖𝑖0 ∈ 𝑅𝑅𝑑𝑑, 
velocity 𝑣𝑣𝑖𝑖0 ∈ 𝑅𝑅𝑑𝑑. Personal best position is defined as: 

𝑝𝑝𝑖𝑖 = 𝑥𝑥𝑖𝑖0 (6) 
Global best position is defined as: 

𝑔𝑔 = 𝑎𝑎𝑎𝑎𝑎𝑎min𝑖𝑖 𝐽𝐽(𝑝𝑝𝑖𝑖)   (7) 
At each iteration 𝑡𝑡, each particle updates its velocity and 
position using the following expressions; 

𝑣𝑣𝑖𝑖𝑡𝑡+1 = 𝑤𝑤 ∙ 𝑣𝑣𝑖𝑖𝑡𝑡 + 𝑐𝑐1𝑟𝑟1(𝑝𝑝𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑡𝑡) + 𝑐𝑐2𝑟𝑟2(𝑔𝑔 − 𝑥𝑥𝑖𝑖𝑡𝑡) (8) 
𝑥𝑥𝑖𝑖𝑡𝑡+1 = 𝑥𝑥𝑖𝑖𝑡𝑡 + 𝑣𝑣𝑖𝑖𝑡𝑡+1  (9) 

Where, 𝑤𝑤 is the inertia weight (exploration vs exploitation), 
𝑐𝑐1 , 𝑐𝑐2  are acceleration coefficients (personal vs social), 
𝑟𝑟1 , 𝑟𝑟2~𝑈𝑈(0,1)  are random scalars for stochasticity. To 
ensure feasible solutions, infeasible solutions are penalized 
using a high cost and projection methods are applied to map 
𝑥𝑥𝑖𝑖 back into feasible set: 𝑥𝑥𝑖𝑖 ← 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚, 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚). PSO is 
integrated with Newton-Raphson load flow (Figure 2)  
solver for computing power losses and voltages after each 
particle's configuration. 

http://www.jmest.org/
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Figure 1 The flow diagram of a generic PSO model for reactive power optimization [16] 
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Figure 2 The flowchart of the Newton Raphson Load Flow Model [17] 

 
2.2  The hybrid GNN + PSO model 

In this work, the Graph Neural Network (GNN) is 
the base model for optimization of the IEEE 14-bus 
network reactive power while the PSO is used to enhance 

the performance of the GNN model.  The architecture of a 
generic the GNN model is presented in Figure 3 while the 
flow diagram of the reactive power flow optimization 
model based on the GNN model is shown in Figure 4. 
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Figure 3: The architecture of  a generic the GNN model. [18] 

 
Figure 4 The flow diagram of the reactive power flow optimization model based on the GNN model  [19] 

 
By blending PSO into GNN, PSO leverage grid 

topology (nodes = buses, edges = lines) for spatially 
coordinated control of voltage/reactive flows. GNN model 
maps 𝑉𝑉� = 𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺(𝒢𝒢,𝑋𝑋,𝜃𝜃), where 𝒢𝒢  is the graph (IEEE 14-
bus), 𝑋𝑋 is node-wise input, and 𝜃𝜃 is hyperparameters. PSO 
is used to: optimize graph signal Qc(capacitor settings), 
tune node-wise input weights and adjacency thresholds and 
select GNN architecture (depth, aggregation rules). The 
optimization function is formulated as: 

min𝑄𝑄𝑐𝑐 𝐽𝐽 = 𝜆𝜆1 ∙ �𝑉𝑉� − 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟�
2 + 𝜆𝜆2 ∙ 𝐺𝐺𝐺𝐺𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 (10) 

Each particle represents a set of node level 𝑄𝑄𝑐𝑐𝑖𝑖  values to 
inject or absorb reactive power. This hybrid GNN + PSO 
enables graph-structured control, ensuring coordinated 
decision-making across spatially distributed buses with 
minimal communication latency. The single line model of 
the IEEE 14-transmission network is presented in Figure 5. 

Reactive 
Power 

prediction  
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Figure 5 The single line model of the IEEE 14-transmission network [20] 

3. Results and discussion 
The power mismatch data result from the GNN + 

PSO model are presented in Table 1 and visualized in 
Figure 6. The results offer in-depth view into the behavior 
of the Graph Neural Network (GNN) model when enhanced 

with the Particle Swarm Optimization (PSO) algorithm for 
load flow refinement. The GNN + PSO hybrid model 
shows notable improvements over the standalone GNN 
model, with substantial reductions in Bus 1 active 
mismatch; dropping from 147.750 MW to 128.174 MW.  

Table 1: Per-Bus Power Mismatch (GNN + PSO Hybrid) 
Bus ID P_mismatch (MW) Q_mismatch (MVAR) 

1 128.174 48.841 
2 62.283 19.227 
3 54.133 15.700 
4 -41.151 -17.731 
5 -40.315 -17.809 
6 45.895 11.872 
7 -40.947 -17.814 
8 46.023 4.494 
9 -40.753 -17.745 

10 -41.150 -17.807 
11 -40.983 -17.667 
12 -40.738 -17.681 
13 -40.583 -17.806 
14 -40.890 -17.901 

