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Abstract—The present paper is devoted to a 
mathematical model describing the technological 
structures in enrichment factories. The base of 
our investigations is the reliability theory. This 
allows us to assess both the reliability of 
individual units and the operations of the entire 
factory. With this model for the productivity of a 
sequential technological production line, possible 
opportunities for achieving significant economic 
benefits are revealed, associated with reducing 
material and electricity expenses.  
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I. Introduction 

Studying the reliability of technological structures in 
enrichment factories is one of the main sources of 
obtaining information necessary for managing 
technical systems. It is a fundamental prerequisite for 
their effective operation. 

The issue of ensuring high reliability of large 
technical systems is extremely complex. It involves a 
combination of scientific, technical, and organizational 
issues, among which tasks related to developing and 
practically utilizing quantitative results to improve the 
operation of the facility hold a significant place. 
Achieving high reliability is of great importance in the 
development, production, and operation of technical 
devices of various types and purposes [1-3]. 

Indicators of reliability of material handling systems 
in enrichment factories form the basis for forming 
production plans for a respective calendar period [4]. 
They assess the production capabilities of the main 
units and the transportation mechanization. 

From a production process perspective, the 
technological line is characterized by two main 
modes: operation and downtime. Essentially, this is a 
complex sequence of periods involving immediate 
work, troubleshooting, planned maintenance, 
interruptions due to organizational and technological 
reasons, etc. 

II. Methods of Investigation 

Every technological structure is characterized by 
the following quantitative reliability indicators [5, 6], 
both for individual machines and for the technological 
structure as a whole: 

 iP t  - probability of failure-free operation of 

individual machines; 

 TSP t  - probability of failure-free operation of the 

technological structure; 

i  - failure intensity of individual machines; 

TS  - failure intensity of the technological structure; 

i  - recovery intensity of individual machines; 

TS  - recovery intensity of the technological 

structure; 

 if t  - probability density function of failure-free 

operation of individual machines; 

 TSf t  - probability density function of failure-free 

operation of the technological structure; 

iK  - availability coefficient of individual machines; 

TSK  - availability coefficient of the technological 

structure; 

pT  - mean time between failures in the 

technological structure; 

bT  - mean time to restore the structure; 

TSQ  - average productivity of the technological 

structure between failures. 

Establishing quantitative reliability indicators for 
technological structures and the machines involved in 
them is necessary for: 

- determining operational productivity; 

- developing an effective system for technical 
maintenance; 

- defining guidelines for improving 
mechanization; 

- identifying reserves for increasing net 
operating time; 

- scientific justification of production plans. 

For evaluating the operational modes of a given 
technological structure, the distribution of calendar 

time kT  during which it operates is of crucial 

importance [7, 8]. In the most general case, kT  is 

presented as: 
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k p b dT T T T   ,(1) 

where: 

pT  - time for the operation of the technological 

structure; 

bT  - time for recovery after failure; 

dT  - time for technical maintenance. 

The time for recovery is a fundamental indicator 
and is determined by: 

        1 2 3 4

1

n

i i i i

i

b

t t t t

T
n



  




,(2) 

where: 

 1

it  - time for failure detection; 

 2

it  - time for delivery of spare parts and 

organizational downtime before repair starts; 

 3

it  - time for repair; 

 4

it  - time for testing a machine after the failure has 

been resolved. 

Recovery time bT  characterizes the ability to 

quickly detect failures and remedy them, the level of 
organization of repair activities, and the time required 
to procure necessary spare parts [9]. 

During the process, there are alternating periods of 

time for failure-free operation 
pT  and time for recovery 

bT . It can be assumed that 
pT  and bT  are random and 

independent variables, and the density distribution of 

their sum 
o p bT T T   is the convilution: 

     
0

t

о p bf t f x f t x dx  ,(3) 

i.e., this is the density distribution of the time 
between two consecutive recoveries. 

From the theory of queuing systems, it is known 
[10, 11] that when studying event streams, two 
characteristics are used - intensity and event stream 
parameter. For ordinary event streams, it is assumed 
that the two characteristics coincide. The relationship 
between the event stream parameter and the density 
distribution is: 

       
0

t

о o o ow t f t w f t d     .(4) 

At a given moment of time t , the technological 

structure may be in an operational state under the 
presence of one of two mutually exclusive events: 

1. The technological structure has not failed for 

the time interval  0,t ; 

2. The structure has failed and is being 
recovered, and after the last recovery, it has not failed 
again. 

The availability function  t , expressing the 

probability that the technological structure is 
operational, is equal to the sum of the probabilities of 
the two events occurring. The probability of the first 
event occurring is equal to the probability of the 

technological structure operating without failure  TSP t  

for the time interval  0,t . 

To determine the probability of the second event 
occurring, a small time interval is considered 

 , t    . The probability that within this interval 

the last recovery will be completed and the 
technological structure will not fail again until the end 

of the time interval is    
no TSf P t d   . 