 
The Q_mismatch profile also benefits from the hybrid 
approach. Bus 1 exhibits a mismatch of 48.841 MVAR, a 
reduction from 56.095 MVAR in the standalone GNN case. 
Across the board, reactive mismatches fall within a narrow 
band: between +4.494 MVAR (Bus 8) and – 17.901 
MVAR (Bus 14). This uniformity suggests that reactive 
support mechanisms (e.g., capacitor banks or tap-changing 

transformers) could be better coordinated using this hybrid 
setup. The relatively flat profile seen in Figure 6 supports 
this conclusion. The bar chart in Figure 6  graphically 
depicts the active and reactive mismatches per bus, clearly 
reflecting the structured power balancing strategy induced 
by the GNN + PSO model: The blue bars (active mismatch) 
and red bars (reactive mismatch) are nearly symmetric. The 
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fluctuations across buses are moderate and consistent, 
especially when compared to the raw GNN model. This 
visual evidence supports the idea that PSO has effectively 

guided GNN’s learned weights toward lower-cost mismatch 
configurations, despite GNN’s known limitations in 
numeric convergence. 

 
Figure 6: Per-Bus Power Mismatch (GNN + PSO Hybrid) 

 
The results from Table 2 indicate that the GNN + 

PSO model successfully allocates load across major 
transmission corridors. Notably, the heaviest load paths 
include: 

i. Line 1–5 with an active flow of 216.207 
MW, 

ii. Line 2–4 with 130.114 MW, and 
iii. Line 6–11 with 113.412 MW. 

Peripheral lines such as 4–7, 4–9, and 7–9 still maintain 
nominal flow levels, suggesting appropriate reactive 
distribution to fringe buses. Mid-network lines like 2–5, 3–
4, and 6–12 also reflect steady power movement, 
confirming that the GNN has correctly learned the 
topological influence of each bus on regional dispatch. 
Figure 7 visually supports these findings by mapping 
directional active and reactive power across the grid with 

balanced gradient intensities, affirming the network's 
operational stability. 
The hybrid model exhibits notable improvements in energy 
loss reduction over the standalone GNN model, primarily 
driven by the PSO layer’s fine-tuning of line parameters: 

i. The line with the highest total loss is again 1–5, 
recording 12,447.800 MVA, a clear reduction 
compared to the pure GNN model (13,238.815 
MVA in Table 4.12). 

ii. Major improvements are observed in: Line 2–5: 
reduced to 3408.504 MVA, Line 6–12: now at 
3802.265 MVA, and Line 6–13: optimized to 
1976.095 MVA. 

iii. Low-voltage, low-load lines, such as 7–9, 9–10, 
and 13–14, continue to display negligible losses, 
supporting the efficiency and fidelity of power 
routing even at the distribution tails. 

These patterns are clearly illustrated in Figure 8. 
Table 2: GNN + PSO based line flow demand and loss 

From–
To 

Active Power Flow 
(MW) 

Reactive Power Flow 
(MVAR) 

Active Power Loss 
(MW) 

Reactive Power Loss 
(MVAR) 

Total Power 
Loss 

1–2 82.591 36.004 140.315 479.001 498.155 
1–5 216.207 84.221 2860.770 12010.203 12447.800 
2–3 8.934 4.103 5.012 21.084 22.462 
2–4 130.114 46.334 1110.411 3402.118 3525.379 
2–5 128.951 47.031 1071.323 3293.401 3408.504 
3–4 119.915 42.406 1098.018 2883.199 2999.608 
4–5 -1.011 0.096 0.013 0.041 0.045 
4–7 -0.261 0.105 0.000 0.015 0.015 
4–9 -0.497 0.020 0.000 0.129 0.129 
5–6 -112.810 -37.781 0.000 3580.613 3580.613 
6–11 113.412 37.660 1358.001 2863.303 3021.304 
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6–12 113.090 37.800 1745.110 3652.312 3802.265 
6–13 112.981 38.066 934.019 1855.789 1976.095 
7–8 -112.096 -28.235 0.000 2421.701 2421.701 
7–9 -0.227 -0.081 0.000 0.006 0.006 
9–10 0.491 0.072 0.008 0.021 0.023 
9–14 0.136 0.203 0.008 0.016 0.018 

10–11 -0.212 -0.185 0.006 0.015 0.017 
12–13 -0.189 0.160 0.014 0.013 0.018 
13–14 0.360 0.136 0.026 0.053 0.059 

 

 
Figure 7: GNN + PSO based line flow demand 

 
Figure 8: GNN + PSO based line losses 

4  Conclusion 
A hybrid model approach for the optimization of 

the IEEE 14-bus network reactive power is presented. 
Specifically, the Graph Neural Network (GNN) and Particle 
Swarm Optimization (PSO) hybrid model is used for the 
reactive power control in the IEEE 14-bus network.  The 
combination of Graph Neural Networks (GNNs) with 
Particle Swarm Optimization (PSO) brings together two 

complementary paradigms; GNNs for spatial feature 
learning over topologically structured grid data, and PSO 
for global exploration of parameter configurations that 
minimize network inefficiencies. This hybrid aims to 
mitigate the shortcomings of standalone GNNs, which tend 
to underperform in precision-based optimization tasks due 
to limited reward shaping and exploration diversity. The 
results show that the GNN + PSO hybrid model shows 
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notable improvements over the standalone GNN model, 
with substantial reductions in Bus 1 active mismatch; 
dropping from 147.750 MW to 128.174 MW. Also, the 
hybrid model exhibits notable improvements in energy loss 
reduction over the standalone GNN model, primarily driven 
by the PSO layer’s fine-tuning of line parameters. 
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