Summing up by n , we obtain: 

       
1

no TS o TS

n

f P t d w P t d     




   ,(5) 

where    
1

no o

n

w f 




 . 

After integrating over the interval  0,t , the 

probability of the second event occurring is found, 
where the availability function will be equal to: 

       
0

t

TS TS ot P t P t w d      .(6) 

The Smith theorem [10, 11] is applied to the 
obtained availability function of the technological 
structure, according to which: 

   
 

 1

0 0

1
lim

t

t
Q t x dE x Q x dx

E t




   , 

where: 

 E t  is the mathematical expectation of the time 

between two consecutive events; 

 Q x  - is a growing integrable function in the 

interval  0, x ; 

 1E x - is the mathematical expectation of the 

number of failures in the interval  0, x . 

The mathematical expectation of the random 

variable 
o p bT T T   is: 

     o p bE T E T E T  and  lim 0TS
t

P t


 ;

   

1
lim o
t

p b

w
E T E T




. 
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Under these conditions, it follows that: 

 
   
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 
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p

TS TS
t

p b p b

E T
t P t dt K

E T E T E T E T
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 


.(7) 

The availability function of the technological 

structure at t   tends to a steady value 
TSK , 

independent of the distribution laws of the random 

variables 
pT and bT . The availability coefficient 

determines the ratio of the time during which the 
structure is operational to the total operational time. 

Analysis of statistical methods [12-14] for the 
operation of various technological structures shows 
that the times for failure-free operation and recovery 
follow the exponential distribution law: 

  1 TS t
F t e


  ,   1 TS t

G t e


  .(8) 

The probability density functions are respectively: 

 
 

TS t

TS TS

dF t
f t e

dt

 
  , 

(9) 

 
 

TS t

TS TS

dG t
g t e

dt

 
  . 

Solving equation (6) yields: 

   TS TS tTS TS

TS TS TS TS

t e
  

   

 
  

 
,(10) 

 lim TS

TS
t

TS TS

t K


 
  


. 

Determining the availability coefficient of the 
technological line based on updating statistical 
information to a high degree reflects the operating 
conditions and serves to evaluate its performance [15-
17]. 

The production ore-processing process in 
enrichment factories is realized through crushing 
technological lines [18-22]. The operational 
productivity Q  of a crushing technological line with a 

sequential structure for a specific calendar period can 
be determined by the relationship: 

 
1

i

M

Q i Q p

i

Q m n t


  ,(11) 

where: 

M  is the number of states of the line, differing 
from each other with different productivity of the 
crushing unit; 

ipt  is the time for operation of the line. 

Since during the respective calendar period the 
crushing unit will operate with different productivities, 
the ratio 

 ip

p i
k

t
p t

T
  

will be the probability of being in the i - th state of 

productivity. Then the time 
pt  will be: 

1

1 2

p k TS

l
t T K

l l



.(12) 

In accordance with formula (7), the sum of the 

average times between failures 
pT  and bT  is 

represented as: 

p

p b

TS

T
T Т

K
  .(13) 

During the analysis of the operation of sequential 
technological structures, the coefficient of technical 

maintenance dK  is also used: 

1

1 2

k d

d

k

T T l
K

T l l


 


,(14) 

where: 

1l  - the number of shifts worked on the 

technological line; 

2l  - the number of maintenance shifts. 

Taking into account expressions (1), (13), and (14), 
the average time of the technological line for the 
calendar period can be determined as: 

1

1 2

p k TS

l
T T K

l l



.(15) 

Then 

   1

11 2

M
T

k TS i p

i

l
Q T K Q p t

l l 



 .(16) 

From the analysis of the operation of individual 
technological lines in enrichment factories, it is 
concluded that the probability density distributions of 
the material flows follow the Gaussian law, i.e. 

 

 
2

221

2

Q

Q

Q m

Q

f Q e


 




 . 

The mathematical expectation  E Q  turns out to 

be significantly smaller than the productivity of the 
main technological machine, as indicated in its 
technical characteristics. There are cases where the 

productivity 3Q Qm   is lower than the nominal one. 

Taking into account the fact that the material flows in 
these structures follow the Gaussian law, when 
determining the parameters of the rubber-belt 
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conveyor (drive power, belt width), the following 
expression should be used for the calculated load: 

 

1

1
np

M
T

i

ik

t
V Q

T





 
  
 
 

 . 

Since in practice determining the coefficients 
TSK  

and dK  is relatively imprecise, it is more appropriate 

to determine the predicted workload performed by the 
crushing unit from the expression: 

 

1

np

M
k T

i

ik

T t
V Q

T






  . 

III. Conclusion 

With the described model for the productivity of a 
sequential technological production line, possible 
opportunities for achieving significant economic 
benefits are revealed, associated with reducing 
material and electricity expenses. 
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